|  | /******************************************************************************* | 
|  |  | 
|  | Intel(R) Gigabit Ethernet Linux driver | 
|  | Copyright(c) 2007-2009 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | e1000-devel Mailing List <[email protected]> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <linux/net_tstamp.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci-aspm.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/aer.h> | 
|  | #include <linux/prefetch.h> | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | #include <linux/dca.h> | 
|  | #endif | 
|  | #include "igb.h" | 
|  |  | 
|  | #define MAJ 3 | 
|  | #define MIN 0 | 
|  | #define BUILD 6 | 
|  | #define KFIX 2 | 
|  | #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ | 
|  | __stringify(BUILD) "-k" __stringify(KFIX) | 
|  | char igb_driver_name[] = "igb"; | 
|  | char igb_driver_version[] = DRV_VERSION; | 
|  | static const char igb_driver_string[] = | 
|  | "Intel(R) Gigabit Ethernet Network Driver"; | 
|  | static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation."; | 
|  |  | 
|  | static const struct e1000_info *igb_info_tbl[] = { | 
|  | [board_82575] = &e1000_82575_info, | 
|  | }; | 
|  |  | 
|  | static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | 
|  | /* required last entry */ | 
|  | {0, } | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | 
|  |  | 
|  | void igb_reset(struct igb_adapter *); | 
|  | static int igb_setup_all_tx_resources(struct igb_adapter *); | 
|  | static int igb_setup_all_rx_resources(struct igb_adapter *); | 
|  | static void igb_free_all_tx_resources(struct igb_adapter *); | 
|  | static void igb_free_all_rx_resources(struct igb_adapter *); | 
|  | static void igb_setup_mrqc(struct igb_adapter *); | 
|  | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | 
|  | static void __devexit igb_remove(struct pci_dev *pdev); | 
|  | static void igb_init_hw_timer(struct igb_adapter *adapter); | 
|  | static int igb_sw_init(struct igb_adapter *); | 
|  | static int igb_open(struct net_device *); | 
|  | static int igb_close(struct net_device *); | 
|  | static void igb_configure_tx(struct igb_adapter *); | 
|  | static void igb_configure_rx(struct igb_adapter *); | 
|  | static void igb_clean_all_tx_rings(struct igb_adapter *); | 
|  | static void igb_clean_all_rx_rings(struct igb_adapter *); | 
|  | static void igb_clean_tx_ring(struct igb_ring *); | 
|  | static void igb_clean_rx_ring(struct igb_ring *); | 
|  | static void igb_set_rx_mode(struct net_device *); | 
|  | static void igb_update_phy_info(unsigned long); | 
|  | static void igb_watchdog(unsigned long); | 
|  | static void igb_watchdog_task(struct work_struct *); | 
|  | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | 
|  | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, | 
|  | struct rtnl_link_stats64 *stats); | 
|  | static int igb_change_mtu(struct net_device *, int); | 
|  | static int igb_set_mac(struct net_device *, void *); | 
|  | static void igb_set_uta(struct igb_adapter *adapter); | 
|  | static irqreturn_t igb_intr(int irq, void *); | 
|  | static irqreturn_t igb_intr_msi(int irq, void *); | 
|  | static irqreturn_t igb_msix_other(int irq, void *); | 
|  | static irqreturn_t igb_msix_ring(int irq, void *); | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | static void igb_update_dca(struct igb_q_vector *); | 
|  | static void igb_setup_dca(struct igb_adapter *); | 
|  | #endif /* CONFIG_IGB_DCA */ | 
|  | static bool igb_clean_tx_irq(struct igb_q_vector *); | 
|  | static int igb_poll(struct napi_struct *, int); | 
|  | static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int); | 
|  | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | 
|  | static void igb_tx_timeout(struct net_device *); | 
|  | static void igb_reset_task(struct work_struct *); | 
|  | static void igb_vlan_rx_register(struct net_device *, struct vlan_group *); | 
|  | static void igb_vlan_rx_add_vid(struct net_device *, u16); | 
|  | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | 
|  | static void igb_restore_vlan(struct igb_adapter *); | 
|  | static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); | 
|  | static void igb_ping_all_vfs(struct igb_adapter *); | 
|  | static void igb_msg_task(struct igb_adapter *); | 
|  | static void igb_vmm_control(struct igb_adapter *); | 
|  | static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); | 
|  | static void igb_restore_vf_multicasts(struct igb_adapter *adapter); | 
|  | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); | 
|  | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | 
|  | int vf, u16 vlan, u8 qos); | 
|  | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); | 
|  | static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, | 
|  | struct ifla_vf_info *ivi); | 
|  | static void igb_check_vf_rate_limit(struct igb_adapter *); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int igb_suspend(struct pci_dev *, pm_message_t); | 
|  | static int igb_resume(struct pci_dev *); | 
|  | #endif | 
|  | static void igb_shutdown(struct pci_dev *); | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | static int igb_notify_dca(struct notifier_block *, unsigned long, void *); | 
|  | static struct notifier_block dca_notifier = { | 
|  | .notifier_call	= igb_notify_dca, | 
|  | .next		= NULL, | 
|  | .priority	= 0 | 
|  | }; | 
|  | #endif | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* for netdump / net console */ | 
|  | static void igb_netpoll(struct net_device *); | 
|  | #endif | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | static unsigned int max_vfs = 0; | 
|  | module_param(max_vfs, uint, 0); | 
|  | MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " | 
|  | "per physical function"); | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  |  | 
|  | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | 
|  | pci_channel_state_t); | 
|  | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | 
|  | static void igb_io_resume(struct pci_dev *); | 
|  |  | 
|  | static struct pci_error_handlers igb_err_handler = { | 
|  | .error_detected = igb_io_error_detected, | 
|  | .slot_reset = igb_io_slot_reset, | 
|  | .resume = igb_io_resume, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static struct pci_driver igb_driver = { | 
|  | .name     = igb_driver_name, | 
|  | .id_table = igb_pci_tbl, | 
|  | .probe    = igb_probe, | 
|  | .remove   = __devexit_p(igb_remove), | 
|  | #ifdef CONFIG_PM | 
|  | /* Power Management Hooks */ | 
|  | .suspend  = igb_suspend, | 
|  | .resume   = igb_resume, | 
|  | #endif | 
|  | .shutdown = igb_shutdown, | 
|  | .err_handler = &igb_err_handler | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation, <[email protected]>"); | 
|  | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | struct igb_reg_info { | 
|  | u32 ofs; | 
|  | char *name; | 
|  | }; | 
|  |  | 
|  | static const struct igb_reg_info igb_reg_info_tbl[] = { | 
|  |  | 
|  | /* General Registers */ | 
|  | {E1000_CTRL, "CTRL"}, | 
|  | {E1000_STATUS, "STATUS"}, | 
|  | {E1000_CTRL_EXT, "CTRL_EXT"}, | 
|  |  | 
|  | /* Interrupt Registers */ | 
|  | {E1000_ICR, "ICR"}, | 
|  |  | 
|  | /* RX Registers */ | 
|  | {E1000_RCTL, "RCTL"}, | 
|  | {E1000_RDLEN(0), "RDLEN"}, | 
|  | {E1000_RDH(0), "RDH"}, | 
|  | {E1000_RDT(0), "RDT"}, | 
|  | {E1000_RXDCTL(0), "RXDCTL"}, | 
|  | {E1000_RDBAL(0), "RDBAL"}, | 
|  | {E1000_RDBAH(0), "RDBAH"}, | 
|  |  | 
|  | /* TX Registers */ | 
|  | {E1000_TCTL, "TCTL"}, | 
|  | {E1000_TDBAL(0), "TDBAL"}, | 
|  | {E1000_TDBAH(0), "TDBAH"}, | 
|  | {E1000_TDLEN(0), "TDLEN"}, | 
|  | {E1000_TDH(0), "TDH"}, | 
|  | {E1000_TDT(0), "TDT"}, | 
|  | {E1000_TXDCTL(0), "TXDCTL"}, | 
|  | {E1000_TDFH, "TDFH"}, | 
|  | {E1000_TDFT, "TDFT"}, | 
|  | {E1000_TDFHS, "TDFHS"}, | 
|  | {E1000_TDFPC, "TDFPC"}, | 
|  |  | 
|  | /* List Terminator */ | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * igb_regdump - register printout routine | 
|  | */ | 
|  | static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) | 
|  | { | 
|  | int n = 0; | 
|  | char rname[16]; | 
|  | u32 regs[8]; | 
|  |  | 
|  | switch (reginfo->ofs) { | 
|  | case E1000_RDLEN(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDLEN(n)); | 
|  | break; | 
|  | case E1000_RDH(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDH(n)); | 
|  | break; | 
|  | case E1000_RDT(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDT(n)); | 
|  | break; | 
|  | case E1000_RXDCTL(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RXDCTL(n)); | 
|  | break; | 
|  | case E1000_RDBAL(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDBAL(n)); | 
|  | break; | 
|  | case E1000_RDBAH(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDBAH(n)); | 
|  | break; | 
|  | case E1000_TDBAL(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_RDBAL(n)); | 
|  | break; | 
|  | case E1000_TDBAH(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_TDBAH(n)); | 
|  | break; | 
|  | case E1000_TDLEN(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_TDLEN(n)); | 
|  | break; | 
|  | case E1000_TDH(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_TDH(n)); | 
|  | break; | 
|  | case E1000_TDT(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_TDT(n)); | 
|  | break; | 
|  | case E1000_TXDCTL(0): | 
|  | for (n = 0; n < 4; n++) | 
|  | regs[n] = rd32(E1000_TXDCTL(n)); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_INFO "%-15s %08x\n", | 
|  | reginfo->name, rd32(reginfo->ofs)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); | 
|  | printk(KERN_INFO "%-15s ", rname); | 
|  | for (n = 0; n < 4; n++) | 
|  | printk(KERN_CONT "%08x ", regs[n]); | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * igb_dump - Print registers, tx-rings and rx-rings | 
|  | */ | 
|  | static void igb_dump(struct igb_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct igb_reg_info *reginfo; | 
|  | int n = 0; | 
|  | struct igb_ring *tx_ring; | 
|  | union e1000_adv_tx_desc *tx_desc; | 
|  | struct my_u0 { u64 a; u64 b; } *u0; | 
|  | struct igb_buffer *buffer_info; | 
|  | struct igb_ring *rx_ring; | 
|  | union e1000_adv_rx_desc *rx_desc; | 
|  | u32 staterr; | 
|  | int i = 0; | 
|  |  | 
|  | if (!netif_msg_hw(adapter)) | 
|  | return; | 
|  |  | 
|  | /* Print netdevice Info */ | 
|  | if (netdev) { | 
|  | dev_info(&adapter->pdev->dev, "Net device Info\n"); | 
|  | printk(KERN_INFO "Device Name     state            " | 
|  | "trans_start      last_rx\n"); | 
|  | printk(KERN_INFO "%-15s %016lX %016lX %016lX\n", | 
|  | netdev->name, | 
|  | netdev->state, | 
|  | netdev->trans_start, | 
|  | netdev->last_rx); | 
|  | } | 
|  |  | 
|  | /* Print Registers */ | 
|  | dev_info(&adapter->pdev->dev, "Register Dump\n"); | 
|  | printk(KERN_INFO " Register Name   Value\n"); | 
|  | for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; | 
|  | reginfo->name; reginfo++) { | 
|  | igb_regdump(hw, reginfo); | 
|  | } | 
|  |  | 
|  | /* Print TX Ring Summary */ | 
|  | if (!netdev || !netif_running(netdev)) | 
|  | goto exit; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); | 
|  | printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]" | 
|  | " leng ntw timestamp\n"); | 
|  | for (n = 0; n < adapter->num_tx_queues; n++) { | 
|  | tx_ring = adapter->tx_ring[n]; | 
|  | buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; | 
|  | printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n", | 
|  | n, tx_ring->next_to_use, tx_ring->next_to_clean, | 
|  | (u64)buffer_info->dma, | 
|  | buffer_info->length, | 
|  | buffer_info->next_to_watch, | 
|  | (u64)buffer_info->time_stamp); | 
|  | } | 
|  |  | 
|  | /* Print TX Rings */ | 
|  | if (!netif_msg_tx_done(adapter)) | 
|  | goto rx_ring_summary; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); | 
|  |  | 
|  | /* Transmit Descriptor Formats | 
|  | * | 
|  | * Advanced Transmit Descriptor | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 0 |         Buffer Address [63:0]                                | | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN | | 
|  | *   +--------------------------------------------------------------+ | 
|  | *   63      46 45    40 39 38 36 35 32 31   24             15       0 | 
|  | */ | 
|  |  | 
|  | for (n = 0; n < adapter->num_tx_queues; n++) { | 
|  | tx_ring = adapter->tx_ring[n]; | 
|  | printk(KERN_INFO "------------------------------------\n"); | 
|  | printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index); | 
|  | printk(KERN_INFO "------------------------------------\n"); | 
|  | printk(KERN_INFO "T [desc]     [address 63:0  ] " | 
|  | "[PlPOCIStDDM Ln] [bi->dma       ] " | 
|  | "leng  ntw timestamp        bi->skb\n"); | 
|  |  | 
|  | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | 
|  | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | u0 = (struct my_u0 *)tx_desc; | 
|  | printk(KERN_INFO "T [0x%03X]    %016llX %016llX %016llX" | 
|  | " %04X  %3X %016llX %p", i, | 
|  | le64_to_cpu(u0->a), | 
|  | le64_to_cpu(u0->b), | 
|  | (u64)buffer_info->dma, | 
|  | buffer_info->length, | 
|  | buffer_info->next_to_watch, | 
|  | (u64)buffer_info->time_stamp, | 
|  | buffer_info->skb); | 
|  | if (i == tx_ring->next_to_use && | 
|  | i == tx_ring->next_to_clean) | 
|  | printk(KERN_CONT " NTC/U\n"); | 
|  | else if (i == tx_ring->next_to_use) | 
|  | printk(KERN_CONT " NTU\n"); | 
|  | else if (i == tx_ring->next_to_clean) | 
|  | printk(KERN_CONT " NTC\n"); | 
|  | else | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | if (netif_msg_pktdata(adapter) && buffer_info->dma != 0) | 
|  | print_hex_dump(KERN_INFO, "", | 
|  | DUMP_PREFIX_ADDRESS, | 
|  | 16, 1, phys_to_virt(buffer_info->dma), | 
|  | buffer_info->length, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Print RX Rings Summary */ | 
|  | rx_ring_summary: | 
|  | dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); | 
|  | printk(KERN_INFO "Queue [NTU] [NTC]\n"); | 
|  | for (n = 0; n < adapter->num_rx_queues; n++) { | 
|  | rx_ring = adapter->rx_ring[n]; | 
|  | printk(KERN_INFO " %5d %5X %5X\n", n, | 
|  | rx_ring->next_to_use, rx_ring->next_to_clean); | 
|  | } | 
|  |  | 
|  | /* Print RX Rings */ | 
|  | if (!netif_msg_rx_status(adapter)) | 
|  | goto exit; | 
|  |  | 
|  | dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); | 
|  |  | 
|  | /* Advanced Receive Descriptor (Read) Format | 
|  | *    63                                           1        0 | 
|  | *    +-----------------------------------------------------+ | 
|  | *  0 |       Packet Buffer Address [63:1]           |A0/NSE| | 
|  | *    +----------------------------------------------+------+ | 
|  | *  8 |       Header Buffer Address [63:1]           |  DD  | | 
|  | *    +-----------------------------------------------------+ | 
|  | * | 
|  | * | 
|  | * Advanced Receive Descriptor (Write-Back) Format | 
|  | * | 
|  | *   63       48 47    32 31  30      21 20 17 16   4 3     0 | 
|  | *   +------------------------------------------------------+ | 
|  | * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS | | 
|  | *   | Checksum   Ident  |   |           |    | Type | Type | | 
|  | *   +------------------------------------------------------+ | 
|  | * 8 | VLAN Tag | Length | Extended Error | Extended Status | | 
|  | *   +------------------------------------------------------+ | 
|  | *   63       48 47    32 31            20 19               0 | 
|  | */ | 
|  |  | 
|  | for (n = 0; n < adapter->num_rx_queues; n++) { | 
|  | rx_ring = adapter->rx_ring[n]; | 
|  | printk(KERN_INFO "------------------------------------\n"); | 
|  | printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index); | 
|  | printk(KERN_INFO "------------------------------------\n"); | 
|  | printk(KERN_INFO "R  [desc]      [ PktBuf     A0] " | 
|  | "[  HeadBuf   DD] [bi->dma       ] [bi->skb] " | 
|  | "<-- Adv Rx Read format\n"); | 
|  | printk(KERN_INFO "RWB[desc]      [PcsmIpSHl PtRs] " | 
|  | "[vl er S cks ln] ---------------- [bi->skb] " | 
|  | "<-- Adv Rx Write-Back format\n"); | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | 
|  | u0 = (struct my_u0 *)rx_desc; | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | if (staterr & E1000_RXD_STAT_DD) { | 
|  | /* Descriptor Done */ | 
|  | printk(KERN_INFO "RWB[0x%03X]     %016llX " | 
|  | "%016llX ---------------- %p", i, | 
|  | le64_to_cpu(u0->a), | 
|  | le64_to_cpu(u0->b), | 
|  | buffer_info->skb); | 
|  | } else { | 
|  | printk(KERN_INFO "R  [0x%03X]     %016llX " | 
|  | "%016llX %016llX %p", i, | 
|  | le64_to_cpu(u0->a), | 
|  | le64_to_cpu(u0->b), | 
|  | (u64)buffer_info->dma, | 
|  | buffer_info->skb); | 
|  |  | 
|  | if (netif_msg_pktdata(adapter)) { | 
|  | print_hex_dump(KERN_INFO, "", | 
|  | DUMP_PREFIX_ADDRESS, | 
|  | 16, 1, | 
|  | phys_to_virt(buffer_info->dma), | 
|  | rx_ring->rx_buffer_len, true); | 
|  | if (rx_ring->rx_buffer_len | 
|  | < IGB_RXBUFFER_1024) | 
|  | print_hex_dump(KERN_INFO, "", | 
|  | DUMP_PREFIX_ADDRESS, | 
|  | 16, 1, | 
|  | phys_to_virt( | 
|  | buffer_info->page_dma + | 
|  | buffer_info->page_offset), | 
|  | PAGE_SIZE/2, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == rx_ring->next_to_use) | 
|  | printk(KERN_CONT " NTU\n"); | 
|  | else if (i == rx_ring->next_to_clean) | 
|  | printk(KERN_CONT " NTC\n"); | 
|  | else | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | exit: | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * igb_read_clock - read raw cycle counter (to be used by time counter) | 
|  | */ | 
|  | static cycle_t igb_read_clock(const struct cyclecounter *tc) | 
|  | { | 
|  | struct igb_adapter *adapter = | 
|  | container_of(tc, struct igb_adapter, cycles); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u64 stamp = 0; | 
|  | int shift = 0; | 
|  |  | 
|  | /* | 
|  | * The timestamp latches on lowest register read. For the 82580 | 
|  | * the lowest register is SYSTIMR instead of SYSTIML.  However we never | 
|  | * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it. | 
|  | */ | 
|  | if (hw->mac.type == e1000_82580) { | 
|  | stamp = rd32(E1000_SYSTIMR) >> 8; | 
|  | shift = IGB_82580_TSYNC_SHIFT; | 
|  | } | 
|  |  | 
|  | stamp |= (u64)rd32(E1000_SYSTIML) << shift; | 
|  | stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32); | 
|  | return stamp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_get_hw_dev - return device | 
|  | * used by hardware layer to print debugging information | 
|  | **/ | 
|  | struct net_device *igb_get_hw_dev(struct e1000_hw *hw) | 
|  | { | 
|  | struct igb_adapter *adapter = hw->back; | 
|  | return adapter->netdev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_init_module - Driver Registration Routine | 
|  | * | 
|  | * igb_init_module is the first routine called when the driver is | 
|  | * loaded. All it does is register with the PCI subsystem. | 
|  | **/ | 
|  | static int __init igb_init_module(void) | 
|  | { | 
|  | int ret; | 
|  | printk(KERN_INFO "%s - version %s\n", | 
|  | igb_driver_string, igb_driver_version); | 
|  |  | 
|  | printk(KERN_INFO "%s\n", igb_copyright); | 
|  |  | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | dca_register_notify(&dca_notifier); | 
|  | #endif | 
|  | ret = pci_register_driver(&igb_driver); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | module_init(igb_init_module); | 
|  |  | 
|  | /** | 
|  | * igb_exit_module - Driver Exit Cleanup Routine | 
|  | * | 
|  | * igb_exit_module is called just before the driver is removed | 
|  | * from memory. | 
|  | **/ | 
|  | static void __exit igb_exit_module(void) | 
|  | { | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | dca_unregister_notify(&dca_notifier); | 
|  | #endif | 
|  | pci_unregister_driver(&igb_driver); | 
|  | } | 
|  |  | 
|  | module_exit(igb_exit_module); | 
|  |  | 
|  | #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) | 
|  | /** | 
|  | * igb_cache_ring_register - Descriptor ring to register mapping | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * Once we know the feature-set enabled for the device, we'll cache | 
|  | * the register offset the descriptor ring is assigned to. | 
|  | **/ | 
|  | static void igb_cache_ring_register(struct igb_adapter *adapter) | 
|  | { | 
|  | int i = 0, j = 0; | 
|  | u32 rbase_offset = adapter->vfs_allocated_count; | 
|  |  | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82576: | 
|  | /* The queues are allocated for virtualization such that VF 0 | 
|  | * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. | 
|  | * In order to avoid collision we start at the first free queue | 
|  | * and continue consuming queues in the same sequence | 
|  | */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | for (; i < adapter->rss_queues; i++) | 
|  | adapter->rx_ring[i]->reg_idx = rbase_offset + | 
|  | Q_IDX_82576(i); | 
|  | } | 
|  | case e1000_82575: | 
|  | case e1000_82580: | 
|  | case e1000_i350: | 
|  | default: | 
|  | for (; i < adapter->num_rx_queues; i++) | 
|  | adapter->rx_ring[i]->reg_idx = rbase_offset + i; | 
|  | for (; j < adapter->num_tx_queues; j++) | 
|  | adapter->tx_ring[j]->reg_idx = rbase_offset + j; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void igb_free_queues(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | kfree(adapter->tx_ring[i]); | 
|  | adapter->tx_ring[i] = NULL; | 
|  | } | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | kfree(adapter->rx_ring[i]); | 
|  | adapter->rx_ring[i] = NULL; | 
|  | } | 
|  | adapter->num_rx_queues = 0; | 
|  | adapter->num_tx_queues = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_alloc_queues - Allocate memory for all rings | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * We allocate one ring per queue at run-time since we don't know the | 
|  | * number of queues at compile-time. | 
|  | **/ | 
|  | static int igb_alloc_queues(struct igb_adapter *adapter) | 
|  | { | 
|  | struct igb_ring *ring; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | 
|  | if (!ring) | 
|  | goto err; | 
|  | ring->count = adapter->tx_ring_count; | 
|  | ring->queue_index = i; | 
|  | ring->dev = &adapter->pdev->dev; | 
|  | ring->netdev = adapter->netdev; | 
|  | /* For 82575, context index must be unique per ring. */ | 
|  | if (adapter->hw.mac.type == e1000_82575) | 
|  | ring->flags = IGB_RING_FLAG_TX_CTX_IDX; | 
|  | adapter->tx_ring[i] = ring; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL); | 
|  | if (!ring) | 
|  | goto err; | 
|  | ring->count = adapter->rx_ring_count; | 
|  | ring->queue_index = i; | 
|  | ring->dev = &adapter->pdev->dev; | 
|  | ring->netdev = adapter->netdev; | 
|  | ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  | ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */ | 
|  | /* set flag indicating ring supports SCTP checksum offload */ | 
|  | if (adapter->hw.mac.type >= e1000_82576) | 
|  | ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM; | 
|  | adapter->rx_ring[i] = ring; | 
|  | } | 
|  |  | 
|  | igb_cache_ring_register(adapter); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | igb_free_queues(adapter); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | #define IGB_N0_QUEUE -1 | 
|  | static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) | 
|  | { | 
|  | u32 msixbm = 0; | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ivar, index; | 
|  | int rx_queue = IGB_N0_QUEUE; | 
|  | int tx_queue = IGB_N0_QUEUE; | 
|  |  | 
|  | if (q_vector->rx_ring) | 
|  | rx_queue = q_vector->rx_ring->reg_idx; | 
|  | if (q_vector->tx_ring) | 
|  | tx_queue = q_vector->tx_ring->reg_idx; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82575: | 
|  | /* The 82575 assigns vectors using a bitmask, which matches the | 
|  | bitmask for the EICR/EIMS/EIMC registers.  To assign one | 
|  | or more queues to a vector, we write the appropriate bits | 
|  | into the MSIXBM register for that vector. */ | 
|  | if (rx_queue > IGB_N0_QUEUE) | 
|  | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | 
|  | if (tx_queue > IGB_N0_QUEUE) | 
|  | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | 
|  | if (!adapter->msix_entries && msix_vector == 0) | 
|  | msixbm |= E1000_EIMS_OTHER; | 
|  | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | 
|  | q_vector->eims_value = msixbm; | 
|  | break; | 
|  | case e1000_82576: | 
|  | /* 82576 uses a table-based method for assigning vectors. | 
|  | Each queue has a single entry in the table to which we write | 
|  | a vector number along with a "valid" bit.  Sadly, the layout | 
|  | of the table is somewhat counterintuitive. */ | 
|  | if (rx_queue > IGB_N0_QUEUE) { | 
|  | index = (rx_queue & 0x7); | 
|  | ivar = array_rd32(E1000_IVAR0, index); | 
|  | if (rx_queue < 8) { | 
|  | /* vector goes into low byte of register */ | 
|  | ivar = ivar & 0xFFFFFF00; | 
|  | ivar |= msix_vector | E1000_IVAR_VALID; | 
|  | } else { | 
|  | /* vector goes into third byte of register */ | 
|  | ivar = ivar & 0xFF00FFFF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | 
|  | } | 
|  | array_wr32(E1000_IVAR0, index, ivar); | 
|  | } | 
|  | if (tx_queue > IGB_N0_QUEUE) { | 
|  | index = (tx_queue & 0x7); | 
|  | ivar = array_rd32(E1000_IVAR0, index); | 
|  | if (tx_queue < 8) { | 
|  | /* vector goes into second byte of register */ | 
|  | ivar = ivar & 0xFFFF00FF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | 
|  | } else { | 
|  | /* vector goes into high byte of register */ | 
|  | ivar = ivar & 0x00FFFFFF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | 
|  | } | 
|  | array_wr32(E1000_IVAR0, index, ivar); | 
|  | } | 
|  | q_vector->eims_value = 1 << msix_vector; | 
|  | break; | 
|  | case e1000_82580: | 
|  | case e1000_i350: | 
|  | /* 82580 uses the same table-based approach as 82576 but has fewer | 
|  | entries as a result we carry over for queues greater than 4. */ | 
|  | if (rx_queue > IGB_N0_QUEUE) { | 
|  | index = (rx_queue >> 1); | 
|  | ivar = array_rd32(E1000_IVAR0, index); | 
|  | if (rx_queue & 0x1) { | 
|  | /* vector goes into third byte of register */ | 
|  | ivar = ivar & 0xFF00FFFF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | 
|  | } else { | 
|  | /* vector goes into low byte of register */ | 
|  | ivar = ivar & 0xFFFFFF00; | 
|  | ivar |= msix_vector | E1000_IVAR_VALID; | 
|  | } | 
|  | array_wr32(E1000_IVAR0, index, ivar); | 
|  | } | 
|  | if (tx_queue > IGB_N0_QUEUE) { | 
|  | index = (tx_queue >> 1); | 
|  | ivar = array_rd32(E1000_IVAR0, index); | 
|  | if (tx_queue & 0x1) { | 
|  | /* vector goes into high byte of register */ | 
|  | ivar = ivar & 0x00FFFFFF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | 
|  | } else { | 
|  | /* vector goes into second byte of register */ | 
|  | ivar = ivar & 0xFFFF00FF; | 
|  | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | 
|  | } | 
|  | array_wr32(E1000_IVAR0, index, ivar); | 
|  | } | 
|  | q_vector->eims_value = 1 << msix_vector; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* add q_vector eims value to global eims_enable_mask */ | 
|  | adapter->eims_enable_mask |= q_vector->eims_value; | 
|  |  | 
|  | /* configure q_vector to set itr on first interrupt */ | 
|  | q_vector->set_itr = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure_msix - Configure MSI-X hardware | 
|  | * | 
|  | * igb_configure_msix sets up the hardware to properly | 
|  | * generate MSI-X interrupts. | 
|  | **/ | 
|  | static void igb_configure_msix(struct igb_adapter *adapter) | 
|  | { | 
|  | u32 tmp; | 
|  | int i, vector = 0; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | adapter->eims_enable_mask = 0; | 
|  |  | 
|  | /* set vector for other causes, i.e. link changes */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82575: | 
|  | tmp = rd32(E1000_CTRL_EXT); | 
|  | /* enable MSI-X PBA support*/ | 
|  | tmp |= E1000_CTRL_EXT_PBA_CLR; | 
|  |  | 
|  | /* Auto-Mask interrupts upon ICR read. */ | 
|  | tmp |= E1000_CTRL_EXT_EIAME; | 
|  | tmp |= E1000_CTRL_EXT_IRCA; | 
|  |  | 
|  | wr32(E1000_CTRL_EXT, tmp); | 
|  |  | 
|  | /* enable msix_other interrupt */ | 
|  | array_wr32(E1000_MSIXBM(0), vector++, | 
|  | E1000_EIMS_OTHER); | 
|  | adapter->eims_other = E1000_EIMS_OTHER; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case e1000_82576: | 
|  | case e1000_82580: | 
|  | case e1000_i350: | 
|  | /* Turn on MSI-X capability first, or our settings | 
|  | * won't stick.  And it will take days to debug. */ | 
|  | wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | | 
|  | E1000_GPIE_PBA | E1000_GPIE_EIAME | | 
|  | E1000_GPIE_NSICR); | 
|  |  | 
|  | /* enable msix_other interrupt */ | 
|  | adapter->eims_other = 1 << vector; | 
|  | tmp = (vector++ | E1000_IVAR_VALID) << 8; | 
|  |  | 
|  | wr32(E1000_IVAR_MISC, tmp); | 
|  | break; | 
|  | default: | 
|  | /* do nothing, since nothing else supports MSI-X */ | 
|  | break; | 
|  | } /* switch (hw->mac.type) */ | 
|  |  | 
|  | adapter->eims_enable_mask |= adapter->eims_other; | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) | 
|  | igb_assign_vector(adapter->q_vector[i], vector++); | 
|  |  | 
|  | wrfl(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_request_msix - Initialize MSI-X interrupts | 
|  | * | 
|  | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | 
|  | * kernel. | 
|  | **/ | 
|  | static int igb_request_msix(struct igb_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int i, err = 0, vector = 0; | 
|  |  | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | igb_msix_other, 0, netdev->name, adapter); | 
|  | if (err) | 
|  | goto out; | 
|  | vector++; | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  |  | 
|  | q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); | 
|  |  | 
|  | if (q_vector->rx_ring && q_vector->tx_ring) | 
|  | sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, | 
|  | q_vector->rx_ring->queue_index); | 
|  | else if (q_vector->tx_ring) | 
|  | sprintf(q_vector->name, "%s-tx-%u", netdev->name, | 
|  | q_vector->tx_ring->queue_index); | 
|  | else if (q_vector->rx_ring) | 
|  | sprintf(q_vector->name, "%s-rx-%u", netdev->name, | 
|  | q_vector->rx_ring->queue_index); | 
|  | else | 
|  | sprintf(q_vector->name, "%s-unused", netdev->name); | 
|  |  | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | igb_msix_ring, 0, q_vector->name, | 
|  | q_vector); | 
|  | if (err) | 
|  | goto out; | 
|  | vector++; | 
|  | } | 
|  |  | 
|  | igb_configure_msix(adapter); | 
|  | return 0; | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | 
|  | { | 
|  | if (adapter->msix_entries) { | 
|  | pci_disable_msix(adapter->pdev); | 
|  | kfree(adapter->msix_entries); | 
|  | adapter->msix_entries = NULL; | 
|  | } else if (adapter->flags & IGB_FLAG_HAS_MSI) { | 
|  | pci_disable_msi(adapter->pdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_free_q_vectors - Free memory allocated for interrupt vectors | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * This function frees the memory allocated to the q_vectors.  In addition if | 
|  | * NAPI is enabled it will delete any references to the NAPI struct prior | 
|  | * to freeing the q_vector. | 
|  | **/ | 
|  | static void igb_free_q_vectors(struct igb_adapter *adapter) | 
|  | { | 
|  | int v_idx; | 
|  |  | 
|  | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | 
|  | adapter->q_vector[v_idx] = NULL; | 
|  | if (!q_vector) | 
|  | continue; | 
|  | netif_napi_del(&q_vector->napi); | 
|  | kfree(q_vector); | 
|  | } | 
|  | adapter->num_q_vectors = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clear_interrupt_scheme - reset the device to a state of no interrupts | 
|  | * | 
|  | * This function resets the device so that it has 0 rx queues, tx queues, and | 
|  | * MSI-X interrupts allocated. | 
|  | */ | 
|  | static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) | 
|  | { | 
|  | igb_free_queues(adapter); | 
|  | igb_free_q_vectors(adapter); | 
|  | igb_reset_interrupt_capability(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_set_interrupt_capability - set MSI or MSI-X if supported | 
|  | * | 
|  | * Attempt to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | static int igb_set_interrupt_capability(struct igb_adapter *adapter) | 
|  | { | 
|  | int err; | 
|  | int numvecs, i; | 
|  |  | 
|  | /* Number of supported queues. */ | 
|  | adapter->num_rx_queues = adapter->rss_queues; | 
|  | if (adapter->vfs_allocated_count) | 
|  | adapter->num_tx_queues = 1; | 
|  | else | 
|  | adapter->num_tx_queues = adapter->rss_queues; | 
|  |  | 
|  | /* start with one vector for every rx queue */ | 
|  | numvecs = adapter->num_rx_queues; | 
|  |  | 
|  | /* if tx handler is separate add 1 for every tx queue */ | 
|  | if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) | 
|  | numvecs += adapter->num_tx_queues; | 
|  |  | 
|  | /* store the number of vectors reserved for queues */ | 
|  | adapter->num_q_vectors = numvecs; | 
|  |  | 
|  | /* add 1 vector for link status interrupts */ | 
|  | numvecs++; | 
|  | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | 
|  | GFP_KERNEL); | 
|  | if (!adapter->msix_entries) | 
|  | goto msi_only; | 
|  |  | 
|  | for (i = 0; i < numvecs; i++) | 
|  | adapter->msix_entries[i].entry = i; | 
|  |  | 
|  | err = pci_enable_msix(adapter->pdev, | 
|  | adapter->msix_entries, | 
|  | numvecs); | 
|  | if (err == 0) | 
|  | goto out; | 
|  |  | 
|  | igb_reset_interrupt_capability(adapter); | 
|  |  | 
|  | /* If we can't do MSI-X, try MSI */ | 
|  | msi_only: | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | /* disable SR-IOV for non MSI-X configurations */ | 
|  | if (adapter->vf_data) { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | /* disable iov and allow time for transactions to clear */ | 
|  | pci_disable_sriov(adapter->pdev); | 
|  | msleep(500); | 
|  |  | 
|  | kfree(adapter->vf_data); | 
|  | adapter->vf_data = NULL; | 
|  | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | 
|  | msleep(100); | 
|  | dev_info(&adapter->pdev->dev, "IOV Disabled\n"); | 
|  | } | 
|  | #endif | 
|  | adapter->vfs_allocated_count = 0; | 
|  | adapter->rss_queues = 1; | 
|  | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | 
|  | adapter->num_rx_queues = 1; | 
|  | adapter->num_tx_queues = 1; | 
|  | adapter->num_q_vectors = 1; | 
|  | if (!pci_enable_msi(adapter->pdev)) | 
|  | adapter->flags |= IGB_FLAG_HAS_MSI; | 
|  | out: | 
|  | /* Notify the stack of the (possibly) reduced queue counts. */ | 
|  | netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); | 
|  | return netif_set_real_num_rx_queues(adapter->netdev, | 
|  | adapter->num_rx_queues); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_alloc_q_vectors - Allocate memory for interrupt vectors | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * We allocate one q_vector per queue interrupt.  If allocation fails we | 
|  | * return -ENOMEM. | 
|  | **/ | 
|  | static int igb_alloc_q_vectors(struct igb_adapter *adapter) | 
|  | { | 
|  | struct igb_q_vector *q_vector; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int v_idx; | 
|  |  | 
|  | for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) { | 
|  | q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL); | 
|  | if (!q_vector) | 
|  | goto err_out; | 
|  | q_vector->adapter = adapter; | 
|  | q_vector->itr_register = hw->hw_addr + E1000_EITR(0); | 
|  | q_vector->itr_val = IGB_START_ITR; | 
|  | netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); | 
|  | adapter->q_vector[v_idx] = q_vector; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | igb_free_q_vectors(adapter); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter, | 
|  | int ring_idx, int v_idx) | 
|  | { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | 
|  |  | 
|  | q_vector->rx_ring = adapter->rx_ring[ring_idx]; | 
|  | q_vector->rx_ring->q_vector = q_vector; | 
|  | q_vector->itr_val = adapter->rx_itr_setting; | 
|  | if (q_vector->itr_val && q_vector->itr_val <= 3) | 
|  | q_vector->itr_val = IGB_START_ITR; | 
|  | } | 
|  |  | 
|  | static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter, | 
|  | int ring_idx, int v_idx) | 
|  | { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; | 
|  |  | 
|  | q_vector->tx_ring = adapter->tx_ring[ring_idx]; | 
|  | q_vector->tx_ring->q_vector = q_vector; | 
|  | q_vector->itr_val = adapter->tx_itr_setting; | 
|  | if (q_vector->itr_val && q_vector->itr_val <= 3) | 
|  | q_vector->itr_val = IGB_START_ITR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_map_ring_to_vector - maps allocated queues to vectors | 
|  | * | 
|  | * This function maps the recently allocated queues to vectors. | 
|  | **/ | 
|  | static int igb_map_ring_to_vector(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  | int v_idx = 0; | 
|  |  | 
|  | if ((adapter->num_q_vectors < adapter->num_rx_queues) || | 
|  | (adapter->num_q_vectors < adapter->num_tx_queues)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (adapter->num_q_vectors >= | 
|  | (adapter->num_rx_queues + adapter->num_tx_queues)) { | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | 
|  | } else { | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | if (i < adapter->num_tx_queues) | 
|  | igb_map_tx_ring_to_vector(adapter, i, v_idx); | 
|  | igb_map_rx_ring_to_vector(adapter, i, v_idx++); | 
|  | } | 
|  | for (; i < adapter->num_tx_queues; i++) | 
|  | igb_map_tx_ring_to_vector(adapter, i, v_idx++); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors | 
|  | * | 
|  | * This function initializes the interrupts and allocates all of the queues. | 
|  | **/ | 
|  | static int igb_init_interrupt_scheme(struct igb_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int err; | 
|  |  | 
|  | err = igb_set_interrupt_capability(adapter); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = igb_alloc_q_vectors(adapter); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); | 
|  | goto err_alloc_q_vectors; | 
|  | } | 
|  |  | 
|  | err = igb_alloc_queues(adapter); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | 
|  | goto err_alloc_queues; | 
|  | } | 
|  |  | 
|  | err = igb_map_ring_to_vector(adapter); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n"); | 
|  | goto err_map_queues; | 
|  | } | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | err_map_queues: | 
|  | igb_free_queues(adapter); | 
|  | err_alloc_queues: | 
|  | igb_free_q_vectors(adapter); | 
|  | err_alloc_q_vectors: | 
|  | igb_reset_interrupt_capability(adapter); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_request_irq - initialize interrupts | 
|  | * | 
|  | * Attempts to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | static int igb_request_irq(struct igb_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int err = 0; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | err = igb_request_msix(adapter); | 
|  | if (!err) | 
|  | goto request_done; | 
|  | /* fall back to MSI */ | 
|  | igb_clear_interrupt_scheme(adapter); | 
|  | if (!pci_enable_msi(adapter->pdev)) | 
|  | adapter->flags |= IGB_FLAG_HAS_MSI; | 
|  | igb_free_all_tx_resources(adapter); | 
|  | igb_free_all_rx_resources(adapter); | 
|  | adapter->num_tx_queues = 1; | 
|  | adapter->num_rx_queues = 1; | 
|  | adapter->num_q_vectors = 1; | 
|  | err = igb_alloc_q_vectors(adapter); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Unable to allocate memory for vectors\n"); | 
|  | goto request_done; | 
|  | } | 
|  | err = igb_alloc_queues(adapter); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Unable to allocate memory for queues\n"); | 
|  | igb_free_q_vectors(adapter); | 
|  | goto request_done; | 
|  | } | 
|  | igb_setup_all_tx_resources(adapter); | 
|  | igb_setup_all_rx_resources(adapter); | 
|  | } else { | 
|  | igb_assign_vector(adapter->q_vector[0], 0); | 
|  | } | 
|  |  | 
|  | if (adapter->flags & IGB_FLAG_HAS_MSI) { | 
|  | err = request_irq(adapter->pdev->irq, igb_intr_msi, 0, | 
|  | netdev->name, adapter); | 
|  | if (!err) | 
|  | goto request_done; | 
|  |  | 
|  | /* fall back to legacy interrupts */ | 
|  | igb_reset_interrupt_capability(adapter); | 
|  | adapter->flags &= ~IGB_FLAG_HAS_MSI; | 
|  | } | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED, | 
|  | netdev->name, adapter); | 
|  |  | 
|  | if (err) | 
|  | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | 
|  | err); | 
|  |  | 
|  | request_done: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void igb_free_irq(struct igb_adapter *adapter) | 
|  | { | 
|  | if (adapter->msix_entries) { | 
|  | int vector = 0, i; | 
|  |  | 
|  | free_irq(adapter->msix_entries[vector++].vector, adapter); | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | free_irq(adapter->msix_entries[vector++].vector, | 
|  | q_vector); | 
|  | } | 
|  | } else { | 
|  | free_irq(adapter->pdev->irq, adapter); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_irq_disable - Mask off interrupt generation on the NIC | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void igb_irq_disable(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* | 
|  | * we need to be careful when disabling interrupts.  The VFs are also | 
|  | * mapped into these registers and so clearing the bits can cause | 
|  | * issues on the VF drivers so we only need to clear what we set | 
|  | */ | 
|  | if (adapter->msix_entries) { | 
|  | u32 regval = rd32(E1000_EIAM); | 
|  | wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); | 
|  | wr32(E1000_EIMC, adapter->eims_enable_mask); | 
|  | regval = rd32(E1000_EIAC); | 
|  | wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); | 
|  | } | 
|  |  | 
|  | wr32(E1000_IAM, 0); | 
|  | wr32(E1000_IMC, ~0); | 
|  | wrfl(); | 
|  | if (adapter->msix_entries) { | 
|  | int i; | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) | 
|  | synchronize_irq(adapter->msix_entries[i].vector); | 
|  | } else { | 
|  | synchronize_irq(adapter->pdev->irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_irq_enable - Enable default interrupt generation settings | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void igb_irq_enable(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC; | 
|  | u32 regval = rd32(E1000_EIAC); | 
|  | wr32(E1000_EIAC, regval | adapter->eims_enable_mask); | 
|  | regval = rd32(E1000_EIAM); | 
|  | wr32(E1000_EIAM, regval | adapter->eims_enable_mask); | 
|  | wr32(E1000_EIMS, adapter->eims_enable_mask); | 
|  | if (adapter->vfs_allocated_count) { | 
|  | wr32(E1000_MBVFIMR, 0xFF); | 
|  | ims |= E1000_IMS_VMMB; | 
|  | } | 
|  | if (adapter->hw.mac.type == e1000_82580) | 
|  | ims |= E1000_IMS_DRSTA; | 
|  |  | 
|  | wr32(E1000_IMS, ims); | 
|  | } else { | 
|  | wr32(E1000_IMS, IMS_ENABLE_MASK | | 
|  | E1000_IMS_DRSTA); | 
|  | wr32(E1000_IAM, IMS_ENABLE_MASK | | 
|  | E1000_IMS_DRSTA); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void igb_update_mng_vlan(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 vid = adapter->hw.mng_cookie.vlan_id; | 
|  | u16 old_vid = adapter->mng_vlan_id; | 
|  |  | 
|  | if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | 
|  | /* add VID to filter table */ | 
|  | igb_vfta_set(hw, vid, true); | 
|  | adapter->mng_vlan_id = vid; | 
|  | } else { | 
|  | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | 
|  | } | 
|  |  | 
|  | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | 
|  | (vid != old_vid) && | 
|  | !vlan_group_get_device(adapter->vlgrp, old_vid)) { | 
|  | /* remove VID from filter table */ | 
|  | igb_vfta_set(hw, old_vid, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_release_hw_control - release control of the h/w to f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that the | 
|  | * driver is no longer loaded. | 
|  | * | 
|  | **/ | 
|  | static void igb_release_hw_control(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | /* Let firmware take over control of h/w */ | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | wr32(E1000_CTRL_EXT, | 
|  | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_get_hw_control - get control of the h/w from f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that | 
|  | * the driver is loaded. | 
|  | * | 
|  | **/ | 
|  | static void igb_get_hw_control(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | /* Let firmware know the driver has taken over */ | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | wr32(E1000_CTRL_EXT, | 
|  | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure - configure the hardware for RX and TX | 
|  | * @adapter: private board structure | 
|  | **/ | 
|  | static void igb_configure(struct igb_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int i; | 
|  |  | 
|  | igb_get_hw_control(adapter); | 
|  | igb_set_rx_mode(netdev); | 
|  |  | 
|  | igb_restore_vlan(adapter); | 
|  |  | 
|  | igb_setup_tctl(adapter); | 
|  | igb_setup_mrqc(adapter); | 
|  | igb_setup_rctl(adapter); | 
|  |  | 
|  | igb_configure_tx(adapter); | 
|  | igb_configure_rx(adapter); | 
|  |  | 
|  | igb_rx_fifo_flush_82575(&adapter->hw); | 
|  |  | 
|  | /* call igb_desc_unused which always leaves | 
|  | * at least 1 descriptor unused to make sure | 
|  | * next_to_use != next_to_clean */ | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | struct igb_ring *ring = adapter->rx_ring[i]; | 
|  | igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_power_up_link - Power up the phy/serdes link | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  | void igb_power_up_link(struct igb_adapter *adapter) | 
|  | { | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_copper) | 
|  | igb_power_up_phy_copper(&adapter->hw); | 
|  | else | 
|  | igb_power_up_serdes_link_82575(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_power_down_link - Power down the phy/serdes link | 
|  | * @adapter: address of board private structure | 
|  | */ | 
|  | static void igb_power_down_link(struct igb_adapter *adapter) | 
|  | { | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_copper) | 
|  | igb_power_down_phy_copper_82575(&adapter->hw); | 
|  | else | 
|  | igb_shutdown_serdes_link_82575(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_up - Open the interface and prepare it to handle traffic | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | int igb_up(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int i; | 
|  |  | 
|  | /* hardware has been reset, we need to reload some things */ | 
|  | igb_configure(adapter); | 
|  |  | 
|  | clear_bit(__IGB_DOWN, &adapter->state); | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | napi_enable(&q_vector->napi); | 
|  | } | 
|  | if (adapter->msix_entries) | 
|  | igb_configure_msix(adapter); | 
|  | else | 
|  | igb_assign_vector(adapter->q_vector[0], 0); | 
|  |  | 
|  | /* Clear any pending interrupts. */ | 
|  | rd32(E1000_ICR); | 
|  | igb_irq_enable(adapter); | 
|  |  | 
|  | /* notify VFs that reset has been completed */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | u32 reg_data = rd32(E1000_CTRL_EXT); | 
|  | reg_data |= E1000_CTRL_EXT_PFRSTD; | 
|  | wr32(E1000_CTRL_EXT, reg_data); | 
|  | } | 
|  |  | 
|  | netif_tx_start_all_queues(adapter->netdev); | 
|  |  | 
|  | /* start the watchdog. */ | 
|  | hw->mac.get_link_status = 1; | 
|  | schedule_work(&adapter->watchdog_task); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void igb_down(struct igb_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tctl, rctl; | 
|  | int i; | 
|  |  | 
|  | /* signal that we're down so the interrupt handler does not | 
|  | * reschedule our watchdog timer */ | 
|  | set_bit(__IGB_DOWN, &adapter->state); | 
|  |  | 
|  | /* disable receives in the hardware */ | 
|  | rctl = rd32(E1000_RCTL); | 
|  | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | 
|  | /* flush and sleep below */ | 
|  |  | 
|  | netif_tx_stop_all_queues(netdev); | 
|  |  | 
|  | /* disable transmits in the hardware */ | 
|  | tctl = rd32(E1000_TCTL); | 
|  | tctl &= ~E1000_TCTL_EN; | 
|  | wr32(E1000_TCTL, tctl); | 
|  | /* flush both disables and wait for them to finish */ | 
|  | wrfl(); | 
|  | msleep(10); | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | napi_disable(&q_vector->napi); | 
|  | } | 
|  |  | 
|  | igb_irq_disable(adapter); | 
|  |  | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* record the stats before reset*/ | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | igb_update_stats(adapter, &adapter->stats64); | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  |  | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  |  | 
|  | if (!pci_channel_offline(adapter->pdev)) | 
|  | igb_reset(adapter); | 
|  | igb_clean_all_tx_rings(adapter); | 
|  | igb_clean_all_rx_rings(adapter); | 
|  | #ifdef CONFIG_IGB_DCA | 
|  |  | 
|  | /* since we reset the hardware DCA settings were cleared */ | 
|  | igb_setup_dca(adapter); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void igb_reinit_locked(struct igb_adapter *adapter) | 
|  | { | 
|  | WARN_ON(in_interrupt()); | 
|  | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | 
|  | msleep(1); | 
|  | igb_down(adapter); | 
|  | igb_up(adapter); | 
|  | clear_bit(__IGB_RESETTING, &adapter->state); | 
|  | } | 
|  |  | 
|  | void igb_reset(struct igb_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | struct e1000_fc_info *fc = &hw->fc; | 
|  | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | 
|  | u16 hwm; | 
|  |  | 
|  | /* Repartition Pba for greater than 9k mtu | 
|  | * To take effect CTRL.RST is required. | 
|  | */ | 
|  | switch (mac->type) { | 
|  | case e1000_i350: | 
|  | case e1000_82580: | 
|  | pba = rd32(E1000_RXPBS); | 
|  | pba = igb_rxpbs_adjust_82580(pba); | 
|  | break; | 
|  | case e1000_82576: | 
|  | pba = rd32(E1000_RXPBS); | 
|  | pba &= E1000_RXPBS_SIZE_MASK_82576; | 
|  | break; | 
|  | case e1000_82575: | 
|  | default: | 
|  | pba = E1000_PBA_34K; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && | 
|  | (mac->type < e1000_82576)) { | 
|  | /* adjust PBA for jumbo frames */ | 
|  | wr32(E1000_PBA, pba); | 
|  |  | 
|  | /* To maintain wire speed transmits, the Tx FIFO should be | 
|  | * large enough to accommodate two full transmit packets, | 
|  | * rounded up to the next 1KB and expressed in KB.  Likewise, | 
|  | * the Rx FIFO should be large enough to accommodate at least | 
|  | * one full receive packet and is similarly rounded up and | 
|  | * expressed in KB. */ | 
|  | pba = rd32(E1000_PBA); | 
|  | /* upper 16 bits has Tx packet buffer allocation size in KB */ | 
|  | tx_space = pba >> 16; | 
|  | /* lower 16 bits has Rx packet buffer allocation size in KB */ | 
|  | pba &= 0xffff; | 
|  | /* the tx fifo also stores 16 bytes of information about the tx | 
|  | * but don't include ethernet FCS because hardware appends it */ | 
|  | min_tx_space = (adapter->max_frame_size + | 
|  | sizeof(union e1000_adv_tx_desc) - | 
|  | ETH_FCS_LEN) * 2; | 
|  | min_tx_space = ALIGN(min_tx_space, 1024); | 
|  | min_tx_space >>= 10; | 
|  | /* software strips receive CRC, so leave room for it */ | 
|  | min_rx_space = adapter->max_frame_size; | 
|  | min_rx_space = ALIGN(min_rx_space, 1024); | 
|  | min_rx_space >>= 10; | 
|  |  | 
|  | /* If current Tx allocation is less than the min Tx FIFO size, | 
|  | * and the min Tx FIFO size is less than the current Rx FIFO | 
|  | * allocation, take space away from current Rx allocation */ | 
|  | if (tx_space < min_tx_space && | 
|  | ((min_tx_space - tx_space) < pba)) { | 
|  | pba = pba - (min_tx_space - tx_space); | 
|  |  | 
|  | /* if short on rx space, rx wins and must trump tx | 
|  | * adjustment */ | 
|  | if (pba < min_rx_space) | 
|  | pba = min_rx_space; | 
|  | } | 
|  | wr32(E1000_PBA, pba); | 
|  | } | 
|  |  | 
|  | /* flow control settings */ | 
|  | /* The high water mark must be low enough to fit one full frame | 
|  | * (or the size used for early receive) above it in the Rx FIFO. | 
|  | * Set it to the lower of: | 
|  | * - 90% of the Rx FIFO size, or | 
|  | * - the full Rx FIFO size minus one full frame */ | 
|  | hwm = min(((pba << 10) * 9 / 10), | 
|  | ((pba << 10) - 2 * adapter->max_frame_size)); | 
|  |  | 
|  | fc->high_water = hwm & 0xFFF0;	/* 16-byte granularity */ | 
|  | fc->low_water = fc->high_water - 16; | 
|  | fc->pause_time = 0xFFFF; | 
|  | fc->send_xon = 1; | 
|  | fc->current_mode = fc->requested_mode; | 
|  |  | 
|  | /* disable receive for all VFs and wait one second */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | int i; | 
|  | for (i = 0 ; i < adapter->vfs_allocated_count; i++) | 
|  | adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; | 
|  |  | 
|  | /* ping all the active vfs to let them know we are going down */ | 
|  | igb_ping_all_vfs(adapter); | 
|  |  | 
|  | /* disable transmits and receives */ | 
|  | wr32(E1000_VFRE, 0); | 
|  | wr32(E1000_VFTE, 0); | 
|  | } | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | hw->mac.ops.reset_hw(hw); | 
|  | wr32(E1000_WUC, 0); | 
|  |  | 
|  | if (hw->mac.ops.init_hw(hw)) | 
|  | dev_err(&pdev->dev, "Hardware Error\n"); | 
|  | if (hw->mac.type > e1000_82580) { | 
|  | if (adapter->flags & IGB_FLAG_DMAC) { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * DMA Coalescing high water mark needs to be higher | 
|  | * than * the * Rx threshold.  The Rx threshold is | 
|  | * currently * pba - 6, so we * should use a high water | 
|  | * mark of pba * - 4. */ | 
|  | hwm = (pba - 4) << 10; | 
|  |  | 
|  | reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT) | 
|  | & E1000_DMACR_DMACTHR_MASK); | 
|  |  | 
|  | /* transition to L0x or L1 if available..*/ | 
|  | reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); | 
|  |  | 
|  | /* watchdog timer= +-1000 usec in 32usec intervals */ | 
|  | reg |= (1000 >> 5); | 
|  | wr32(E1000_DMACR, reg); | 
|  |  | 
|  | /* no lower threshold to disable coalescing(smart fifb) | 
|  | * -UTRESH=0*/ | 
|  | wr32(E1000_DMCRTRH, 0); | 
|  |  | 
|  | /* set hwm to PBA -  2 * max frame size */ | 
|  | wr32(E1000_FCRTC, hwm); | 
|  |  | 
|  | /* | 
|  | * This sets the time to wait before requesting tran- | 
|  | * sition to * low power state to number of usecs needed | 
|  | * to receive 1 512 * byte frame at gigabit line rate | 
|  | */ | 
|  | reg = rd32(E1000_DMCTLX); | 
|  | reg |= IGB_DMCTLX_DCFLUSH_DIS; | 
|  |  | 
|  | /* Delay 255 usec before entering Lx state. */ | 
|  | reg |= 0xFF; | 
|  | wr32(E1000_DMCTLX, reg); | 
|  |  | 
|  | /* free space in Tx packet buffer to wake from DMAC */ | 
|  | wr32(E1000_DMCTXTH, | 
|  | (IGB_MIN_TXPBSIZE - | 
|  | (IGB_TX_BUF_4096 + adapter->max_frame_size)) | 
|  | >> 6); | 
|  |  | 
|  | /* make low power state decision controlled by DMAC */ | 
|  | reg = rd32(E1000_PCIEMISC); | 
|  | reg |= E1000_PCIEMISC_LX_DECISION; | 
|  | wr32(E1000_PCIEMISC, reg); | 
|  | } /* end if IGB_FLAG_DMAC set */ | 
|  | } | 
|  | if (hw->mac.type == e1000_82580) { | 
|  | u32 reg = rd32(E1000_PCIEMISC); | 
|  | wr32(E1000_PCIEMISC, | 
|  | reg & ~E1000_PCIEMISC_LX_DECISION); | 
|  | } | 
|  | if (!netif_running(adapter->netdev)) | 
|  | igb_power_down_link(adapter); | 
|  |  | 
|  | igb_update_mng_vlan(adapter); | 
|  |  | 
|  | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | 
|  |  | 
|  | igb_get_phy_info(hw); | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops igb_netdev_ops = { | 
|  | .ndo_open		= igb_open, | 
|  | .ndo_stop		= igb_close, | 
|  | .ndo_start_xmit		= igb_xmit_frame_adv, | 
|  | .ndo_get_stats64	= igb_get_stats64, | 
|  | .ndo_set_rx_mode	= igb_set_rx_mode, | 
|  | .ndo_set_multicast_list	= igb_set_rx_mode, | 
|  | .ndo_set_mac_address	= igb_set_mac, | 
|  | .ndo_change_mtu		= igb_change_mtu, | 
|  | .ndo_do_ioctl		= igb_ioctl, | 
|  | .ndo_tx_timeout		= igb_tx_timeout, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | .ndo_vlan_rx_register	= igb_vlan_rx_register, | 
|  | .ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid, | 
|  | .ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid, | 
|  | .ndo_set_vf_mac		= igb_ndo_set_vf_mac, | 
|  | .ndo_set_vf_vlan	= igb_ndo_set_vf_vlan, | 
|  | .ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw, | 
|  | .ndo_get_vf_config	= igb_ndo_get_vf_config, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= igb_netpoll, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * igb_probe - Device Initialization Routine | 
|  | * @pdev: PCI device information struct | 
|  | * @ent: entry in igb_pci_tbl | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | * | 
|  | * igb_probe initializes an adapter identified by a pci_dev structure. | 
|  | * The OS initialization, configuring of the adapter private structure, | 
|  | * and a hardware reset occur. | 
|  | **/ | 
|  | static int __devinit igb_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct igb_adapter *adapter; | 
|  | struct e1000_hw *hw; | 
|  | u16 eeprom_data = 0; | 
|  | s32 ret_val; | 
|  | static int global_quad_port_a; /* global quad port a indication */ | 
|  | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | 
|  | unsigned long mmio_start, mmio_len; | 
|  | int err, pci_using_dac; | 
|  | u16 eeprom_apme_mask = IGB_EEPROM_APME; | 
|  | u8 part_str[E1000_PBANUM_LENGTH]; | 
|  |  | 
|  | /* Catch broken hardware that put the wrong VF device ID in | 
|  | * the PCIe SR-IOV capability. | 
|  | */ | 
|  | if (pdev->is_virtfn) { | 
|  | WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", | 
|  | pci_name(pdev), pdev->vendor, pdev->device); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pci_using_dac = 0; | 
|  | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | if (!err) { | 
|  | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | 
|  | if (!err) | 
|  | pci_using_dac = 1; | 
|  | } else { | 
|  | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "No usable DMA " | 
|  | "configuration, aborting\n"); | 
|  | goto err_dma; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | err = pci_request_selected_regions(pdev, pci_select_bars(pdev, | 
|  | IORESOURCE_MEM), | 
|  | igb_driver_name); | 
|  | if (err) | 
|  | goto err_pci_reg; | 
|  |  | 
|  | pci_enable_pcie_error_reporting(pdev); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | err = -ENOMEM; | 
|  | netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), | 
|  | IGB_ABS_MAX_TX_QUEUES); | 
|  | if (!netdev) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | pci_set_drvdata(pdev, netdev); | 
|  | adapter = netdev_priv(netdev); | 
|  | adapter->netdev = netdev; | 
|  | adapter->pdev = pdev; | 
|  | hw = &adapter->hw; | 
|  | hw->back = adapter; | 
|  | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | 
|  |  | 
|  | mmio_start = pci_resource_start(pdev, 0); | 
|  | mmio_len = pci_resource_len(pdev, 0); | 
|  |  | 
|  | err = -EIO; | 
|  | hw->hw_addr = ioremap(mmio_start, mmio_len); | 
|  | if (!hw->hw_addr) | 
|  | goto err_ioremap; | 
|  |  | 
|  | netdev->netdev_ops = &igb_netdev_ops; | 
|  | igb_set_ethtool_ops(netdev); | 
|  | netdev->watchdog_timeo = 5 * HZ; | 
|  |  | 
|  | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  |  | 
|  | netdev->mem_start = mmio_start; | 
|  | netdev->mem_end = mmio_start + mmio_len; | 
|  |  | 
|  | /* PCI config space info */ | 
|  | hw->vendor_id = pdev->vendor; | 
|  | hw->device_id = pdev->device; | 
|  | hw->revision_id = pdev->revision; | 
|  | hw->subsystem_vendor_id = pdev->subsystem_vendor; | 
|  | hw->subsystem_device_id = pdev->subsystem_device; | 
|  |  | 
|  | /* Copy the default MAC, PHY and NVM function pointers */ | 
|  | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | 
|  | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | 
|  | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | 
|  | /* Initialize skew-specific constants */ | 
|  | err = ei->get_invariants(hw); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | /* setup the private structure */ | 
|  | err = igb_sw_init(adapter); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | igb_get_bus_info_pcie(hw); | 
|  |  | 
|  | hw->phy.autoneg_wait_to_complete = false; | 
|  |  | 
|  | /* Copper options */ | 
|  | if (hw->phy.media_type == e1000_media_type_copper) { | 
|  | hw->phy.mdix = AUTO_ALL_MODES; | 
|  | hw->phy.disable_polarity_correction = false; | 
|  | hw->phy.ms_type = e1000_ms_hw_default; | 
|  | } | 
|  |  | 
|  | if (igb_check_reset_block(hw)) | 
|  | dev_info(&pdev->dev, | 
|  | "PHY reset is blocked due to SOL/IDER session.\n"); | 
|  |  | 
|  | netdev->features = NETIF_F_SG | | 
|  | NETIF_F_IP_CSUM | | 
|  | NETIF_F_HW_VLAN_TX | | 
|  | NETIF_F_HW_VLAN_RX | | 
|  | NETIF_F_HW_VLAN_FILTER; | 
|  |  | 
|  | netdev->features |= NETIF_F_IPV6_CSUM; | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  | netdev->features |= NETIF_F_GRO; | 
|  |  | 
|  | netdev->vlan_features |= NETIF_F_TSO; | 
|  | netdev->vlan_features |= NETIF_F_TSO6; | 
|  | netdev->vlan_features |= NETIF_F_IP_CSUM; | 
|  | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | 
|  | netdev->vlan_features |= NETIF_F_SG; | 
|  |  | 
|  | if (pci_using_dac) { | 
|  | netdev->features |= NETIF_F_HIGHDMA; | 
|  | netdev->vlan_features |= NETIF_F_HIGHDMA; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type >= e1000_82576) | 
|  | netdev->features |= NETIF_F_SCTP_CSUM; | 
|  |  | 
|  | adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); | 
|  |  | 
|  | /* before reading the NVM, reset the controller to put the device in a | 
|  | * known good starting state */ | 
|  | hw->mac.ops.reset_hw(hw); | 
|  |  | 
|  | /* make sure the NVM is good */ | 
|  | if (hw->nvm.ops.validate(hw) < 0) { | 
|  | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | /* copy the MAC address out of the NVM */ | 
|  | if (hw->mac.ops.read_mac_addr(hw)) | 
|  | dev_err(&pdev->dev, "NVM Read Error\n"); | 
|  |  | 
|  | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | 
|  | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | 
|  |  | 
|  | if (!is_valid_ether_addr(netdev->perm_addr)) { | 
|  | dev_err(&pdev->dev, "Invalid MAC Address\n"); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | setup_timer(&adapter->watchdog_timer, igb_watchdog, | 
|  | (unsigned long) adapter); | 
|  | setup_timer(&adapter->phy_info_timer, igb_update_phy_info, | 
|  | (unsigned long) adapter); | 
|  |  | 
|  | INIT_WORK(&adapter->reset_task, igb_reset_task); | 
|  | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | 
|  |  | 
|  | /* Initialize link properties that are user-changeable */ | 
|  | adapter->fc_autoneg = true; | 
|  | hw->mac.autoneg = true; | 
|  | hw->phy.autoneg_advertised = 0x2f; | 
|  |  | 
|  | hw->fc.requested_mode = e1000_fc_default; | 
|  | hw->fc.current_mode = e1000_fc_default; | 
|  |  | 
|  | igb_validate_mdi_setting(hw); | 
|  |  | 
|  | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | 
|  | * enable the ACPI Magic Packet filter | 
|  | */ | 
|  |  | 
|  | if (hw->bus.func == 0) | 
|  | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
|  | else if (hw->mac.type == e1000_82580) | 
|  | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | 
|  | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | 
|  | &eeprom_data); | 
|  | else if (hw->bus.func == 1) | 
|  | hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
|  |  | 
|  | if (eeprom_data & eeprom_apme_mask) | 
|  | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | /* now that we have the eeprom settings, apply the special cases where | 
|  | * the eeprom may be wrong or the board simply won't support wake on | 
|  | * lan on a particular port */ | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82575GB_QUAD_COPPER: | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82575EB_FIBER_SERDES: | 
|  | case E1000_DEV_ID_82576_FIBER: | 
|  | case E1000_DEV_ID_82576_SERDES: | 
|  | /* Wake events only supported on port A for dual fiber | 
|  | * regardless of eeprom setting */ | 
|  | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82576_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | 
|  | /* if quad port adapter, disable WoL on all but port A */ | 
|  | if (global_quad_port_a != 0) | 
|  | adapter->eeprom_wol = 0; | 
|  | else | 
|  | adapter->flags |= IGB_FLAG_QUAD_PORT_A; | 
|  | /* Reset for multiple quad port adapters */ | 
|  | if (++global_quad_port_a == 4) | 
|  | global_quad_port_a = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* initialize the wol settings based on the eeprom settings */ | 
|  | adapter->wol = adapter->eeprom_wol; | 
|  | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | 
|  |  | 
|  | /* reset the hardware with the new settings */ | 
|  | igb_reset(adapter); | 
|  |  | 
|  | /* let the f/w know that the h/w is now under the control of the | 
|  | * driver. */ | 
|  | igb_get_hw_control(adapter); | 
|  |  | 
|  | strcpy(netdev->name, "eth%d"); | 
|  | err = register_netdev(netdev); | 
|  | if (err) | 
|  | goto err_register; | 
|  |  | 
|  | /* carrier off reporting is important to ethtool even BEFORE open */ | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | if (dca_add_requester(&pdev->dev) == 0) { | 
|  | adapter->flags |= IGB_FLAG_DCA_ENABLED; | 
|  | dev_info(&pdev->dev, "DCA enabled\n"); | 
|  | igb_setup_dca(adapter); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | /* do hw tstamp init after resetting */ | 
|  | igb_init_hw_timer(adapter); | 
|  |  | 
|  | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | 
|  | /* print bus type/speed/width info */ | 
|  | dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", | 
|  | netdev->name, | 
|  | ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : | 
|  | (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : | 
|  | "unknown"), | 
|  | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | 
|  | (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : | 
|  | (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : | 
|  | "unknown"), | 
|  | netdev->dev_addr); | 
|  |  | 
|  | ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); | 
|  | if (ret_val) | 
|  | strcpy(part_str, "Unknown"); | 
|  | dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); | 
|  | dev_info(&pdev->dev, | 
|  | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | 
|  | adapter->msix_entries ? "MSI-X" : | 
|  | (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", | 
|  | adapter->num_rx_queues, adapter->num_tx_queues); | 
|  | switch (hw->mac.type) { | 
|  | case e1000_i350: | 
|  | igb_set_eee_i350(hw); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_register: | 
|  | igb_release_hw_control(adapter); | 
|  | err_eeprom: | 
|  | if (!igb_check_reset_block(hw)) | 
|  | igb_reset_phy(hw); | 
|  |  | 
|  | if (hw->flash_address) | 
|  | iounmap(hw->flash_address); | 
|  | err_sw_init: | 
|  | igb_clear_interrupt_scheme(adapter); | 
|  | iounmap(hw->hw_addr); | 
|  | err_ioremap: | 
|  | free_netdev(netdev); | 
|  | err_alloc_etherdev: | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  | err_pci_reg: | 
|  | err_dma: | 
|  | pci_disable_device(pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_remove - Device Removal Routine | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * igb_remove is called by the PCI subsystem to alert the driver | 
|  | * that it should release a PCI device.  The could be caused by a | 
|  | * Hot-Plug event, or because the driver is going to be removed from | 
|  | * memory. | 
|  | **/ | 
|  | static void __devexit igb_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* | 
|  | * The watchdog timer may be rescheduled, so explicitly | 
|  | * disable watchdog from being rescheduled. | 
|  | */ | 
|  | set_bit(__IGB_DOWN, &adapter->state); | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | cancel_work_sync(&adapter->reset_task); | 
|  | cancel_work_sync(&adapter->watchdog_task); | 
|  |  | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | 
|  | dev_info(&pdev->dev, "DCA disabled\n"); | 
|  | dca_remove_requester(&pdev->dev); | 
|  | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | 
|  | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. */ | 
|  | igb_release_hw_control(adapter); | 
|  |  | 
|  | unregister_netdev(netdev); | 
|  |  | 
|  | igb_clear_interrupt_scheme(adapter); | 
|  |  | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | /* reclaim resources allocated to VFs */ | 
|  | if (adapter->vf_data) { | 
|  | /* disable iov and allow time for transactions to clear */ | 
|  | pci_disable_sriov(pdev); | 
|  | msleep(500); | 
|  |  | 
|  | kfree(adapter->vf_data); | 
|  | adapter->vf_data = NULL; | 
|  | wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); | 
|  | msleep(100); | 
|  | dev_info(&pdev->dev, "IOV Disabled\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | iounmap(hw->hw_addr); | 
|  | if (hw->flash_address) | 
|  | iounmap(hw->flash_address); | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  |  | 
|  | free_netdev(netdev); | 
|  |  | 
|  | pci_disable_pcie_error_reporting(pdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * This function initializes the vf specific data storage and then attempts to | 
|  | * allocate the VFs.  The reason for ordering it this way is because it is much | 
|  | * mor expensive time wise to disable SR-IOV than it is to allocate and free | 
|  | * the memory for the VFs. | 
|  | **/ | 
|  | static void __devinit igb_probe_vfs(struct igb_adapter * adapter) | 
|  | { | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | if (adapter->vfs_allocated_count) { | 
|  | adapter->vf_data = kcalloc(adapter->vfs_allocated_count, | 
|  | sizeof(struct vf_data_storage), | 
|  | GFP_KERNEL); | 
|  | /* if allocation failed then we do not support SR-IOV */ | 
|  | if (!adapter->vf_data) { | 
|  | adapter->vfs_allocated_count = 0; | 
|  | dev_err(&pdev->dev, "Unable to allocate memory for VF " | 
|  | "Data Storage\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) { | 
|  | kfree(adapter->vf_data); | 
|  | adapter->vf_data = NULL; | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  | adapter->vfs_allocated_count = 0; | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | } else { | 
|  | unsigned char mac_addr[ETH_ALEN]; | 
|  | int i; | 
|  | dev_info(&pdev->dev, "%d vfs allocated\n", | 
|  | adapter->vfs_allocated_count); | 
|  | for (i = 0; i < adapter->vfs_allocated_count; i++) { | 
|  | random_ether_addr(mac_addr); | 
|  | igb_set_vf_mac(adapter, i, mac_addr); | 
|  | } | 
|  | /* DMA Coalescing is not supported in IOV mode. */ | 
|  | if (adapter->flags & IGB_FLAG_DMAC) | 
|  | adapter->flags &= ~IGB_FLAG_DMAC; | 
|  | } | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * igb_init_hw_timer initializes the function pointer and values for the hw | 
|  | * timer found in hardware. | 
|  | **/ | 
|  | static void igb_init_hw_timer(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_i350: | 
|  | case e1000_82580: | 
|  | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | 
|  | adapter->cycles.read = igb_read_clock; | 
|  | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | 
|  | adapter->cycles.mult = 1; | 
|  | /* | 
|  | * The 82580 timesync updates the system timer every 8ns by 8ns | 
|  | * and the value cannot be shifted.  Instead we need to shift | 
|  | * the registers to generate a 64bit timer value.  As a result | 
|  | * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by | 
|  | * 24 in order to generate a larger value for synchronization. | 
|  | */ | 
|  | adapter->cycles.shift = IGB_82580_TSYNC_SHIFT; | 
|  | /* disable system timer temporarily by setting bit 31 */ | 
|  | wr32(E1000_TSAUXC, 0x80000000); | 
|  | wrfl(); | 
|  |  | 
|  | /* Set registers so that rollover occurs soon to test this. */ | 
|  | wr32(E1000_SYSTIMR, 0x00000000); | 
|  | wr32(E1000_SYSTIML, 0x80000000); | 
|  | wr32(E1000_SYSTIMH, 0x000000FF); | 
|  | wrfl(); | 
|  |  | 
|  | /* enable system timer by clearing bit 31 */ | 
|  | wr32(E1000_TSAUXC, 0x0); | 
|  | wrfl(); | 
|  |  | 
|  | timecounter_init(&adapter->clock, | 
|  | &adapter->cycles, | 
|  | ktime_to_ns(ktime_get_real())); | 
|  | /* | 
|  | * Synchronize our NIC clock against system wall clock. NIC | 
|  | * time stamp reading requires ~3us per sample, each sample | 
|  | * was pretty stable even under load => only require 10 | 
|  | * samples for each offset comparison. | 
|  | */ | 
|  | memset(&adapter->compare, 0, sizeof(adapter->compare)); | 
|  | adapter->compare.source = &adapter->clock; | 
|  | adapter->compare.target = ktime_get_real; | 
|  | adapter->compare.num_samples = 10; | 
|  | timecompare_update(&adapter->compare, 0); | 
|  | break; | 
|  | case e1000_82576: | 
|  | /* | 
|  | * Initialize hardware timer: we keep it running just in case | 
|  | * that some program needs it later on. | 
|  | */ | 
|  | memset(&adapter->cycles, 0, sizeof(adapter->cycles)); | 
|  | adapter->cycles.read = igb_read_clock; | 
|  | adapter->cycles.mask = CLOCKSOURCE_MASK(64); | 
|  | adapter->cycles.mult = 1; | 
|  | /** | 
|  | * Scale the NIC clock cycle by a large factor so that | 
|  | * relatively small clock corrections can be added or | 
|  | * subtracted at each clock tick. The drawbacks of a large | 
|  | * factor are a) that the clock register overflows more quickly | 
|  | * (not such a big deal) and b) that the increment per tick has | 
|  | * to fit into 24 bits.  As a result we need to use a shift of | 
|  | * 19 so we can fit a value of 16 into the TIMINCA register. | 
|  | */ | 
|  | adapter->cycles.shift = IGB_82576_TSYNC_SHIFT; | 
|  | wr32(E1000_TIMINCA, | 
|  | (1 << E1000_TIMINCA_16NS_SHIFT) | | 
|  | (16 << IGB_82576_TSYNC_SHIFT)); | 
|  |  | 
|  | /* Set registers so that rollover occurs soon to test this. */ | 
|  | wr32(E1000_SYSTIML, 0x00000000); | 
|  | wr32(E1000_SYSTIMH, 0xFF800000); | 
|  | wrfl(); | 
|  |  | 
|  | timecounter_init(&adapter->clock, | 
|  | &adapter->cycles, | 
|  | ktime_to_ns(ktime_get_real())); | 
|  | /* | 
|  | * Synchronize our NIC clock against system wall clock. NIC | 
|  | * time stamp reading requires ~3us per sample, each sample | 
|  | * was pretty stable even under load => only require 10 | 
|  | * samples for each offset comparison. | 
|  | */ | 
|  | memset(&adapter->compare, 0, sizeof(adapter->compare)); | 
|  | adapter->compare.source = &adapter->clock; | 
|  | adapter->compare.target = ktime_get_real; | 
|  | adapter->compare.num_samples = 10; | 
|  | timecompare_update(&adapter->compare, 0); | 
|  | break; | 
|  | case e1000_82575: | 
|  | /* 82575 does not support timesync */ | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_sw_init - Initialize general software structures (struct igb_adapter) | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * igb_sw_init initializes the Adapter private data structure. | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | **/ | 
|  | static int __devinit igb_sw_init(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | 
|  |  | 
|  | adapter->tx_ring_count = IGB_DEFAULT_TXD; | 
|  | adapter->rx_ring_count = IGB_DEFAULT_RXD; | 
|  | adapter->rx_itr_setting = IGB_DEFAULT_ITR; | 
|  | adapter->tx_itr_setting = IGB_DEFAULT_ITR; | 
|  |  | 
|  | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | 
|  |  | 
|  | spin_lock_init(&adapter->stats64_lock); | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82576: | 
|  | case e1000_i350: | 
|  | if (max_vfs > 7) { | 
|  | dev_warn(&pdev->dev, | 
|  | "Maximum of 7 VFs per PF, using max\n"); | 
|  | adapter->vfs_allocated_count = 7; | 
|  | } else | 
|  | adapter->vfs_allocated_count = max_vfs; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #endif /* CONFIG_PCI_IOV */ | 
|  | adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus()); | 
|  |  | 
|  | /* | 
|  | * if rss_queues > 4 or vfs are going to be allocated with rss_queues | 
|  | * then we should combine the queues into a queue pair in order to | 
|  | * conserve interrupts due to limited supply | 
|  | */ | 
|  | if ((adapter->rss_queues > 4) || | 
|  | ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6))) | 
|  | adapter->flags |= IGB_FLAG_QUEUE_PAIRS; | 
|  |  | 
|  | /* This call may decrease the number of queues */ | 
|  | if (igb_init_interrupt_scheme(adapter)) { | 
|  | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | igb_probe_vfs(adapter); | 
|  |  | 
|  | /* Explicitly disable IRQ since the NIC can be in any state. */ | 
|  | igb_irq_disable(adapter); | 
|  |  | 
|  | if (hw->mac.type == e1000_i350) | 
|  | adapter->flags &= ~IGB_FLAG_DMAC; | 
|  |  | 
|  | set_bit(__IGB_DOWN, &adapter->state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_open - Called when a network interface is made active | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0 on success, negative value on failure | 
|  | * | 
|  | * The open entry point is called when a network interface is made | 
|  | * active by the system (IFF_UP).  At this point all resources needed | 
|  | * for transmit and receive operations are allocated, the interrupt | 
|  | * handler is registered with the OS, the watchdog timer is started, | 
|  | * and the stack is notified that the interface is ready. | 
|  | **/ | 
|  | static int igb_open(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  | int i; | 
|  |  | 
|  | /* disallow open during test */ | 
|  | if (test_bit(__IGB_TESTING, &adapter->state)) | 
|  | return -EBUSY; | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* allocate transmit descriptors */ | 
|  | err = igb_setup_all_tx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* allocate receive descriptors */ | 
|  | err = igb_setup_all_rx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_rx; | 
|  |  | 
|  | igb_power_up_link(adapter); | 
|  |  | 
|  | /* before we allocate an interrupt, we must be ready to handle it. | 
|  | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
|  | * as soon as we call pci_request_irq, so we have to setup our | 
|  | * clean_rx handler before we do so.  */ | 
|  | igb_configure(adapter); | 
|  |  | 
|  | err = igb_request_irq(adapter); | 
|  | if (err) | 
|  | goto err_req_irq; | 
|  |  | 
|  | /* From here on the code is the same as igb_up() */ | 
|  | clear_bit(__IGB_DOWN, &adapter->state); | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | napi_enable(&q_vector->napi); | 
|  | } | 
|  |  | 
|  | /* Clear any pending interrupts. */ | 
|  | rd32(E1000_ICR); | 
|  |  | 
|  | igb_irq_enable(adapter); | 
|  |  | 
|  | /* notify VFs that reset has been completed */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | u32 reg_data = rd32(E1000_CTRL_EXT); | 
|  | reg_data |= E1000_CTRL_EXT_PFRSTD; | 
|  | wr32(E1000_CTRL_EXT, reg_data); | 
|  | } | 
|  |  | 
|  | netif_tx_start_all_queues(netdev); | 
|  |  | 
|  | /* start the watchdog. */ | 
|  | hw->mac.get_link_status = 1; | 
|  | schedule_work(&adapter->watchdog_task); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_req_irq: | 
|  | igb_release_hw_control(adapter); | 
|  | igb_power_down_link(adapter); | 
|  | igb_free_all_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | igb_free_all_tx_resources(adapter); | 
|  | err_setup_tx: | 
|  | igb_reset(adapter); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_close - Disables a network interface | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0, this is not allowed to fail | 
|  | * | 
|  | * The close entry point is called when an interface is de-activated | 
|  | * by the OS.  The hardware is still under the driver's control, but | 
|  | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | * hardware, and all transmit and receive resources are freed. | 
|  | **/ | 
|  | static int igb_close(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | 
|  | igb_down(adapter); | 
|  |  | 
|  | igb_free_irq(adapter); | 
|  |  | 
|  | igb_free_all_tx_resources(adapter); | 
|  | igb_free_all_rx_resources(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | * @tx_ring: tx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | int igb_setup_tx_resources(struct igb_ring *tx_ring) | 
|  | { | 
|  | struct device *dev = tx_ring->dev; | 
|  | int size; | 
|  |  | 
|  | size = sizeof(struct igb_buffer) * tx_ring->count; | 
|  | tx_ring->buffer_info = vzalloc(size); | 
|  | if (!tx_ring->buffer_info) | 
|  | goto err; | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | 
|  | tx_ring->size = ALIGN(tx_ring->size, 4096); | 
|  |  | 
|  | tx_ring->desc = dma_alloc_coherent(dev, | 
|  | tx_ring->size, | 
|  | &tx_ring->dma, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!tx_ring->desc) | 
|  | goto err; | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | vfree(tx_ring->buffer_info); | 
|  | dev_err(dev, | 
|  | "Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | 
|  | *				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | err = igb_setup_tx_resources(adapter->tx_ring[i]); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Allocation for Tx Queue %u failed\n", i); | 
|  | for (i--; i >= 0; i--) | 
|  | igb_free_tx_resources(adapter->tx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) { | 
|  | int r_idx = i % adapter->num_tx_queues; | 
|  | adapter->multi_tx_table[i] = adapter->tx_ring[r_idx]; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_tctl - configure the transmit control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | void igb_setup_tctl(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tctl; | 
|  |  | 
|  | /* disable queue 0 which is enabled by default on 82575 and 82576 */ | 
|  | wr32(E1000_TXDCTL(0), 0); | 
|  |  | 
|  | /* Program the Transmit Control Register */ | 
|  | tctl = rd32(E1000_TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  |  | 
|  | igb_config_collision_dist(hw); | 
|  |  | 
|  | /* Enable transmits */ | 
|  | tctl |= E1000_TCTL_EN; | 
|  |  | 
|  | wr32(E1000_TCTL, tctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure_tx_ring - Configure transmit ring after Reset | 
|  | * @adapter: board private structure | 
|  | * @ring: tx ring to configure | 
|  | * | 
|  | * Configure a transmit ring after a reset. | 
|  | **/ | 
|  | void igb_configure_tx_ring(struct igb_adapter *adapter, | 
|  | struct igb_ring *ring) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 txdctl; | 
|  | u64 tdba = ring->dma; | 
|  | int reg_idx = ring->reg_idx; | 
|  |  | 
|  | /* disable the queue */ | 
|  | txdctl = rd32(E1000_TXDCTL(reg_idx)); | 
|  | wr32(E1000_TXDCTL(reg_idx), | 
|  | txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | 
|  | wrfl(); | 
|  | mdelay(10); | 
|  |  | 
|  | wr32(E1000_TDLEN(reg_idx), | 
|  | ring->count * sizeof(union e1000_adv_tx_desc)); | 
|  | wr32(E1000_TDBAL(reg_idx), | 
|  | tdba & 0x00000000ffffffffULL); | 
|  | wr32(E1000_TDBAH(reg_idx), tdba >> 32); | 
|  |  | 
|  | ring->head = hw->hw_addr + E1000_TDH(reg_idx); | 
|  | ring->tail = hw->hw_addr + E1000_TDT(reg_idx); | 
|  | writel(0, ring->head); | 
|  | writel(0, ring->tail); | 
|  |  | 
|  | txdctl |= IGB_TX_PTHRESH; | 
|  | txdctl |= IGB_TX_HTHRESH << 8; | 
|  | txdctl |= IGB_TX_WTHRESH << 16; | 
|  |  | 
|  | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | 
|  | wr32(E1000_TXDCTL(reg_idx), txdctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure_tx - Configure transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void igb_configure_tx(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | igb_configure_tx_ring(adapter, adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | * @rx_ring:    rx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | int igb_setup_rx_resources(struct igb_ring *rx_ring) | 
|  | { | 
|  | struct device *dev = rx_ring->dev; | 
|  | int size, desc_len; | 
|  |  | 
|  | size = sizeof(struct igb_buffer) * rx_ring->count; | 
|  | rx_ring->buffer_info = vzalloc(size); | 
|  | if (!rx_ring->buffer_info) | 
|  | goto err; | 
|  |  | 
|  | desc_len = sizeof(union e1000_adv_rx_desc); | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  | rx_ring->size = rx_ring->count * desc_len; | 
|  | rx_ring->size = ALIGN(rx_ring->size, 4096); | 
|  |  | 
|  | rx_ring->desc = dma_alloc_coherent(dev, | 
|  | rx_ring->size, | 
|  | &rx_ring->dma, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!rx_ring->desc) | 
|  | goto err; | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  | dev_err(dev, "Unable to allocate memory for the receive descriptor" | 
|  | " ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | 
|  | *				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | err = igb_setup_rx_resources(adapter->rx_ring[i]); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Allocation for Rx Queue %u failed\n", i); | 
|  | for (i--; i >= 0; i--) | 
|  | igb_free_rx_resources(adapter->rx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_mrqc - configure the multiple receive queue control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | static void igb_setup_mrqc(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 mrqc, rxcsum; | 
|  | u32 j, num_rx_queues, shift = 0, shift2 = 0; | 
|  | union e1000_reta { | 
|  | u32 dword; | 
|  | u8  bytes[4]; | 
|  | } reta; | 
|  | static const u8 rsshash[40] = { | 
|  | 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, | 
|  | 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, | 
|  | 0xae, 0x7b, 0x30, 0xb4,	0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, | 
|  | 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; | 
|  |  | 
|  | /* Fill out hash function seeds */ | 
|  | for (j = 0; j < 10; j++) { | 
|  | u32 rsskey = rsshash[(j * 4)]; | 
|  | rsskey |= rsshash[(j * 4) + 1] << 8; | 
|  | rsskey |= rsshash[(j * 4) + 2] << 16; | 
|  | rsskey |= rsshash[(j * 4) + 3] << 24; | 
|  | array_wr32(E1000_RSSRK(0), j, rsskey); | 
|  | } | 
|  |  | 
|  | num_rx_queues = adapter->rss_queues; | 
|  |  | 
|  | if (adapter->vfs_allocated_count) { | 
|  | /* 82575 and 82576 supports 2 RSS queues for VMDq */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_i350: | 
|  | case e1000_82580: | 
|  | num_rx_queues = 1; | 
|  | shift = 0; | 
|  | break; | 
|  | case e1000_82576: | 
|  | shift = 3; | 
|  | num_rx_queues = 2; | 
|  | break; | 
|  | case e1000_82575: | 
|  | shift = 2; | 
|  | shift2 = 6; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (hw->mac.type == e1000_82575) | 
|  | shift = 6; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < (32 * 4); j++) { | 
|  | reta.bytes[j & 3] = (j % num_rx_queues) << shift; | 
|  | if (shift2) | 
|  | reta.bytes[j & 3] |= num_rx_queues << shift2; | 
|  | if ((j & 3) == 3) | 
|  | wr32(E1000_RETA(j >> 2), reta.dword); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable raw packet checksumming so that RSS hash is placed in | 
|  | * descriptor on writeback.  No need to enable TCP/UDP/IP checksum | 
|  | * offloads as they are enabled by default | 
|  | */ | 
|  | rxcsum = rd32(E1000_RXCSUM); | 
|  | rxcsum |= E1000_RXCSUM_PCSD; | 
|  |  | 
|  | if (adapter->hw.mac.type >= e1000_82576) | 
|  | /* Enable Receive Checksum Offload for SCTP */ | 
|  | rxcsum |= E1000_RXCSUM_CRCOFL; | 
|  |  | 
|  | /* Don't need to set TUOFL or IPOFL, they default to 1 */ | 
|  | wr32(E1000_RXCSUM, rxcsum); | 
|  |  | 
|  | /* If VMDq is enabled then we set the appropriate mode for that, else | 
|  | * we default to RSS so that an RSS hash is calculated per packet even | 
|  | * if we are only using one queue */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | if (hw->mac.type > e1000_82575) { | 
|  | /* Set the default pool for the PF's first queue */ | 
|  | u32 vtctl = rd32(E1000_VT_CTL); | 
|  | vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | | 
|  | E1000_VT_CTL_DISABLE_DEF_POOL); | 
|  | vtctl |= adapter->vfs_allocated_count << | 
|  | E1000_VT_CTL_DEFAULT_POOL_SHIFT; | 
|  | wr32(E1000_VT_CTL, vtctl); | 
|  | } | 
|  | if (adapter->rss_queues > 1) | 
|  | mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q; | 
|  | else | 
|  | mrqc = E1000_MRQC_ENABLE_VMDQ; | 
|  | } else { | 
|  | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | 
|  | } | 
|  | igb_vmm_control(adapter); | 
|  |  | 
|  | /* | 
|  | * Generate RSS hash based on TCP port numbers and/or | 
|  | * IPv4/v6 src and dst addresses since UDP cannot be | 
|  | * hashed reliably due to IP fragmentation | 
|  | */ | 
|  | mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | | 
|  | E1000_MRQC_RSS_FIELD_IPV4_TCP | | 
|  | E1000_MRQC_RSS_FIELD_IPV6 | | 
|  | E1000_MRQC_RSS_FIELD_IPV6_TCP | | 
|  | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; | 
|  |  | 
|  | wr32(E1000_MRQC, mrqc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_setup_rctl - configure the receive control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | void igb_setup_rctl(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | rctl = rd32(E1000_RCTL); | 
|  |  | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | 
|  |  | 
|  | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | | 
|  | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | /* | 
|  | * enable stripping of CRC. It's unlikely this will break BMC | 
|  | * redirection as it did with e1000. Newer features require | 
|  | * that the HW strips the CRC. | 
|  | */ | 
|  | rctl |= E1000_RCTL_SECRC; | 
|  |  | 
|  | /* disable store bad packets and clear size bits. */ | 
|  | rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); | 
|  |  | 
|  | /* enable LPE to prevent packets larger than max_frame_size */ | 
|  | rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | /* disable queue 0 to prevent tail write w/o re-config */ | 
|  | wr32(E1000_RXDCTL(0), 0); | 
|  |  | 
|  | /* Attention!!!  For SR-IOV PF driver operations you must enable | 
|  | * queue drop for all VF and PF queues to prevent head of line blocking | 
|  | * if an un-trusted VF does not provide descriptors to hardware. | 
|  | */ | 
|  | if (adapter->vfs_allocated_count) { | 
|  | /* set all queue drop enable bits */ | 
|  | wr32(E1000_QDE, ALL_QUEUES); | 
|  | } | 
|  |  | 
|  | wr32(E1000_RCTL, rctl); | 
|  | } | 
|  |  | 
|  | static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, | 
|  | int vfn) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vmolr; | 
|  |  | 
|  | /* if it isn't the PF check to see if VFs are enabled and | 
|  | * increase the size to support vlan tags */ | 
|  | if (vfn < adapter->vfs_allocated_count && | 
|  | adapter->vf_data[vfn].vlans_enabled) | 
|  | size += VLAN_TAG_SIZE; | 
|  |  | 
|  | vmolr = rd32(E1000_VMOLR(vfn)); | 
|  | vmolr &= ~E1000_VMOLR_RLPML_MASK; | 
|  | vmolr |= size | E1000_VMOLR_LPE; | 
|  | wr32(E1000_VMOLR(vfn), vmolr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_rlpml_set - set maximum receive packet size | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure maximum receivable packet size. | 
|  | **/ | 
|  | static void igb_rlpml_set(struct igb_adapter *adapter) | 
|  | { | 
|  | u32 max_frame_size = adapter->max_frame_size; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 pf_id = adapter->vfs_allocated_count; | 
|  |  | 
|  | if (adapter->vlgrp) | 
|  | max_frame_size += VLAN_TAG_SIZE; | 
|  |  | 
|  | /* if vfs are enabled we set RLPML to the largest possible request | 
|  | * size and set the VMOLR RLPML to the size we need */ | 
|  | if (pf_id) { | 
|  | igb_set_vf_rlpml(adapter, max_frame_size, pf_id); | 
|  | max_frame_size = MAX_JUMBO_FRAME_SIZE; | 
|  | } | 
|  |  | 
|  | wr32(E1000_RLPML, max_frame_size); | 
|  | } | 
|  |  | 
|  | static inline void igb_set_vmolr(struct igb_adapter *adapter, | 
|  | int vfn, bool aupe) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vmolr; | 
|  |  | 
|  | /* | 
|  | * This register exists only on 82576 and newer so if we are older then | 
|  | * we should exit and do nothing | 
|  | */ | 
|  | if (hw->mac.type < e1000_82576) | 
|  | return; | 
|  |  | 
|  | vmolr = rd32(E1000_VMOLR(vfn)); | 
|  | vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */ | 
|  | if (aupe) | 
|  | vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */ | 
|  | else | 
|  | vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ | 
|  |  | 
|  | /* clear all bits that might not be set */ | 
|  | vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); | 
|  |  | 
|  | if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) | 
|  | vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ | 
|  | /* | 
|  | * for VMDq only allow the VFs and pool 0 to accept broadcast and | 
|  | * multicast packets | 
|  | */ | 
|  | if (vfn <= adapter->vfs_allocated_count) | 
|  | vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */ | 
|  |  | 
|  | wr32(E1000_VMOLR(vfn), vmolr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure_rx_ring - Configure a receive ring after Reset | 
|  | * @adapter: board private structure | 
|  | * @ring: receive ring to be configured | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | void igb_configure_rx_ring(struct igb_adapter *adapter, | 
|  | struct igb_ring *ring) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u64 rdba = ring->dma; | 
|  | int reg_idx = ring->reg_idx; | 
|  | u32 srrctl, rxdctl; | 
|  |  | 
|  | /* disable the queue */ | 
|  | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | 
|  | wr32(E1000_RXDCTL(reg_idx), | 
|  | rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | 
|  |  | 
|  | /* Set DMA base address registers */ | 
|  | wr32(E1000_RDBAL(reg_idx), | 
|  | rdba & 0x00000000ffffffffULL); | 
|  | wr32(E1000_RDBAH(reg_idx), rdba >> 32); | 
|  | wr32(E1000_RDLEN(reg_idx), | 
|  | ring->count * sizeof(union e1000_adv_rx_desc)); | 
|  |  | 
|  | /* initialize head and tail */ | 
|  | ring->head = hw->hw_addr + E1000_RDH(reg_idx); | 
|  | ring->tail = hw->hw_addr + E1000_RDT(reg_idx); | 
|  | writel(0, ring->head); | 
|  | writel(0, ring->tail); | 
|  |  | 
|  | /* set descriptor configuration */ | 
|  | if (ring->rx_buffer_len < IGB_RXBUFFER_1024) { | 
|  | srrctl = ALIGN(ring->rx_buffer_len, 64) << | 
|  | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | 
|  | #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384 | 
|  | srrctl |= IGB_RXBUFFER_16384 >> | 
|  | E1000_SRRCTL_BSIZEPKT_SHIFT; | 
|  | #else | 
|  | srrctl |= (PAGE_SIZE / 2) >> | 
|  | E1000_SRRCTL_BSIZEPKT_SHIFT; | 
|  | #endif | 
|  | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | 
|  | } else { | 
|  | srrctl = ALIGN(ring->rx_buffer_len, 1024) >> | 
|  | E1000_SRRCTL_BSIZEPKT_SHIFT; | 
|  | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | 
|  | } | 
|  | if (hw->mac.type == e1000_82580) | 
|  | srrctl |= E1000_SRRCTL_TIMESTAMP; | 
|  | /* Only set Drop Enable if we are supporting multiple queues */ | 
|  | if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) | 
|  | srrctl |= E1000_SRRCTL_DROP_EN; | 
|  |  | 
|  | wr32(E1000_SRRCTL(reg_idx), srrctl); | 
|  |  | 
|  | /* set filtering for VMDQ pools */ | 
|  | igb_set_vmolr(adapter, reg_idx & 0x7, true); | 
|  |  | 
|  | /* enable receive descriptor fetching */ | 
|  | rxdctl = rd32(E1000_RXDCTL(reg_idx)); | 
|  | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | 
|  | rxdctl &= 0xFFF00000; | 
|  | rxdctl |= IGB_RX_PTHRESH; | 
|  | rxdctl |= IGB_RX_HTHRESH << 8; | 
|  | rxdctl |= IGB_RX_WTHRESH << 16; | 
|  | wr32(E1000_RXDCTL(reg_idx), rxdctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_configure_rx - Configure receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void igb_configure_rx(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* set UTA to appropriate mode */ | 
|  | igb_set_uta(adapter); | 
|  |  | 
|  | /* set the correct pool for the PF default MAC address in entry 0 */ | 
|  | igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, | 
|  | adapter->vfs_allocated_count); | 
|  |  | 
|  | /* Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | * the Base and Length of the Rx Descriptor Ring */ | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | igb_configure_rx_ring(adapter, adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_free_tx_resources - Free Tx Resources per Queue | 
|  | * @tx_ring: Tx descriptor ring for a specific queue | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | void igb_free_tx_resources(struct igb_ring *tx_ring) | 
|  | { | 
|  | igb_clean_tx_ring(tx_ring); | 
|  |  | 
|  | vfree(tx_ring->buffer_info); | 
|  | tx_ring->buffer_info = NULL; | 
|  |  | 
|  | /* if not set, then don't free */ | 
|  | if (!tx_ring->desc) | 
|  | return; | 
|  |  | 
|  | dma_free_coherent(tx_ring->dev, tx_ring->size, | 
|  | tx_ring->desc, tx_ring->dma); | 
|  |  | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_free_all_tx_resources - Free Tx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | igb_free_tx_resources(adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring, | 
|  | struct igb_buffer *buffer_info) | 
|  | { | 
|  | if (buffer_info->dma) { | 
|  | if (buffer_info->mapped_as_page) | 
|  | dma_unmap_page(tx_ring->dev, | 
|  | buffer_info->dma, | 
|  | buffer_info->length, | 
|  | DMA_TO_DEVICE); | 
|  | else | 
|  | dma_unmap_single(tx_ring->dev, | 
|  | buffer_info->dma, | 
|  | buffer_info->length, | 
|  | DMA_TO_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb_any(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | buffer_info->time_stamp = 0; | 
|  | buffer_info->length = 0; | 
|  | buffer_info->next_to_watch = 0; | 
|  | buffer_info->mapped_as_page = false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clean_tx_ring - Free Tx Buffers | 
|  | * @tx_ring: ring to be cleaned | 
|  | **/ | 
|  | static void igb_clean_tx_ring(struct igb_ring *tx_ring) | 
|  | { | 
|  | struct igb_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!tx_ring->buffer_info) | 
|  | return; | 
|  | /* Free all the Tx ring sk_buffs */ | 
|  |  | 
|  | for (i = 0; i < tx_ring->count; i++) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | 
|  | } | 
|  |  | 
|  | size = sizeof(struct igb_buffer) * tx_ring->count; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | igb_clean_tx_ring(adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_free_rx_resources - Free Rx Resources | 
|  | * @rx_ring: ring to clean the resources from | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | void igb_free_rx_resources(struct igb_ring *rx_ring) | 
|  | { | 
|  | igb_clean_rx_ring(rx_ring); | 
|  |  | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  |  | 
|  | /* if not set, then don't free */ | 
|  | if (!rx_ring->desc) | 
|  | return; | 
|  |  | 
|  | dma_free_coherent(rx_ring->dev, rx_ring->size, | 
|  | rx_ring->desc, rx_ring->dma); | 
|  |  | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_free_all_rx_resources - Free Rx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | igb_free_rx_resources(adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clean_rx_ring - Free Rx Buffers per Queue | 
|  | * @rx_ring: ring to free buffers from | 
|  | **/ | 
|  | static void igb_clean_rx_ring(struct igb_ring *rx_ring) | 
|  | { | 
|  | struct igb_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!rx_ring->buffer_info) | 
|  | return; | 
|  |  | 
|  | /* Free all the Rx ring sk_buffs */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | if (buffer_info->dma) { | 
|  | dma_unmap_single(rx_ring->dev, | 
|  | buffer_info->dma, | 
|  | rx_ring->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  |  | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | if (buffer_info->page_dma) { | 
|  | dma_unmap_page(rx_ring->dev, | 
|  | buffer_info->page_dma, | 
|  | PAGE_SIZE / 2, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->page_dma = 0; | 
|  | } | 
|  | if (buffer_info->page) { | 
|  | put_page(buffer_info->page); | 
|  | buffer_info->page = NULL; | 
|  | buffer_info->page_offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = sizeof(struct igb_buffer) * rx_ring->count; | 
|  | memset(rx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | igb_clean_rx_ring(adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_set_mac - Change the Ethernet Address of the NIC | 
|  | * @netdev: network interface device structure | 
|  | * @p: pointer to an address structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int igb_set_mac(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | 
|  |  | 
|  | /* set the correct pool for the new PF MAC address in entry 0 */ | 
|  | igb_rar_set_qsel(adapter, hw->mac.addr, 0, | 
|  | adapter->vfs_allocated_count); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_write_mc_addr_list - write multicast addresses to MTA | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Writes multicast address list to the MTA hash table. | 
|  | * Returns: -ENOMEM on failure | 
|  | *                0 on no addresses written | 
|  | *                X on writing X addresses to MTA | 
|  | **/ | 
|  | static int igb_write_mc_addr_list(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct netdev_hw_addr *ha; | 
|  | u8  *mta_list; | 
|  | int i; | 
|  |  | 
|  | if (netdev_mc_empty(netdev)) { | 
|  | /* nothing to program, so clear mc list */ | 
|  | igb_update_mc_addr_list(hw, NULL, 0); | 
|  | igb_restore_vf_multicasts(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); | 
|  | if (!mta_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* The shared function expects a packed array of only addresses. */ | 
|  | i = 0; | 
|  | netdev_for_each_mc_addr(ha, netdev) | 
|  | memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); | 
|  |  | 
|  | igb_update_mc_addr_list(hw, mta_list, i); | 
|  | kfree(mta_list); | 
|  |  | 
|  | return netdev_mc_count(netdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_write_uc_addr_list - write unicast addresses to RAR table | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Writes unicast address list to the RAR table. | 
|  | * Returns: -ENOMEM on failure/insufficient address space | 
|  | *                0 on no addresses written | 
|  | *                X on writing X addresses to the RAR table | 
|  | **/ | 
|  | static int igb_write_uc_addr_list(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned int vfn = adapter->vfs_allocated_count; | 
|  | unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); | 
|  | int count = 0; | 
|  |  | 
|  | /* return ENOMEM indicating insufficient memory for addresses */ | 
|  | if (netdev_uc_count(netdev) > rar_entries) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!netdev_uc_empty(netdev) && rar_entries) { | 
|  | struct netdev_hw_addr *ha; | 
|  |  | 
|  | netdev_for_each_uc_addr(ha, netdev) { | 
|  | if (!rar_entries) | 
|  | break; | 
|  | igb_rar_set_qsel(adapter, ha->addr, | 
|  | rar_entries--, | 
|  | vfn); | 
|  | count++; | 
|  | } | 
|  | } | 
|  | /* write the addresses in reverse order to avoid write combining */ | 
|  | for (; rar_entries > 0 ; rar_entries--) { | 
|  | wr32(E1000_RAH(rar_entries), 0); | 
|  | wr32(E1000_RAL(rar_entries), 0); | 
|  | } | 
|  | wrfl(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * The set_rx_mode entry point is called whenever the unicast or multicast | 
|  | * address lists or the network interface flags are updated.  This routine is | 
|  | * responsible for configuring the hardware for proper unicast, multicast, | 
|  | * promiscuous mode, and all-multi behavior. | 
|  | **/ | 
|  | static void igb_set_rx_mode(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned int vfn = adapter->vfs_allocated_count; | 
|  | u32 rctl, vmolr = 0; | 
|  | int count; | 
|  |  | 
|  | /* Check for Promiscuous and All Multicast modes */ | 
|  | rctl = rd32(E1000_RCTL); | 
|  |  | 
|  | /* clear the effected bits */ | 
|  | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) { | 
|  | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); | 
|  | } else { | 
|  | if (netdev->flags & IFF_ALLMULTI) { | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | vmolr |= E1000_VMOLR_MPME; | 
|  | } else { | 
|  | /* | 
|  | * Write addresses to the MTA, if the attempt fails | 
|  | * then we should just turn on promiscuous mode so | 
|  | * that we can at least receive multicast traffic | 
|  | */ | 
|  | count = igb_write_mc_addr_list(netdev); | 
|  | if (count < 0) { | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | vmolr |= E1000_VMOLR_MPME; | 
|  | } else if (count) { | 
|  | vmolr |= E1000_VMOLR_ROMPE; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Write addresses to available RAR registers, if there is not | 
|  | * sufficient space to store all the addresses then enable | 
|  | * unicast promiscuous mode | 
|  | */ | 
|  | count = igb_write_uc_addr_list(netdev); | 
|  | if (count < 0) { | 
|  | rctl |= E1000_RCTL_UPE; | 
|  | vmolr |= E1000_VMOLR_ROPE; | 
|  | } | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | } | 
|  | wr32(E1000_RCTL, rctl); | 
|  |  | 
|  | /* | 
|  | * In order to support SR-IOV and eventually VMDq it is necessary to set | 
|  | * the VMOLR to enable the appropriate modes.  Without this workaround | 
|  | * we will have issues with VLAN tag stripping not being done for frames | 
|  | * that are only arriving because we are the default pool | 
|  | */ | 
|  | if (hw->mac.type < e1000_82576) | 
|  | return; | 
|  |  | 
|  | vmolr |= rd32(E1000_VMOLR(vfn)) & | 
|  | ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); | 
|  | wr32(E1000_VMOLR(vfn), vmolr); | 
|  | igb_restore_vf_multicasts(adapter); | 
|  | } | 
|  |  | 
|  | static void igb_check_wvbr(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 wvbr = 0; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82576: | 
|  | case e1000_i350: | 
|  | if (!(wvbr = rd32(E1000_WVBR))) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | adapter->wvbr |= wvbr; | 
|  | } | 
|  |  | 
|  | #define IGB_STAGGERED_QUEUE_OFFSET 8 | 
|  |  | 
|  | static void igb_spoof_check(struct igb_adapter *adapter) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | if (!adapter->wvbr) | 
|  | return; | 
|  |  | 
|  | for(j = 0; j < adapter->vfs_allocated_count; j++) { | 
|  | if (adapter->wvbr & (1 << j) || | 
|  | adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "Spoof event(s) detected on VF %d\n", j); | 
|  | adapter->wvbr &= | 
|  | ~((1 << j) | | 
|  | (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Need to wait a few seconds after link up to get diagnostic information from | 
|  | * the phy */ | 
|  | static void igb_update_phy_info(unsigned long data) | 
|  | { | 
|  | struct igb_adapter *adapter = (struct igb_adapter *) data; | 
|  | igb_get_phy_info(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_has_link - check shared code for link and determine up/down | 
|  | * @adapter: pointer to driver private info | 
|  | **/ | 
|  | bool igb_has_link(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | bool link_active = false; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* get_link_status is set on LSC (link status) interrupt or | 
|  | * rx sequence error interrupt.  get_link_status will stay | 
|  | * false until the e1000_check_for_link establishes link | 
|  | * for copper adapters ONLY | 
|  | */ | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_copper: | 
|  | if (hw->mac.get_link_status) { | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = !hw->mac.get_link_status; | 
|  | } else { | 
|  | link_active = true; | 
|  | } | 
|  | break; | 
|  | case e1000_media_type_internal_serdes: | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = hw->mac.serdes_has_link; | 
|  | break; | 
|  | default: | 
|  | case e1000_media_type_unknown: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return link_active; | 
|  | } | 
|  |  | 
|  | static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) | 
|  | { | 
|  | bool ret = false; | 
|  | u32 ctrl_ext, thstat; | 
|  |  | 
|  | /* check for thermal sensor event on i350, copper only */ | 
|  | if (hw->mac.type == e1000_i350) { | 
|  | thstat = rd32(E1000_THSTAT); | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  |  | 
|  | if ((hw->phy.media_type == e1000_media_type_copper) && | 
|  | !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { | 
|  | ret = !!(thstat & event); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_watchdog - Timer Call-back | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | **/ | 
|  | static void igb_watchdog(unsigned long data) | 
|  | { | 
|  | struct igb_adapter *adapter = (struct igb_adapter *)data; | 
|  | /* Do the rest outside of interrupt context */ | 
|  | schedule_work(&adapter->watchdog_task); | 
|  | } | 
|  |  | 
|  | static void igb_watchdog_task(struct work_struct *work) | 
|  | { | 
|  | struct igb_adapter *adapter = container_of(work, | 
|  | struct igb_adapter, | 
|  | watchdog_task); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 link; | 
|  | int i; | 
|  |  | 
|  | link = igb_has_link(adapter); | 
|  | if (link) { | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | u32 ctrl; | 
|  | hw->mac.ops.get_speed_and_duplex(hw, | 
|  | &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | /* Links status message must follow this format */ | 
|  | printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " | 
|  | "Flow Control: %s\n", | 
|  | netdev->name, | 
|  | adapter->link_speed, | 
|  | adapter->link_duplex == FULL_DUPLEX ? | 
|  | "Full Duplex" : "Half Duplex", | 
|  | ((ctrl & E1000_CTRL_TFCE) && | 
|  | (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" : | 
|  | ((ctrl & E1000_CTRL_RFCE) ?  "RX" : | 
|  | ((ctrl & E1000_CTRL_TFCE) ?  "TX" : "None"))); | 
|  |  | 
|  | /* check for thermal sensor event */ | 
|  | if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) { | 
|  | printk(KERN_INFO "igb: %s The network adapter " | 
|  | "link speed was downshifted " | 
|  | "because it overheated.\n", | 
|  | netdev->name); | 
|  | } | 
|  |  | 
|  | /* adjust timeout factor according to speed/duplex */ | 
|  | adapter->tx_timeout_factor = 1; | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | adapter->tx_timeout_factor = 14; | 
|  | break; | 
|  | case SPEED_100: | 
|  | /* maybe add some timeout factor ? */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | netif_carrier_on(netdev); | 
|  |  | 
|  | igb_ping_all_vfs(adapter); | 
|  | igb_check_vf_rate_limit(adapter); | 
|  |  | 
|  | /* link state has changed, schedule phy info update */ | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  | } else { | 
|  | if (netif_carrier_ok(netdev)) { | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  |  | 
|  | /* check for thermal sensor event */ | 
|  | if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { | 
|  | printk(KERN_ERR "igb: %s The network adapter " | 
|  | "was stopped because it " | 
|  | "overheated.\n", | 
|  | netdev->name); | 
|  | } | 
|  |  | 
|  | /* Links status message must follow this format */ | 
|  | printk(KERN_INFO "igb: %s NIC Link is Down\n", | 
|  | netdev->name); | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | igb_ping_all_vfs(adapter); | 
|  |  | 
|  | /* link state has changed, schedule phy info update */ | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | igb_update_stats(adapter, &adapter->stats64); | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | struct igb_ring *tx_ring = adapter->tx_ring[i]; | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | /* We've lost link, so the controller stops DMA, | 
|  | * but we've got queued Tx work that's never going | 
|  | * to get done, so reset controller to flush Tx. | 
|  | * (Do the reset outside of interrupt context). */ | 
|  | if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | /* return immediately since reset is imminent */ | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Force detection of hung controller every watchdog period */ | 
|  | tx_ring->detect_tx_hung = true; | 
|  | } | 
|  |  | 
|  | /* Cause software interrupt to ensure rx ring is cleaned */ | 
|  | if (adapter->msix_entries) { | 
|  | u32 eics = 0; | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | eics |= q_vector->eims_value; | 
|  | } | 
|  | wr32(E1000_EICS, eics); | 
|  | } else { | 
|  | wr32(E1000_ICS, E1000_ICS_RXDMT0); | 
|  | } | 
|  |  | 
|  | igb_spoof_check(adapter); | 
|  |  | 
|  | /* Reset the timer */ | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  |  | 
|  | enum latency_range { | 
|  | lowest_latency = 0, | 
|  | low_latency = 1, | 
|  | bulk_latency = 2, | 
|  | latency_invalid = 255 | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * igb_update_ring_itr - update the dynamic ITR value based on packet size | 
|  | * | 
|  | *      Stores a new ITR value based on strictly on packet size.  This | 
|  | *      algorithm is less sophisticated than that used in igb_update_itr, | 
|  | *      due to the difficulty of synchronizing statistics across multiple | 
|  | *      receive rings.  The divisors and thresholds used by this function | 
|  | *      were determined based on theoretical maximum wire speed and testing | 
|  | *      data, in order to minimize response time while increasing bulk | 
|  | *      throughput. | 
|  | *      This functionality is controlled by the InterruptThrottleRate module | 
|  | *      parameter (see igb_param.c) | 
|  | *      NOTE:  This function is called only when operating in a multiqueue | 
|  | *             receive environment. | 
|  | * @q_vector: pointer to q_vector | 
|  | **/ | 
|  | static void igb_update_ring_itr(struct igb_q_vector *q_vector) | 
|  | { | 
|  | int new_val = q_vector->itr_val; | 
|  | int avg_wire_size = 0; | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct igb_ring *ring; | 
|  | unsigned int packets; | 
|  |  | 
|  | /* For non-gigabit speeds, just fix the interrupt rate at 4000 | 
|  | * ints/sec - ITR timer value of 120 ticks. | 
|  | */ | 
|  | if (adapter->link_speed != SPEED_1000) { | 
|  | new_val = 976; | 
|  | goto set_itr_val; | 
|  | } | 
|  |  | 
|  | ring = q_vector->rx_ring; | 
|  | if (ring) { | 
|  | packets = ACCESS_ONCE(ring->total_packets); | 
|  |  | 
|  | if (packets) | 
|  | avg_wire_size = ring->total_bytes / packets; | 
|  | } | 
|  |  | 
|  | ring = q_vector->tx_ring; | 
|  | if (ring) { | 
|  | packets = ACCESS_ONCE(ring->total_packets); | 
|  |  | 
|  | if (packets) | 
|  | avg_wire_size = max_t(u32, avg_wire_size, | 
|  | ring->total_bytes / packets); | 
|  | } | 
|  |  | 
|  | /* if avg_wire_size isn't set no work was done */ | 
|  | if (!avg_wire_size) | 
|  | goto clear_counts; | 
|  |  | 
|  | /* Add 24 bytes to size to account for CRC, preamble, and gap */ | 
|  | avg_wire_size += 24; | 
|  |  | 
|  | /* Don't starve jumbo frames */ | 
|  | avg_wire_size = min(avg_wire_size, 3000); | 
|  |  | 
|  | /* Give a little boost to mid-size frames */ | 
|  | if ((avg_wire_size > 300) && (avg_wire_size < 1200)) | 
|  | new_val = avg_wire_size / 3; | 
|  | else | 
|  | new_val = avg_wire_size / 2; | 
|  |  | 
|  | /* when in itr mode 3 do not exceed 20K ints/sec */ | 
|  | if (adapter->rx_itr_setting == 3 && new_val < 196) | 
|  | new_val = 196; | 
|  |  | 
|  | set_itr_val: | 
|  | if (new_val != q_vector->itr_val) { | 
|  | q_vector->itr_val = new_val; | 
|  | q_vector->set_itr = 1; | 
|  | } | 
|  | clear_counts: | 
|  | if (q_vector->rx_ring) { | 
|  | q_vector->rx_ring->total_bytes = 0; | 
|  | q_vector->rx_ring->total_packets = 0; | 
|  | } | 
|  | if (q_vector->tx_ring) { | 
|  | q_vector->tx_ring->total_bytes = 0; | 
|  | q_vector->tx_ring->total_packets = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_update_itr - update the dynamic ITR value based on statistics | 
|  | *      Stores a new ITR value based on packets and byte | 
|  | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | *      computation is faster updates and more accurate ITR for the current | 
|  | *      traffic pattern.  Constants in this function were computed | 
|  | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | *      on testing data as well as attempting to minimize response time | 
|  | *      while increasing bulk throughput. | 
|  | *      this functionality is controlled by the InterruptThrottleRate module | 
|  | *      parameter (see igb_param.c) | 
|  | *      NOTE:  These calculations are only valid when operating in a single- | 
|  | *             queue environment. | 
|  | * @adapter: pointer to adapter | 
|  | * @itr_setting: current q_vector->itr_val | 
|  | * @packets: the number of packets during this measurement interval | 
|  | * @bytes: the number of bytes during this measurement interval | 
|  | **/ | 
|  | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | 
|  | int packets, int bytes) | 
|  | { | 
|  | unsigned int retval = itr_setting; | 
|  |  | 
|  | if (packets == 0) | 
|  | goto update_itr_done; | 
|  |  | 
|  | switch (itr_setting) { | 
|  | case lowest_latency: | 
|  | /* handle TSO and jumbo frames */ | 
|  | if (bytes/packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 5) && (bytes > 512)) | 
|  | retval = low_latency; | 
|  | break; | 
|  | case low_latency:  /* 50 usec aka 20000 ints/s */ | 
|  | if (bytes > 10000) { | 
|  | /* this if handles the TSO accounting */ | 
|  | if (bytes/packets > 8000) { | 
|  | retval = bulk_latency; | 
|  | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | 
|  | retval = bulk_latency; | 
|  | } else if ((packets > 35)) { | 
|  | retval = lowest_latency; | 
|  | } | 
|  | } else if (bytes/packets > 2000) { | 
|  | retval = bulk_latency; | 
|  | } else if (packets <= 2 && bytes < 512) { | 
|  | retval = lowest_latency; | 
|  | } | 
|  | break; | 
|  | case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
|  | if (bytes > 25000) { | 
|  | if (packets > 35) | 
|  | retval = low_latency; | 
|  | } else if (bytes < 1500) { | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | update_itr_done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void igb_set_itr(struct igb_adapter *adapter) | 
|  | { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[0]; | 
|  | u16 current_itr; | 
|  | u32 new_itr = q_vector->itr_val; | 
|  |  | 
|  | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | if (adapter->link_speed != SPEED_1000) { | 
|  | current_itr = 0; | 
|  | new_itr = 4000; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | adapter->rx_itr = igb_update_itr(adapter, | 
|  | adapter->rx_itr, | 
|  | q_vector->rx_ring->total_packets, | 
|  | q_vector->rx_ring->total_bytes); | 
|  |  | 
|  | adapter->tx_itr = igb_update_itr(adapter, | 
|  | adapter->tx_itr, | 
|  | q_vector->tx_ring->total_packets, | 
|  | q_vector->tx_ring->total_bytes); | 
|  | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  |  | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency) | 
|  | current_itr = low_latency; | 
|  |  | 
|  | switch (current_itr) { | 
|  | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | case lowest_latency: | 
|  | new_itr = 56;  /* aka 70,000 ints/sec */ | 
|  | break; | 
|  | case low_latency: | 
|  | new_itr = 196; /* aka 20,000 ints/sec */ | 
|  | break; | 
|  | case bulk_latency: | 
|  | new_itr = 980; /* aka 4,000 ints/sec */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_itr_now: | 
|  | q_vector->rx_ring->total_bytes = 0; | 
|  | q_vector->rx_ring->total_packets = 0; | 
|  | q_vector->tx_ring->total_bytes = 0; | 
|  | q_vector->tx_ring->total_packets = 0; | 
|  |  | 
|  | if (new_itr != q_vector->itr_val) { | 
|  | /* this attempts to bias the interrupt rate towards Bulk | 
|  | * by adding intermediate steps when interrupt rate is | 
|  | * increasing */ | 
|  | new_itr = new_itr > q_vector->itr_val ? | 
|  | max((new_itr * q_vector->itr_val) / | 
|  | (new_itr + (q_vector->itr_val >> 2)), | 
|  | new_itr) : | 
|  | new_itr; | 
|  | /* Don't write the value here; it resets the adapter's | 
|  | * internal timer, and causes us to delay far longer than | 
|  | * we should between interrupts.  Instead, we write the ITR | 
|  | * value at the beginning of the next interrupt so the timing | 
|  | * ends up being correct. | 
|  | */ | 
|  | q_vector->itr_val = new_itr; | 
|  | q_vector->set_itr = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define IGB_TX_FLAGS_CSUM		0x00000001 | 
|  | #define IGB_TX_FLAGS_VLAN		0x00000002 | 
|  | #define IGB_TX_FLAGS_TSO		0x00000004 | 
|  | #define IGB_TX_FLAGS_IPV4		0x00000008 | 
|  | #define IGB_TX_FLAGS_TSTAMP		0x00000010 | 
|  | #define IGB_TX_FLAGS_VLAN_MASK		0xffff0000 | 
|  | #define IGB_TX_FLAGS_VLAN_SHIFT		        16 | 
|  |  | 
|  | static inline int igb_tso_adv(struct igb_ring *tx_ring, | 
|  | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | 
|  | { | 
|  | struct e1000_adv_tx_context_desc *context_desc; | 
|  | unsigned int i; | 
|  | int err; | 
|  | struct igb_buffer *buffer_info; | 
|  | u32 info = 0, tu_cmd = 0; | 
|  | u32 mss_l4len_idx; | 
|  | u8 l4len; | 
|  |  | 
|  | if (skb_header_cloned(skb)) { | 
|  | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | l4len = tcp_hdrlen(skb); | 
|  | *hdr_len += l4len; | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *iph = ip_hdr(skb); | 
|  | iph->tot_len = 0; | 
|  | iph->check = 0; | 
|  | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
|  | iph->daddr, 0, | 
|  | IPPROTO_TCP, | 
|  | 0); | 
|  | } else if (skb_is_gso_v6(skb)) { | 
|  | ipv6_hdr(skb)->payload_len = 0; | 
|  | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | } | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | 
|  | /* VLAN MACLEN IPLEN */ | 
|  | if (tx_flags & IGB_TX_FLAGS_VLAN) | 
|  | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | 
|  | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | 
|  | *hdr_len += skb_network_offset(skb); | 
|  | info |= skb_network_header_len(skb); | 
|  | *hdr_len += skb_network_header_len(skb); | 
|  | context_desc->vlan_macip_lens = cpu_to_le32(info); | 
|  |  | 
|  | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | 
|  | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IP)) | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | 
|  |  | 
|  | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | 
|  |  | 
|  | /* MSS L4LEN IDX */ | 
|  | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | 
|  | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | 
|  |  | 
|  | /* For 82575, context index must be unique per ring. */ | 
|  | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | 
|  | mss_l4len_idx |= tx_ring->reg_idx << 4; | 
|  |  | 
|  | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | 
|  | context_desc->seqnum_seed = 0; | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = 0; | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring, | 
|  | struct sk_buff *skb, u32 tx_flags) | 
|  | { | 
|  | struct e1000_adv_tx_context_desc *context_desc; | 
|  | struct device *dev = tx_ring->dev; | 
|  | struct igb_buffer *buffer_info; | 
|  | u32 info = 0, tu_cmd = 0; | 
|  | unsigned int i; | 
|  |  | 
|  | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | 
|  | (tx_flags & IGB_TX_FLAGS_VLAN)) { | 
|  | i = tx_ring->next_to_use; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | 
|  |  | 
|  | if (tx_flags & IGB_TX_FLAGS_VLAN) | 
|  | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | 
|  |  | 
|  | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) | 
|  | info |= skb_network_header_len(skb); | 
|  |  | 
|  | context_desc->vlan_macip_lens = cpu_to_le32(info); | 
|  |  | 
|  | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | __be16 protocol; | 
|  |  | 
|  | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { | 
|  | const struct vlan_ethhdr *vhdr = | 
|  | (const struct vlan_ethhdr*)skb->data; | 
|  |  | 
|  | protocol = vhdr->h_vlan_encapsulated_proto; | 
|  | } else { | 
|  | protocol = skb->protocol; | 
|  | } | 
|  |  | 
|  | switch (protocol) { | 
|  | case cpu_to_be16(ETH_P_IP): | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | 
|  | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | 
|  | else if (ip_hdr(skb)->protocol == IPPROTO_SCTP) | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | 
|  | break; | 
|  | case cpu_to_be16(ETH_P_IPV6): | 
|  | /* XXX what about other V6 headers?? */ | 
|  | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | 
|  | else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP) | 
|  | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; | 
|  | break; | 
|  | default: | 
|  | if (unlikely(net_ratelimit())) | 
|  | dev_warn(dev, | 
|  | "partial checksum but proto=%x!\n", | 
|  | skb->protocol); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | 
|  | context_desc->seqnum_seed = 0; | 
|  | if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) | 
|  | context_desc->mss_l4len_idx = | 
|  | cpu_to_le32(tx_ring->reg_idx << 4); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define IGB_MAX_TXD_PWR	16 | 
|  | #define IGB_MAX_DATA_PER_TXD	(1<<IGB_MAX_TXD_PWR) | 
|  |  | 
|  | static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb, | 
|  | unsigned int first) | 
|  | { | 
|  | struct igb_buffer *buffer_info; | 
|  | struct device *dev = tx_ring->dev; | 
|  | unsigned int hlen = skb_headlen(skb); | 
|  | unsigned int count = 0, i; | 
|  | unsigned int f; | 
|  | u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD); | 
|  | buffer_info->length = hlen; | 
|  | /* set time_stamp *before* dma to help avoid a possible race */ | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = dma_map_single(dev, skb->data, hlen, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  |  | 
|  | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | 
|  | struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f]; | 
|  | unsigned int len = frag->size; | 
|  |  | 
|  | count++; | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | 
|  | buffer_info->length = len; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->mapped_as_page = true; | 
|  | buffer_info->dma = dma_map_page(dev, | 
|  | frag->page, | 
|  | frag->page_offset, | 
|  | len, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  |  | 
|  | } | 
|  |  | 
|  | tx_ring->buffer_info[i].skb = skb; | 
|  | tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags; | 
|  | /* multiply data chunks by size of headers */ | 
|  | tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len; | 
|  | tx_ring->buffer_info[i].gso_segs = gso_segs; | 
|  | tx_ring->buffer_info[first].next_to_watch = i; | 
|  |  | 
|  | return ++count; | 
|  |  | 
|  | dma_error: | 
|  | dev_err(dev, "TX DMA map failed\n"); | 
|  |  | 
|  | /* clear timestamp and dma mappings for failed buffer_info mapping */ | 
|  | buffer_info->dma = 0; | 
|  | buffer_info->time_stamp = 0; | 
|  | buffer_info->length = 0; | 
|  | buffer_info->next_to_watch = 0; | 
|  | buffer_info->mapped_as_page = false; | 
|  |  | 
|  | /* clear timestamp and dma mappings for remaining portion of packet */ | 
|  | while (count--) { | 
|  | if (i == 0) | 
|  | i = tx_ring->count; | 
|  | i--; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void igb_tx_queue_adv(struct igb_ring *tx_ring, | 
|  | u32 tx_flags, int count, u32 paylen, | 
|  | u8 hdr_len) | 
|  | { | 
|  | union e1000_adv_tx_desc *tx_desc; | 
|  | struct igb_buffer *buffer_info; | 
|  | u32 olinfo_status = 0, cmd_type_len; | 
|  | unsigned int i = tx_ring->next_to_use; | 
|  |  | 
|  | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | 
|  | E1000_ADVTXD_DCMD_DEXT); | 
|  |  | 
|  | if (tx_flags & IGB_TX_FLAGS_VLAN) | 
|  | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | 
|  |  | 
|  | if (tx_flags & IGB_TX_FLAGS_TSTAMP) | 
|  | cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; | 
|  |  | 
|  | if (tx_flags & IGB_TX_FLAGS_TSO) { | 
|  | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | 
|  |  | 
|  | /* insert tcp checksum */ | 
|  | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | 
|  |  | 
|  | /* insert ip checksum */ | 
|  | if (tx_flags & IGB_TX_FLAGS_IPV4) | 
|  | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | 
|  |  | 
|  | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | 
|  | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | 
|  | } | 
|  |  | 
|  | if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) && | 
|  | (tx_flags & (IGB_TX_FLAGS_CSUM | | 
|  | IGB_TX_FLAGS_TSO | | 
|  | IGB_TX_FLAGS_VLAN))) | 
|  | olinfo_status |= tx_ring->reg_idx << 4; | 
|  |  | 
|  | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | 
|  |  | 
|  | do { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | 
|  | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | tx_desc->read.cmd_type_len = | 
|  | cpu_to_le32(cmd_type_len | buffer_info->length); | 
|  | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | 
|  | count--; | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } while (count > 0); | 
|  |  | 
|  | tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD); | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  | writel(i, tx_ring->tail); | 
|  | /* we need this if more than one processor can write to our tail | 
|  | * at a time, it syncronizes IO on IA64/Altix systems */ | 
|  | mmiowb(); | 
|  | } | 
|  |  | 
|  | static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | 
|  | { | 
|  | struct net_device *netdev = tx_ring->netdev; | 
|  |  | 
|  | netif_stop_subqueue(netdev, tx_ring->queue_index); | 
|  |  | 
|  | /* Herbert's original patch had: | 
|  | *  smp_mb__after_netif_stop_queue(); | 
|  | * but since that doesn't exist yet, just open code it. */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* We need to check again in a case another CPU has just | 
|  | * made room available. */ | 
|  | if (igb_desc_unused(tx_ring) < size) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! */ | 
|  | netif_wake_subqueue(netdev, tx_ring->queue_index); | 
|  |  | 
|  | u64_stats_update_begin(&tx_ring->tx_syncp2); | 
|  | tx_ring->tx_stats.restart_queue2++; | 
|  | u64_stats_update_end(&tx_ring->tx_syncp2); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size) | 
|  | { | 
|  | if (igb_desc_unused(tx_ring) >= size) | 
|  | return 0; | 
|  | return __igb_maybe_stop_tx(tx_ring, size); | 
|  | } | 
|  |  | 
|  | netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb, | 
|  | struct igb_ring *tx_ring) | 
|  | { | 
|  | int tso = 0, count; | 
|  | u32 tx_flags = 0; | 
|  | u16 first; | 
|  | u8 hdr_len = 0; | 
|  |  | 
|  | /* need: 1 descriptor per page, | 
|  | *       + 2 desc gap to keep tail from touching head, | 
|  | *       + 1 desc for skb->data, | 
|  | *       + 1 desc for context descriptor, | 
|  | * otherwise try next time */ | 
|  | if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | 
|  | /* this is a hard error */ | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { | 
|  | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; | 
|  | tx_flags |= IGB_TX_FLAGS_TSTAMP; | 
|  | } | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | tx_flags |= IGB_TX_FLAGS_VLAN; | 
|  | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | 
|  | } | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IP)) | 
|  | tx_flags |= IGB_TX_FLAGS_IPV4; | 
|  |  | 
|  | first = tx_ring->next_to_use; | 
|  | if (skb_is_gso(skb)) { | 
|  | tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len); | 
|  |  | 
|  | if (tso < 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tso) | 
|  | tx_flags |= IGB_TX_FLAGS_TSO; | 
|  | else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) && | 
|  | (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | tx_flags |= IGB_TX_FLAGS_CSUM; | 
|  |  | 
|  | /* | 
|  | * count reflects descriptors mapped, if 0 or less then mapping error | 
|  | * has occurred and we need to rewind the descriptor queue | 
|  | */ | 
|  | count = igb_tx_map_adv(tx_ring, skb, first); | 
|  | if (!count) { | 
|  | dev_kfree_skb_any(skb); | 
|  | tx_ring->buffer_info[first].time_stamp = 0; | 
|  | tx_ring->next_to_use = first; | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len); | 
|  |  | 
|  | /* Make sure there is space in the ring for the next send. */ | 
|  | igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, | 
|  | struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct igb_ring *tx_ring; | 
|  | int r_idx = 0; | 
|  |  | 
|  | if (test_bit(__IGB_DOWN, &adapter->state)) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (skb->len <= 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1); | 
|  | tx_ring = adapter->multi_tx_table[r_idx]; | 
|  |  | 
|  | /* This goes back to the question of how to logically map a tx queue | 
|  | * to a flow.  Right now, performance is impacted slightly negatively | 
|  | * if using multiple tx queues.  If the stack breaks away from a | 
|  | * single qdisc implementation, we can look at this again. */ | 
|  | return igb_xmit_frame_ring_adv(skb, tx_ring); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_tx_timeout - Respond to a Tx Hang | 
|  | * @netdev: network interface device structure | 
|  | **/ | 
|  | static void igb_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | adapter->tx_timeout_count++; | 
|  |  | 
|  | if (hw->mac.type == e1000_82580) | 
|  | hw->dev_spec._82575.global_device_reset = true; | 
|  |  | 
|  | schedule_work(&adapter->reset_task); | 
|  | wr32(E1000_EICS, | 
|  | (adapter->eims_enable_mask & ~adapter->eims_other)); | 
|  | } | 
|  |  | 
|  | static void igb_reset_task(struct work_struct *work) | 
|  | { | 
|  | struct igb_adapter *adapter; | 
|  | adapter = container_of(work, struct igb_adapter, reset_task); | 
|  |  | 
|  | igb_dump(adapter); | 
|  | netdev_err(adapter->netdev, "Reset adapter\n"); | 
|  | igb_reinit_locked(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_get_stats64 - Get System Network Statistics | 
|  | * @netdev: network interface device structure | 
|  | * @stats: rtnl_link_stats64 pointer | 
|  | * | 
|  | **/ | 
|  | static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, | 
|  | struct rtnl_link_stats64 *stats) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | spin_lock(&adapter->stats64_lock); | 
|  | igb_update_stats(adapter, &adapter->stats64); | 
|  | memcpy(stats, &adapter->stats64, sizeof(*stats)); | 
|  | spin_unlock(&adapter->stats64_lock); | 
|  |  | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_change_mtu - Change the Maximum Transfer Unit | 
|  | * @netdev: network interface device structure | 
|  | * @new_mtu: new value for maximum frame size | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | u32 rx_buffer_len, i; | 
|  |  | 
|  | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
|  | dev_err(&pdev->dev, "Invalid MTU setting\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
|  | dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | 
|  | msleep(1); | 
|  |  | 
|  | /* igb_down has a dependency on max_frame_size */ | 
|  | adapter->max_frame_size = max_frame; | 
|  |  | 
|  | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | * larger slab size. | 
|  | * i.e. RXBUFFER_2048 --> size-4096 slab | 
|  | */ | 
|  |  | 
|  | if (adapter->hw.mac.type == e1000_82580) | 
|  | max_frame += IGB_TS_HDR_LEN; | 
|  |  | 
|  | if (max_frame <= IGB_RXBUFFER_1024) | 
|  | rx_buffer_len = IGB_RXBUFFER_1024; | 
|  | else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE) | 
|  | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  | else | 
|  | rx_buffer_len = IGB_RXBUFFER_128; | 
|  |  | 
|  | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) || | 
|  | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN)) | 
|  | rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN; | 
|  |  | 
|  | if ((adapter->hw.mac.type == e1000_82580) && | 
|  | (rx_buffer_len == IGB_RXBUFFER_128)) | 
|  | rx_buffer_len += IGB_RXBUFFER_64; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | igb_down(adapter); | 
|  |  | 
|  | dev_info(&pdev->dev, "changing MTU from %d to %d\n", | 
|  | netdev->mtu, new_mtu); | 
|  | netdev->mtu = new_mtu; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | igb_up(adapter); | 
|  | else | 
|  | igb_reset(adapter); | 
|  |  | 
|  | clear_bit(__IGB_RESETTING, &adapter->state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_update_stats - Update the board statistics counters | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  |  | 
|  | void igb_update_stats(struct igb_adapter *adapter, | 
|  | struct rtnl_link_stats64 *net_stats) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | u32 reg, mpc; | 
|  | u16 phy_tmp; | 
|  | int i; | 
|  | u64 bytes, packets; | 
|  | unsigned int start; | 
|  | u64 _bytes, _packets; | 
|  |  | 
|  | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
|  |  | 
|  | /* | 
|  | * Prevent stats update while adapter is being reset, or if the pci | 
|  | * connection is down. | 
|  | */ | 
|  | if (adapter->link_speed == 0) | 
|  | return; | 
|  | if (pci_channel_offline(pdev)) | 
|  | return; | 
|  |  | 
|  | bytes = 0; | 
|  | packets = 0; | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF; | 
|  | struct igb_ring *ring = adapter->rx_ring[i]; | 
|  |  | 
|  | ring->rx_stats.drops += rqdpc_tmp; | 
|  | net_stats->rx_fifo_errors += rqdpc_tmp; | 
|  |  | 
|  | do { | 
|  | start = u64_stats_fetch_begin_bh(&ring->rx_syncp); | 
|  | _bytes = ring->rx_stats.bytes; | 
|  | _packets = ring->rx_stats.packets; | 
|  | } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); | 
|  | bytes += _bytes; | 
|  | packets += _packets; | 
|  | } | 
|  |  | 
|  | net_stats->rx_bytes = bytes; | 
|  | net_stats->rx_packets = packets; | 
|  |  | 
|  | bytes = 0; | 
|  | packets = 0; | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | struct igb_ring *ring = adapter->tx_ring[i]; | 
|  | do { | 
|  | start = u64_stats_fetch_begin_bh(&ring->tx_syncp); | 
|  | _bytes = ring->tx_stats.bytes; | 
|  | _packets = ring->tx_stats.packets; | 
|  | } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); | 
|  | bytes += _bytes; | 
|  | packets += _packets; | 
|  | } | 
|  | net_stats->tx_bytes = bytes; | 
|  | net_stats->tx_packets = packets; | 
|  |  | 
|  | /* read stats registers */ | 
|  | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | 
|  | adapter->stats.gprc += rd32(E1000_GPRC); | 
|  | adapter->stats.gorc += rd32(E1000_GORCL); | 
|  | rd32(E1000_GORCH); /* clear GORCL */ | 
|  | adapter->stats.bprc += rd32(E1000_BPRC); | 
|  | adapter->stats.mprc += rd32(E1000_MPRC); | 
|  | adapter->stats.roc += rd32(E1000_ROC); | 
|  |  | 
|  | adapter->stats.prc64 += rd32(E1000_PRC64); | 
|  | adapter->stats.prc127 += rd32(E1000_PRC127); | 
|  | adapter->stats.prc255 += rd32(E1000_PRC255); | 
|  | adapter->stats.prc511 += rd32(E1000_PRC511); | 
|  | adapter->stats.prc1023 += rd32(E1000_PRC1023); | 
|  | adapter->stats.prc1522 += rd32(E1000_PRC1522); | 
|  | adapter->stats.symerrs += rd32(E1000_SYMERRS); | 
|  | adapter->stats.sec += rd32(E1000_SEC); | 
|  |  | 
|  | mpc = rd32(E1000_MPC); | 
|  | adapter->stats.mpc += mpc; | 
|  | net_stats->rx_fifo_errors += mpc; | 
|  | adapter->stats.scc += rd32(E1000_SCC); | 
|  | adapter->stats.ecol += rd32(E1000_ECOL); | 
|  | adapter->stats.mcc += rd32(E1000_MCC); | 
|  | adapter->stats.latecol += rd32(E1000_LATECOL); | 
|  | adapter->stats.dc += rd32(E1000_DC); | 
|  | adapter->stats.rlec += rd32(E1000_RLEC); | 
|  | adapter->stats.xonrxc += rd32(E1000_XONRXC); | 
|  | adapter->stats.xontxc += rd32(E1000_XONTXC); | 
|  | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | 
|  | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | 
|  | adapter->stats.fcruc += rd32(E1000_FCRUC); | 
|  | adapter->stats.gptc += rd32(E1000_GPTC); | 
|  | adapter->stats.gotc += rd32(E1000_GOTCL); | 
|  | rd32(E1000_GOTCH); /* clear GOTCL */ | 
|  | adapter->stats.rnbc += rd32(E1000_RNBC); | 
|  | adapter->stats.ruc += rd32(E1000_RUC); | 
|  | adapter->stats.rfc += rd32(E1000_RFC); | 
|  | adapter->stats.rjc += rd32(E1000_RJC); | 
|  | adapter->stats.tor += rd32(E1000_TORH); | 
|  | adapter->stats.tot += rd32(E1000_TOTH); | 
|  | adapter->stats.tpr += rd32(E1000_TPR); | 
|  |  | 
|  | adapter->stats.ptc64 += rd32(E1000_PTC64); | 
|  | adapter->stats.ptc127 += rd32(E1000_PTC127); | 
|  | adapter->stats.ptc255 += rd32(E1000_PTC255); | 
|  | adapter->stats.ptc511 += rd32(E1000_PTC511); | 
|  | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | 
|  | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | 
|  |  | 
|  | adapter->stats.mptc += rd32(E1000_MPTC); | 
|  | adapter->stats.bptc += rd32(E1000_BPTC); | 
|  |  | 
|  | adapter->stats.tpt += rd32(E1000_TPT); | 
|  | adapter->stats.colc += rd32(E1000_COLC); | 
|  |  | 
|  | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | 
|  | /* read internal phy specific stats */ | 
|  | reg = rd32(E1000_CTRL_EXT); | 
|  | if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { | 
|  | adapter->stats.rxerrc += rd32(E1000_RXERRC); | 
|  | adapter->stats.tncrs += rd32(E1000_TNCRS); | 
|  | } | 
|  |  | 
|  | adapter->stats.tsctc += rd32(E1000_TSCTC); | 
|  | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | 
|  |  | 
|  | adapter->stats.iac += rd32(E1000_IAC); | 
|  | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | 
|  | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | 
|  | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | 
|  | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | 
|  | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | 
|  | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | 
|  | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | 
|  | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | 
|  |  | 
|  | /* Fill out the OS statistics structure */ | 
|  | net_stats->multicast = adapter->stats.mprc; | 
|  | net_stats->collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC */ | 
|  | net_stats->rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + | 
|  | adapter->stats.cexterr; | 
|  | net_stats->rx_length_errors = adapter->stats.ruc + | 
|  | adapter->stats.roc; | 
|  | net_stats->rx_crc_errors = adapter->stats.crcerrs; | 
|  | net_stats->rx_frame_errors = adapter->stats.algnerrc; | 
|  | net_stats->rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | net_stats->tx_errors = adapter->stats.ecol + | 
|  | adapter->stats.latecol; | 
|  | net_stats->tx_aborted_errors = adapter->stats.ecol; | 
|  | net_stats->tx_window_errors = adapter->stats.latecol; | 
|  | net_stats->tx_carrier_errors = adapter->stats.tncrs; | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | /* Phy Stats */ | 
|  | if (hw->phy.media_type == e1000_media_type_copper) { | 
|  | if ((adapter->link_speed == SPEED_1000) && | 
|  | (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
|  | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
|  | adapter->phy_stats.idle_errors += phy_tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Management Stats */ | 
|  | adapter->stats.mgptc += rd32(E1000_MGTPTC); | 
|  | adapter->stats.mgprc += rd32(E1000_MGTPRC); | 
|  | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | 
|  |  | 
|  | /* OS2BMC Stats */ | 
|  | reg = rd32(E1000_MANC); | 
|  | if (reg & E1000_MANC_EN_BMC2OS) { | 
|  | adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); | 
|  | adapter->stats.o2bspc += rd32(E1000_O2BSPC); | 
|  | adapter->stats.b2ospc += rd32(E1000_B2OSPC); | 
|  | adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t igb_msix_other(int irq, void *data) | 
|  | { | 
|  | struct igb_adapter *adapter = data; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = rd32(E1000_ICR); | 
|  | /* reading ICR causes bit 31 of EICR to be cleared */ | 
|  |  | 
|  | if (icr & E1000_ICR_DRSTA) | 
|  | schedule_work(&adapter->reset_task); | 
|  |  | 
|  | if (icr & E1000_ICR_DOUTSYNC) { | 
|  | /* HW is reporting DMA is out of sync */ | 
|  | adapter->stats.doosync++; | 
|  | /* The DMA Out of Sync is also indication of a spoof event | 
|  | * in IOV mode. Check the Wrong VM Behavior register to | 
|  | * see if it is really a spoof event. */ | 
|  | igb_check_wvbr(adapter); | 
|  | } | 
|  |  | 
|  | /* Check for a mailbox event */ | 
|  | if (icr & E1000_ICR_VMMB) | 
|  | igb_msg_task(adapter); | 
|  |  | 
|  | if (icr & E1000_ICR_LSC) { | 
|  | hw->mac.get_link_status = 1; | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | if (adapter->vfs_allocated_count) | 
|  | wr32(E1000_IMS, E1000_IMS_LSC | | 
|  | E1000_IMS_VMMB | | 
|  | E1000_IMS_DOUTSYNC); | 
|  | else | 
|  | wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC); | 
|  | wr32(E1000_EIMS, adapter->eims_other); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void igb_write_itr(struct igb_q_vector *q_vector) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | u32 itr_val = q_vector->itr_val & 0x7FFC; | 
|  |  | 
|  | if (!q_vector->set_itr) | 
|  | return; | 
|  |  | 
|  | if (!itr_val) | 
|  | itr_val = 0x4; | 
|  |  | 
|  | if (adapter->hw.mac.type == e1000_82575) | 
|  | itr_val |= itr_val << 16; | 
|  | else | 
|  | itr_val |= 0x8000000; | 
|  |  | 
|  | writel(itr_val, q_vector->itr_register); | 
|  | q_vector->set_itr = 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t igb_msix_ring(int irq, void *data) | 
|  | { | 
|  | struct igb_q_vector *q_vector = data; | 
|  |  | 
|  | /* Write the ITR value calculated from the previous interrupt. */ | 
|  | igb_write_itr(q_vector); | 
|  |  | 
|  | napi_schedule(&q_vector->napi); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | static void igb_update_dca(struct igb_q_vector *q_vector) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | if (q_vector->cpu == cpu) | 
|  | goto out_no_update; | 
|  |  | 
|  | if (q_vector->tx_ring) { | 
|  | int q = q_vector->tx_ring->reg_idx; | 
|  | u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q)); | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK; | 
|  | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | 
|  | } else { | 
|  | dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576; | 
|  | dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | 
|  | E1000_DCA_TXCTRL_CPUID_SHIFT; | 
|  | } | 
|  | dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN; | 
|  | wr32(E1000_DCA_TXCTRL(q), dca_txctrl); | 
|  | } | 
|  | if (q_vector->rx_ring) { | 
|  | int q = q_vector->rx_ring->reg_idx; | 
|  | u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q)); | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK; | 
|  | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu); | 
|  | } else { | 
|  | dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576; | 
|  | dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) << | 
|  | E1000_DCA_RXCTRL_CPUID_SHIFT; | 
|  | } | 
|  | dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN; | 
|  | dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN; | 
|  | dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN; | 
|  | wr32(E1000_DCA_RXCTRL(q), dca_rxctrl); | 
|  | } | 
|  | q_vector->cpu = cpu; | 
|  | out_no_update: | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static void igb_setup_dca(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int i; | 
|  |  | 
|  | if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) | 
|  | return; | 
|  |  | 
|  | /* Always use CB2 mode, difference is masked in the CB driver. */ | 
|  | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | adapter->q_vector[i]->cpu = -1; | 
|  | igb_update_dca(adapter->q_vector[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __igb_notify_dca(struct device *dev, void *data) | 
|  | { | 
|  | struct net_device *netdev = dev_get_drvdata(dev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned long event = *(unsigned long *)data; | 
|  |  | 
|  | switch (event) { | 
|  | case DCA_PROVIDER_ADD: | 
|  | /* if already enabled, don't do it again */ | 
|  | if (adapter->flags & IGB_FLAG_DCA_ENABLED) | 
|  | break; | 
|  | if (dca_add_requester(dev) == 0) { | 
|  | adapter->flags |= IGB_FLAG_DCA_ENABLED; | 
|  | dev_info(&pdev->dev, "DCA enabled\n"); | 
|  | igb_setup_dca(adapter); | 
|  | break; | 
|  | } | 
|  | /* Fall Through since DCA is disabled. */ | 
|  | case DCA_PROVIDER_REMOVE: | 
|  | if (adapter->flags & IGB_FLAG_DCA_ENABLED) { | 
|  | /* without this a class_device is left | 
|  | * hanging around in the sysfs model */ | 
|  | dca_remove_requester(dev); | 
|  | dev_info(&pdev->dev, "DCA disabled\n"); | 
|  | adapter->flags &= ~IGB_FLAG_DCA_ENABLED; | 
|  | wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_notify_dca(struct notifier_block *nb, unsigned long event, | 
|  | void *p) | 
|  | { | 
|  | int ret_val; | 
|  |  | 
|  | ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, | 
|  | __igb_notify_dca); | 
|  |  | 
|  | return ret_val ? NOTIFY_BAD : NOTIFY_DONE; | 
|  | } | 
|  | #endif /* CONFIG_IGB_DCA */ | 
|  |  | 
|  | static void igb_ping_all_vfs(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ping; | 
|  | int i; | 
|  |  | 
|  | for (i = 0 ; i < adapter->vfs_allocated_count; i++) { | 
|  | ping = E1000_PF_CONTROL_MSG; | 
|  | if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) | 
|  | ping |= E1000_VT_MSGTYPE_CTS; | 
|  | igb_write_mbx(hw, &ping, 1, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vmolr = rd32(E1000_VMOLR(vf)); | 
|  | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | 
|  |  | 
|  | vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | | 
|  | IGB_VF_FLAG_MULTI_PROMISC); | 
|  | vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | 
|  |  | 
|  | if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { | 
|  | vmolr |= E1000_VMOLR_MPME; | 
|  | vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; | 
|  | *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; | 
|  | } else { | 
|  | /* | 
|  | * if we have hashes and we are clearing a multicast promisc | 
|  | * flag we need to write the hashes to the MTA as this step | 
|  | * was previously skipped | 
|  | */ | 
|  | if (vf_data->num_vf_mc_hashes > 30) { | 
|  | vmolr |= E1000_VMOLR_MPME; | 
|  | } else if (vf_data->num_vf_mc_hashes) { | 
|  | int j; | 
|  | vmolr |= E1000_VMOLR_ROMPE; | 
|  | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | 
|  | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | wr32(E1000_VMOLR(vf), vmolr); | 
|  |  | 
|  | /* there are flags left unprocessed, likely not supported */ | 
|  | if (*msgbuf & E1000_VT_MSGINFO_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int igb_set_vf_multicasts(struct igb_adapter *adapter, | 
|  | u32 *msgbuf, u32 vf) | 
|  | { | 
|  | int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | 
|  | u16 *hash_list = (u16 *)&msgbuf[1]; | 
|  | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | 
|  | int i; | 
|  |  | 
|  | /* salt away the number of multicast addresses assigned | 
|  | * to this VF for later use to restore when the PF multi cast | 
|  | * list changes | 
|  | */ | 
|  | vf_data->num_vf_mc_hashes = n; | 
|  |  | 
|  | /* only up to 30 hash values supported */ | 
|  | if (n > 30) | 
|  | n = 30; | 
|  |  | 
|  | /* store the hashes for later use */ | 
|  | for (i = 0; i < n; i++) | 
|  | vf_data->vf_mc_hashes[i] = hash_list[i]; | 
|  |  | 
|  | /* Flush and reset the mta with the new values */ | 
|  | igb_set_rx_mode(adapter->netdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void igb_restore_vf_multicasts(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct vf_data_storage *vf_data; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < adapter->vfs_allocated_count; i++) { | 
|  | u32 vmolr = rd32(E1000_VMOLR(i)); | 
|  | vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); | 
|  |  | 
|  | vf_data = &adapter->vf_data[i]; | 
|  |  | 
|  | if ((vf_data->num_vf_mc_hashes > 30) || | 
|  | (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { | 
|  | vmolr |= E1000_VMOLR_MPME; | 
|  | } else if (vf_data->num_vf_mc_hashes) { | 
|  | vmolr |= E1000_VMOLR_ROMPE; | 
|  | for (j = 0; j < vf_data->num_vf_mc_hashes; j++) | 
|  | igb_mta_set(hw, vf_data->vf_mc_hashes[j]); | 
|  | } | 
|  | wr32(E1000_VMOLR(i), vmolr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 pool_mask, reg, vid; | 
|  | int i; | 
|  |  | 
|  | pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | 
|  |  | 
|  | /* Find the vlan filter for this id */ | 
|  | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | 
|  | reg = rd32(E1000_VLVF(i)); | 
|  |  | 
|  | /* remove the vf from the pool */ | 
|  | reg &= ~pool_mask; | 
|  |  | 
|  | /* if pool is empty then remove entry from vfta */ | 
|  | if (!(reg & E1000_VLVF_POOLSEL_MASK) && | 
|  | (reg & E1000_VLVF_VLANID_ENABLE)) { | 
|  | reg = 0; | 
|  | vid = reg & E1000_VLVF_VLANID_MASK; | 
|  | igb_vfta_set(hw, vid, false); | 
|  | } | 
|  |  | 
|  | wr32(E1000_VLVF(i), reg); | 
|  | } | 
|  |  | 
|  | adapter->vf_data[vf].vlans_enabled = 0; | 
|  | } | 
|  |  | 
|  | static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 reg, i; | 
|  |  | 
|  | /* The vlvf table only exists on 82576 hardware and newer */ | 
|  | if (hw->mac.type < e1000_82576) | 
|  | return -1; | 
|  |  | 
|  | /* we only need to do this if VMDq is enabled */ | 
|  | if (!adapter->vfs_allocated_count) | 
|  | return -1; | 
|  |  | 
|  | /* Find the vlan filter for this id */ | 
|  | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | 
|  | reg = rd32(E1000_VLVF(i)); | 
|  | if ((reg & E1000_VLVF_VLANID_ENABLE) && | 
|  | vid == (reg & E1000_VLVF_VLANID_MASK)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (add) { | 
|  | if (i == E1000_VLVF_ARRAY_SIZE) { | 
|  | /* Did not find a matching VLAN ID entry that was | 
|  | * enabled.  Search for a free filter entry, i.e. | 
|  | * one without the enable bit set | 
|  | */ | 
|  | for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { | 
|  | reg = rd32(E1000_VLVF(i)); | 
|  | if (!(reg & E1000_VLVF_VLANID_ENABLE)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i < E1000_VLVF_ARRAY_SIZE) { | 
|  | /* Found an enabled/available entry */ | 
|  | reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); | 
|  |  | 
|  | /* if !enabled we need to set this up in vfta */ | 
|  | if (!(reg & E1000_VLVF_VLANID_ENABLE)) { | 
|  | /* add VID to filter table */ | 
|  | igb_vfta_set(hw, vid, true); | 
|  | reg |= E1000_VLVF_VLANID_ENABLE; | 
|  | } | 
|  | reg &= ~E1000_VLVF_VLANID_MASK; | 
|  | reg |= vid; | 
|  | wr32(E1000_VLVF(i), reg); | 
|  |  | 
|  | /* do not modify RLPML for PF devices */ | 
|  | if (vf >= adapter->vfs_allocated_count) | 
|  | return 0; | 
|  |  | 
|  | if (!adapter->vf_data[vf].vlans_enabled) { | 
|  | u32 size; | 
|  | reg = rd32(E1000_VMOLR(vf)); | 
|  | size = reg & E1000_VMOLR_RLPML_MASK; | 
|  | size += 4; | 
|  | reg &= ~E1000_VMOLR_RLPML_MASK; | 
|  | reg |= size; | 
|  | wr32(E1000_VMOLR(vf), reg); | 
|  | } | 
|  |  | 
|  | adapter->vf_data[vf].vlans_enabled++; | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (i < E1000_VLVF_ARRAY_SIZE) { | 
|  | /* remove vf from the pool */ | 
|  | reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); | 
|  | /* if pool is empty then remove entry from vfta */ | 
|  | if (!(reg & E1000_VLVF_POOLSEL_MASK)) { | 
|  | reg = 0; | 
|  | igb_vfta_set(hw, vid, false); | 
|  | } | 
|  | wr32(E1000_VLVF(i), reg); | 
|  |  | 
|  | /* do not modify RLPML for PF devices */ | 
|  | if (vf >= adapter->vfs_allocated_count) | 
|  | return 0; | 
|  |  | 
|  | adapter->vf_data[vf].vlans_enabled--; | 
|  | if (!adapter->vf_data[vf].vlans_enabled) { | 
|  | u32 size; | 
|  | reg = rd32(E1000_VMOLR(vf)); | 
|  | size = reg & E1000_VMOLR_RLPML_MASK; | 
|  | size -= 4; | 
|  | reg &= ~E1000_VMOLR_RLPML_MASK; | 
|  | reg |= size; | 
|  | wr32(E1000_VMOLR(vf), reg); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (vid) | 
|  | wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); | 
|  | else | 
|  | wr32(E1000_VMVIR(vf), 0); | 
|  | } | 
|  |  | 
|  | static int igb_ndo_set_vf_vlan(struct net_device *netdev, | 
|  | int vf, u16 vlan, u8 qos) | 
|  | { | 
|  | int err = 0; | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) | 
|  | return -EINVAL; | 
|  | if (vlan || qos) { | 
|  | err = igb_vlvf_set(adapter, vlan, !!vlan, vf); | 
|  | if (err) | 
|  | goto out; | 
|  | igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); | 
|  | igb_set_vmolr(adapter, vf, !vlan); | 
|  | adapter->vf_data[vf].pf_vlan = vlan; | 
|  | adapter->vf_data[vf].pf_qos = qos; | 
|  | dev_info(&adapter->pdev->dev, | 
|  | "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); | 
|  | if (test_bit(__IGB_DOWN, &adapter->state)) { | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "The VF VLAN has been set," | 
|  | " but the PF device is not up.\n"); | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "Bring the PF device up before" | 
|  | " attempting to use the VF device.\n"); | 
|  | } | 
|  | } else { | 
|  | igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, | 
|  | false, vf); | 
|  | igb_set_vmvir(adapter, vlan, vf); | 
|  | igb_set_vmolr(adapter, vf, true); | 
|  | adapter->vf_data[vf].pf_vlan = 0; | 
|  | adapter->vf_data[vf].pf_qos = 0; | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) | 
|  | { | 
|  | int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; | 
|  | int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); | 
|  |  | 
|  | return igb_vlvf_set(adapter, vid, add, vf); | 
|  | } | 
|  |  | 
|  | static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | /* clear flags - except flag that indicates PF has set the MAC */ | 
|  | adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; | 
|  | adapter->vf_data[vf].last_nack = jiffies; | 
|  |  | 
|  | /* reset offloads to defaults */ | 
|  | igb_set_vmolr(adapter, vf, true); | 
|  |  | 
|  | /* reset vlans for device */ | 
|  | igb_clear_vf_vfta(adapter, vf); | 
|  | if (adapter->vf_data[vf].pf_vlan) | 
|  | igb_ndo_set_vf_vlan(adapter->netdev, vf, | 
|  | adapter->vf_data[vf].pf_vlan, | 
|  | adapter->vf_data[vf].pf_qos); | 
|  | else | 
|  | igb_clear_vf_vfta(adapter, vf); | 
|  |  | 
|  | /* reset multicast table array for vf */ | 
|  | adapter->vf_data[vf].num_vf_mc_hashes = 0; | 
|  |  | 
|  | /* Flush and reset the mta with the new values */ | 
|  | igb_set_rx_mode(adapter->netdev); | 
|  | } | 
|  |  | 
|  | static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | 
|  |  | 
|  | /* generate a new mac address as we were hotplug removed/added */ | 
|  | if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) | 
|  | random_ether_addr(vf_mac); | 
|  |  | 
|  | /* process remaining reset events */ | 
|  | igb_vf_reset(adapter, vf); | 
|  | } | 
|  |  | 
|  | static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; | 
|  | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | 
|  | u32 reg, msgbuf[3]; | 
|  | u8 *addr = (u8 *)(&msgbuf[1]); | 
|  |  | 
|  | /* process all the same items cleared in a function level reset */ | 
|  | igb_vf_reset(adapter, vf); | 
|  |  | 
|  | /* set vf mac address */ | 
|  | igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); | 
|  |  | 
|  | /* enable transmit and receive for vf */ | 
|  | reg = rd32(E1000_VFTE); | 
|  | wr32(E1000_VFTE, reg | (1 << vf)); | 
|  | reg = rd32(E1000_VFRE); | 
|  | wr32(E1000_VFRE, reg | (1 << vf)); | 
|  |  | 
|  | adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; | 
|  |  | 
|  | /* reply to reset with ack and vf mac address */ | 
|  | msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; | 
|  | memcpy(addr, vf_mac, 6); | 
|  | igb_write_mbx(hw, msgbuf, 3, vf); | 
|  | } | 
|  |  | 
|  | static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) | 
|  | { | 
|  | /* | 
|  | * The VF MAC Address is stored in a packed array of bytes | 
|  | * starting at the second 32 bit word of the msg array | 
|  | */ | 
|  | unsigned char *addr = (char *)&msg[1]; | 
|  | int err = -1; | 
|  |  | 
|  | if (is_valid_ether_addr(addr)) | 
|  | err = igb_set_vf_mac(adapter, vf, addr); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | 
|  | u32 msg = E1000_VT_MSGTYPE_NACK; | 
|  |  | 
|  | /* if device isn't clear to send it shouldn't be reading either */ | 
|  | if (!(vf_data->flags & IGB_VF_FLAG_CTS) && | 
|  | time_after(jiffies, vf_data->last_nack + (2 * HZ))) { | 
|  | igb_write_mbx(hw, &msg, 1, vf); | 
|  | vf_data->last_nack = jiffies; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | u32 msgbuf[E1000_VFMAILBOX_SIZE]; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct vf_data_storage *vf_data = &adapter->vf_data[vf]; | 
|  | s32 retval; | 
|  |  | 
|  | retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); | 
|  |  | 
|  | if (retval) { | 
|  | /* if receive failed revoke VF CTS stats and restart init */ | 
|  | dev_err(&pdev->dev, "Error receiving message from VF\n"); | 
|  | vf_data->flags &= ~IGB_VF_FLAG_CTS; | 
|  | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | 
|  | return; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* this is a message we already processed, do nothing */ | 
|  | if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * until the vf completes a reset it should not be | 
|  | * allowed to start any configuration. | 
|  | */ | 
|  |  | 
|  | if (msgbuf[0] == E1000_VF_RESET) { | 
|  | igb_vf_reset_msg(adapter, vf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { | 
|  | if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) | 
|  | return; | 
|  | retval = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch ((msgbuf[0] & 0xFFFF)) { | 
|  | case E1000_VF_SET_MAC_ADDR: | 
|  | retval = -EINVAL; | 
|  | if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) | 
|  | retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); | 
|  | else | 
|  | dev_warn(&pdev->dev, | 
|  | "VF %d attempted to override administratively " | 
|  | "set MAC address\nReload the VF driver to " | 
|  | "resume operations\n", vf); | 
|  | break; | 
|  | case E1000_VF_SET_PROMISC: | 
|  | retval = igb_set_vf_promisc(adapter, msgbuf, vf); | 
|  | break; | 
|  | case E1000_VF_SET_MULTICAST: | 
|  | retval = igb_set_vf_multicasts(adapter, msgbuf, vf); | 
|  | break; | 
|  | case E1000_VF_SET_LPE: | 
|  | retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); | 
|  | break; | 
|  | case E1000_VF_SET_VLAN: | 
|  | retval = -1; | 
|  | if (vf_data->pf_vlan) | 
|  | dev_warn(&pdev->dev, | 
|  | "VF %d attempted to override administratively " | 
|  | "set VLAN tag\nReload the VF driver to " | 
|  | "resume operations\n", vf); | 
|  | else | 
|  | retval = igb_set_vf_vlan(adapter, msgbuf, vf); | 
|  | break; | 
|  | default: | 
|  | dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); | 
|  | retval = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | msgbuf[0] |= E1000_VT_MSGTYPE_CTS; | 
|  | out: | 
|  | /* notify the VF of the results of what it sent us */ | 
|  | if (retval) | 
|  | msgbuf[0] |= E1000_VT_MSGTYPE_NACK; | 
|  | else | 
|  | msgbuf[0] |= E1000_VT_MSGTYPE_ACK; | 
|  |  | 
|  | igb_write_mbx(hw, msgbuf, 1, vf); | 
|  | } | 
|  |  | 
|  | static void igb_msg_task(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vf; | 
|  |  | 
|  | for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { | 
|  | /* process any reset requests */ | 
|  | if (!igb_check_for_rst(hw, vf)) | 
|  | igb_vf_reset_event(adapter, vf); | 
|  |  | 
|  | /* process any messages pending */ | 
|  | if (!igb_check_for_msg(hw, vf)) | 
|  | igb_rcv_msg_from_vf(adapter, vf); | 
|  |  | 
|  | /* process any acks */ | 
|  | if (!igb_check_for_ack(hw, vf)) | 
|  | igb_rcv_ack_from_vf(adapter, vf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_uta - Set unicast filter table address | 
|  | *  @adapter: board private structure | 
|  | * | 
|  | *  The unicast table address is a register array of 32-bit registers. | 
|  | *  The table is meant to be used in a way similar to how the MTA is used | 
|  | *  however due to certain limitations in the hardware it is necessary to | 
|  | *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous | 
|  | *  enable bit to allow vlan tag stripping when promiscuous mode is enabled | 
|  | **/ | 
|  | static void igb_set_uta(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int i; | 
|  |  | 
|  | /* The UTA table only exists on 82576 hardware and newer */ | 
|  | if (hw->mac.type < e1000_82576) | 
|  | return; | 
|  |  | 
|  | /* we only need to do this if VMDq is enabled */ | 
|  | if (!adapter->vfs_allocated_count) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < hw->mac.uta_reg_count; i++) | 
|  | array_wr32(E1000_UTA, i, ~0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_intr_msi - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t igb_intr_msi(int irq, void *data) | 
|  | { | 
|  | struct igb_adapter *adapter = data; | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[0]; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | /* read ICR disables interrupts using IAM */ | 
|  | u32 icr = rd32(E1000_ICR); | 
|  |  | 
|  | igb_write_itr(q_vector); | 
|  |  | 
|  | if (icr & E1000_ICR_DRSTA) | 
|  | schedule_work(&adapter->reset_task); | 
|  |  | 
|  | if (icr & E1000_ICR_DOUTSYNC) { | 
|  | /* HW is reporting DMA is out of sync */ | 
|  | adapter->stats.doosync++; | 
|  | } | 
|  |  | 
|  | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
|  | hw->mac.get_link_status = 1; | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | napi_schedule(&q_vector->napi); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_intr - Legacy Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t igb_intr(int irq, void *data) | 
|  | { | 
|  | struct igb_adapter *adapter = data; | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[0]; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No | 
|  | * need for the IMC write */ | 
|  | u32 icr = rd32(E1000_ICR); | 
|  | if (!icr) | 
|  | return IRQ_NONE;  /* Not our interrupt */ | 
|  |  | 
|  | igb_write_itr(q_vector); | 
|  |  | 
|  | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
|  | * not set, then the adapter didn't send an interrupt */ | 
|  | if (!(icr & E1000_ICR_INT_ASSERTED)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (icr & E1000_ICR_DRSTA) | 
|  | schedule_work(&adapter->reset_task); | 
|  |  | 
|  | if (icr & E1000_ICR_DOUTSYNC) { | 
|  | /* HW is reporting DMA is out of sync */ | 
|  | adapter->stats.doosync++; | 
|  | } | 
|  |  | 
|  | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
|  | hw->mac.get_link_status = 1; | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | napi_schedule(&q_vector->napi); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) || | 
|  | (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) { | 
|  | if (!adapter->msix_entries) | 
|  | igb_set_itr(adapter); | 
|  | else | 
|  | igb_update_ring_itr(q_vector); | 
|  | } | 
|  |  | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) { | 
|  | if (adapter->msix_entries) | 
|  | wr32(E1000_EIMS, q_vector->eims_value); | 
|  | else | 
|  | igb_irq_enable(adapter); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_poll - NAPI Rx polling callback | 
|  | * @napi: napi polling structure | 
|  | * @budget: count of how many packets we should handle | 
|  | **/ | 
|  | static int igb_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct igb_q_vector *q_vector = container_of(napi, | 
|  | struct igb_q_vector, | 
|  | napi); | 
|  | int tx_clean_complete = 1, work_done = 0; | 
|  |  | 
|  | #ifdef CONFIG_IGB_DCA | 
|  | if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) | 
|  | igb_update_dca(q_vector); | 
|  | #endif | 
|  | if (q_vector->tx_ring) | 
|  | tx_clean_complete = igb_clean_tx_irq(q_vector); | 
|  |  | 
|  | if (q_vector->rx_ring) | 
|  | igb_clean_rx_irq_adv(q_vector, &work_done, budget); | 
|  |  | 
|  | if (!tx_clean_complete) | 
|  | work_done = budget; | 
|  |  | 
|  | /* If not enough Rx work done, exit the polling mode */ | 
|  | if (work_done < budget) { | 
|  | napi_complete(napi); | 
|  | igb_ring_irq_enable(q_vector); | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_systim_to_hwtstamp - convert system time value to hw timestamp | 
|  | * @adapter: board private structure | 
|  | * @shhwtstamps: timestamp structure to update | 
|  | * @regval: unsigned 64bit system time value. | 
|  | * | 
|  | * We need to convert the system time value stored in the RX/TXSTMP registers | 
|  | * into a hwtstamp which can be used by the upper level timestamping functions | 
|  | */ | 
|  | static void igb_systim_to_hwtstamp(struct igb_adapter *adapter, | 
|  | struct skb_shared_hwtstamps *shhwtstamps, | 
|  | u64 regval) | 
|  | { | 
|  | u64 ns; | 
|  |  | 
|  | /* | 
|  | * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to | 
|  | * 24 to match clock shift we setup earlier. | 
|  | */ | 
|  | if (adapter->hw.mac.type == e1000_82580) | 
|  | regval <<= IGB_82580_TSYNC_SHIFT; | 
|  |  | 
|  | ns = timecounter_cyc2time(&adapter->clock, regval); | 
|  | timecompare_update(&adapter->compare, ns); | 
|  | memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps)); | 
|  | shhwtstamps->hwtstamp = ns_to_ktime(ns); | 
|  | shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_tx_hwtstamp - utility function which checks for TX time stamp | 
|  | * @q_vector: pointer to q_vector containing needed info | 
|  | * @buffer: pointer to igb_buffer structure | 
|  | * | 
|  | * If we were asked to do hardware stamping and such a time stamp is | 
|  | * available, then it must have been for this skb here because we only | 
|  | * allow only one such packet into the queue. | 
|  | */ | 
|  | static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct skb_shared_hwtstamps shhwtstamps; | 
|  | u64 regval; | 
|  |  | 
|  | /* if skb does not support hw timestamp or TX stamp not valid exit */ | 
|  | if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) || | 
|  | !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID)) | 
|  | return; | 
|  |  | 
|  | regval = rd32(E1000_TXSTMPL); | 
|  | regval |= (u64)rd32(E1000_TXSTMPH) << 32; | 
|  |  | 
|  | igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval); | 
|  | skb_tstamp_tx(buffer_info->skb, &shhwtstamps); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @q_vector: pointer to q_vector containing needed info | 
|  | * returns true if ring is completely cleaned | 
|  | **/ | 
|  | static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct igb_ring *tx_ring = q_vector->tx_ring; | 
|  | struct net_device *netdev = tx_ring->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct igb_buffer *buffer_info; | 
|  | union e1000_adv_tx_desc *tx_desc, *eop_desc; | 
|  | unsigned int total_bytes = 0, total_packets = 0; | 
|  | unsigned int i, eop, count = 0; | 
|  | bool cleaned = false; | 
|  |  | 
|  | i = tx_ring->next_to_clean; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | 
|  |  | 
|  | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | 
|  | (count < tx_ring->count)) { | 
|  | rmb();	/* read buffer_info after eop_desc status */ | 
|  | for (cleaned = false; !cleaned; count++) { | 
|  | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | cleaned = (i == eop); | 
|  |  | 
|  | if (buffer_info->skb) { | 
|  | total_bytes += buffer_info->bytecount; | 
|  | /* gso_segs is currently only valid for tcp */ | 
|  | total_packets += buffer_info->gso_segs; | 
|  | igb_tx_hwtstamp(q_vector, buffer_info); | 
|  | } | 
|  |  | 
|  | igb_unmap_and_free_tx_resource(tx_ring, buffer_info); | 
|  | tx_desc->wb.status = 0; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop); | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_clean = i; | 
|  |  | 
|  | if (unlikely(count && | 
|  | netif_carrier_ok(netdev) && | 
|  | igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) && | 
|  | !(test_bit(__IGB_DOWN, &adapter->state))) { | 
|  | netif_wake_subqueue(netdev, tx_ring->queue_index); | 
|  |  | 
|  | u64_stats_update_begin(&tx_ring->tx_syncp); | 
|  | tx_ring->tx_stats.restart_queue++; | 
|  | u64_stats_update_end(&tx_ring->tx_syncp); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tx_ring->detect_tx_hung) { | 
|  | /* Detect a transmit hang in hardware, this serializes the | 
|  | * check with the clearing of time_stamp and movement of i */ | 
|  | tx_ring->detect_tx_hung = false; | 
|  | if (tx_ring->buffer_info[i].time_stamp && | 
|  | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | 
|  | (adapter->tx_timeout_factor * HZ)) && | 
|  | !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { | 
|  |  | 
|  | /* detected Tx unit hang */ | 
|  | dev_err(tx_ring->dev, | 
|  | "Detected Tx Unit Hang\n" | 
|  | "  Tx Queue             <%d>\n" | 
|  | "  TDH                  <%x>\n" | 
|  | "  TDT                  <%x>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n" | 
|  | "buffer_info[next_to_clean]\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  next_to_watch        <%x>\n" | 
|  | "  jiffies              <%lx>\n" | 
|  | "  desc.status          <%x>\n", | 
|  | tx_ring->queue_index, | 
|  | readl(tx_ring->head), | 
|  | readl(tx_ring->tail), | 
|  | tx_ring->next_to_use, | 
|  | tx_ring->next_to_clean, | 
|  | tx_ring->buffer_info[eop].time_stamp, | 
|  | eop, | 
|  | jiffies, | 
|  | eop_desc->wb.status); | 
|  | netif_stop_subqueue(netdev, tx_ring->queue_index); | 
|  | } | 
|  | } | 
|  | tx_ring->total_bytes += total_bytes; | 
|  | tx_ring->total_packets += total_packets; | 
|  | u64_stats_update_begin(&tx_ring->tx_syncp); | 
|  | tx_ring->tx_stats.bytes += total_bytes; | 
|  | tx_ring->tx_stats.packets += total_packets; | 
|  | u64_stats_update_end(&tx_ring->tx_syncp); | 
|  | return count < tx_ring->count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_receive_skb - helper function to handle rx indications | 
|  | * @q_vector: structure containing interrupt and ring information | 
|  | * @skb: packet to send up | 
|  | * @vlan_tag: vlan tag for packet | 
|  | **/ | 
|  | static void igb_receive_skb(struct igb_q_vector *q_vector, | 
|  | struct sk_buff *skb, | 
|  | u16 vlan_tag) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  |  | 
|  | if (vlan_tag && adapter->vlgrp) | 
|  | vlan_gro_receive(&q_vector->napi, adapter->vlgrp, | 
|  | vlan_tag, skb); | 
|  | else | 
|  | napi_gro_receive(&q_vector->napi, skb); | 
|  | } | 
|  |  | 
|  | static inline void igb_rx_checksum_adv(struct igb_ring *ring, | 
|  | u32 status_err, struct sk_buff *skb) | 
|  | { | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | 
|  | if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) || | 
|  | (status_err & E1000_RXD_STAT_IXSM)) | 
|  | return; | 
|  |  | 
|  | /* TCP/UDP checksum error bit is set */ | 
|  | if (status_err & | 
|  | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | 
|  | /* | 
|  | * work around errata with sctp packets where the TCPE aka | 
|  | * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) | 
|  | * packets, (aka let the stack check the crc32c) | 
|  | */ | 
|  | if ((skb->len == 60) && | 
|  | (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) { | 
|  | u64_stats_update_begin(&ring->rx_syncp); | 
|  | ring->rx_stats.csum_err++; | 
|  | u64_stats_update_end(&ring->rx_syncp); | 
|  | } | 
|  | /* let the stack verify checksum errors */ | 
|  | return; | 
|  | } | 
|  | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err); | 
|  | } | 
|  |  | 
|  | static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct igb_adapter *adapter = q_vector->adapter; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u64 regval; | 
|  |  | 
|  | /* | 
|  | * If this bit is set, then the RX registers contain the time stamp. No | 
|  | * other packet will be time stamped until we read these registers, so | 
|  | * read the registers to make them available again. Because only one | 
|  | * packet can be time stamped at a time, we know that the register | 
|  | * values must belong to this one here and therefore we don't need to | 
|  | * compare any of the additional attributes stored for it. | 
|  | * | 
|  | * If nothing went wrong, then it should have a shared tx_flags that we | 
|  | * can turn into a skb_shared_hwtstamps. | 
|  | */ | 
|  | if (staterr & E1000_RXDADV_STAT_TSIP) { | 
|  | u32 *stamp = (u32 *)skb->data; | 
|  | regval = le32_to_cpu(*(stamp + 2)); | 
|  | regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32; | 
|  | skb_pull(skb, IGB_TS_HDR_LEN); | 
|  | } else { | 
|  | if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) | 
|  | return; | 
|  |  | 
|  | regval = rd32(E1000_RXSTMPL); | 
|  | regval |= (u64)rd32(E1000_RXSTMPH) << 32; | 
|  | } | 
|  |  | 
|  | igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); | 
|  | } | 
|  | static inline u16 igb_get_hlen(struct igb_ring *rx_ring, | 
|  | union e1000_adv_rx_desc *rx_desc) | 
|  | { | 
|  | /* HW will not DMA in data larger than the given buffer, even if it | 
|  | * parses the (NFS, of course) header to be larger.  In that case, it | 
|  | * fills the header buffer and spills the rest into the page. | 
|  | */ | 
|  | u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) & | 
|  | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | 
|  | if (hlen > rx_ring->rx_buffer_len) | 
|  | hlen = rx_ring->rx_buffer_len; | 
|  | return hlen; | 
|  | } | 
|  |  | 
|  | static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector, | 
|  | int *work_done, int budget) | 
|  | { | 
|  | struct igb_ring *rx_ring = q_vector->rx_ring; | 
|  | struct net_device *netdev = rx_ring->netdev; | 
|  | struct device *dev = rx_ring->dev; | 
|  | union e1000_adv_rx_desc *rx_desc , *next_rxd; | 
|  | struct igb_buffer *buffer_info , *next_buffer; | 
|  | struct sk_buff *skb; | 
|  | bool cleaned = false; | 
|  | int cleaned_count = 0; | 
|  | int current_node = numa_node_id(); | 
|  | unsigned int total_bytes = 0, total_packets = 0; | 
|  | unsigned int i; | 
|  | u32 staterr; | 
|  | u16 length; | 
|  | u16 vlan_tag; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | if (*work_done >= budget) | 
|  | break; | 
|  | (*work_done)++; | 
|  | rmb(); /* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | skb = buffer_info->skb; | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.upper.length); | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  |  | 
|  | if (buffer_info->dma) { | 
|  | dma_unmap_single(dev, buffer_info->dma, | 
|  | rx_ring->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) { | 
|  | skb_put(skb, length); | 
|  | goto send_up; | 
|  | } | 
|  | skb_put(skb, igb_get_hlen(rx_ring, rx_desc)); | 
|  | } | 
|  |  | 
|  | if (length) { | 
|  | dma_unmap_page(dev, buffer_info->page_dma, | 
|  | PAGE_SIZE / 2, DMA_FROM_DEVICE); | 
|  | buffer_info->page_dma = 0; | 
|  |  | 
|  | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, | 
|  | buffer_info->page, | 
|  | buffer_info->page_offset, | 
|  | length); | 
|  |  | 
|  | if ((page_count(buffer_info->page) != 1) || | 
|  | (page_to_nid(buffer_info->page) != current_node)) | 
|  | buffer_info->page = NULL; | 
|  | else | 
|  | get_page(buffer_info->page); | 
|  |  | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += length; | 
|  | } | 
|  |  | 
|  | if (!(staterr & E1000_RXD_STAT_EOP)) { | 
|  | buffer_info->skb = next_buffer->skb; | 
|  | buffer_info->dma = next_buffer->dma; | 
|  | next_buffer->skb = skb; | 
|  | next_buffer->dma = 0; | 
|  | goto next_desc; | 
|  | } | 
|  | send_up: | 
|  | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS)) | 
|  | igb_rx_hwtstamp(q_vector, staterr, skb); | 
|  | total_bytes += skb->len; | 
|  | total_packets++; | 
|  |  | 
|  | igb_rx_checksum_adv(rx_ring, staterr, skb); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, netdev); | 
|  | skb_record_rx_queue(skb, rx_ring->queue_index); | 
|  |  | 
|  | vlan_tag = ((staterr & E1000_RXD_STAT_VP) ? | 
|  | le16_to_cpu(rx_desc->wb.upper.vlan) : 0); | 
|  |  | 
|  | igb_receive_skb(q_vector, skb, vlan_tag); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.upper.status_error = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | 
|  | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | 
|  | } | 
|  |  | 
|  | rx_ring->next_to_clean = i; | 
|  | cleaned_count = igb_desc_unused(rx_ring); | 
|  |  | 
|  | if (cleaned_count) | 
|  | igb_alloc_rx_buffers_adv(rx_ring, cleaned_count); | 
|  |  | 
|  | rx_ring->total_packets += total_packets; | 
|  | rx_ring->total_bytes += total_bytes; | 
|  | u64_stats_update_begin(&rx_ring->rx_syncp); | 
|  | rx_ring->rx_stats.packets += total_packets; | 
|  | rx_ring->rx_stats.bytes += total_bytes; | 
|  | u64_stats_update_end(&rx_ring->rx_syncp); | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  | void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = rx_ring->netdev; | 
|  | union e1000_adv_rx_desc *rx_desc; | 
|  | struct igb_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | int bufsz; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | bufsz = rx_ring->rx_buffer_len; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | 
|  |  | 
|  | if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) { | 
|  | if (!buffer_info->page) { | 
|  | buffer_info->page = netdev_alloc_page(netdev); | 
|  | if (unlikely(!buffer_info->page)) { | 
|  | u64_stats_update_begin(&rx_ring->rx_syncp); | 
|  | rx_ring->rx_stats.alloc_failed++; | 
|  | u64_stats_update_end(&rx_ring->rx_syncp); | 
|  | goto no_buffers; | 
|  | } | 
|  | buffer_info->page_offset = 0; | 
|  | } else { | 
|  | buffer_info->page_offset ^= PAGE_SIZE / 2; | 
|  | } | 
|  | buffer_info->page_dma = | 
|  | dma_map_page(rx_ring->dev, buffer_info->page, | 
|  | buffer_info->page_offset, | 
|  | PAGE_SIZE / 2, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(rx_ring->dev, | 
|  | buffer_info->page_dma)) { | 
|  | buffer_info->page_dma = 0; | 
|  | u64_stats_update_begin(&rx_ring->rx_syncp); | 
|  | rx_ring->rx_stats.alloc_failed++; | 
|  | u64_stats_update_end(&rx_ring->rx_syncp); | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb = buffer_info->skb; | 
|  | if (!skb) { | 
|  | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | 
|  | if (unlikely(!skb)) { | 
|  | u64_stats_update_begin(&rx_ring->rx_syncp); | 
|  | rx_ring->rx_stats.alloc_failed++; | 
|  | u64_stats_update_end(&rx_ring->rx_syncp); | 
|  | goto no_buffers; | 
|  | } | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | } | 
|  | if (!buffer_info->dma) { | 
|  | buffer_info->dma = dma_map_single(rx_ring->dev, | 
|  | skb->data, | 
|  | bufsz, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(rx_ring->dev, | 
|  | buffer_info->dma)) { | 
|  | buffer_info->dma = 0; | 
|  | u64_stats_update_begin(&rx_ring->rx_syncp); | 
|  | rx_ring->rx_stats.alloc_failed++; | 
|  | u64_stats_update_end(&rx_ring->rx_syncp); | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  | /* Refresh the desc even if buffer_addrs didn't change because | 
|  | * each write-back erases this info. */ | 
|  | if (bufsz < IGB_RXBUFFER_1024) { | 
|  | rx_desc->read.pkt_addr = | 
|  | cpu_to_le64(buffer_info->page_dma); | 
|  | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | 
|  | } else { | 
|  | rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma); | 
|  | rx_desc->read.hdr_addr = 0; | 
|  | } | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | no_buffers: | 
|  | if (rx_ring->next_to_use != i) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (i == 0) | 
|  | i = (rx_ring->count - 1); | 
|  | else | 
|  | i--; | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  | writel(i, rx_ring->tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_mii_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  |  | 
|  | if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = adapter->hw.phy.addr; | 
|  | break; | 
|  | case SIOCGMIIREG: | 
|  | if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, | 
|  | &data->val_out)) | 
|  | return -EIO; | 
|  | break; | 
|  | case SIOCSMIIREG: | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_hwtstamp_ioctl - control hardware time stamping | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | * | 
|  | * Outgoing time stamping can be enabled and disabled. Play nice and | 
|  | * disable it when requested, although it shouldn't case any overhead | 
|  | * when no packet needs it. At most one packet in the queue may be | 
|  | * marked for time stamping, otherwise it would be impossible to tell | 
|  | * for sure to which packet the hardware time stamp belongs. | 
|  | * | 
|  | * Incoming time stamping has to be configured via the hardware | 
|  | * filters. Not all combinations are supported, in particular event | 
|  | * type has to be specified. Matching the kind of event packet is | 
|  | * not supported, with the exception of "all V2 events regardless of | 
|  | * level 2 or 4". | 
|  | * | 
|  | **/ | 
|  | static int igb_hwtstamp_ioctl(struct net_device *netdev, | 
|  | struct ifreq *ifr, int cmd) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct hwtstamp_config config; | 
|  | u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; | 
|  | u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | 
|  | u32 tsync_rx_cfg = 0; | 
|  | bool is_l4 = false; | 
|  | bool is_l2 = false; | 
|  | u32 regval; | 
|  |  | 
|  | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* reserved for future extensions */ | 
|  | if (config.flags) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (config.tx_type) { | 
|  | case HWTSTAMP_TX_OFF: | 
|  | tsync_tx_ctl = 0; | 
|  | case HWTSTAMP_TX_ON: | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | switch (config.rx_filter) { | 
|  | case HWTSTAMP_FILTER_NONE: | 
|  | tsync_rx_ctl = 0; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: | 
|  | case HWTSTAMP_FILTER_ALL: | 
|  | /* | 
|  | * register TSYNCRXCFG must be set, therefore it is not | 
|  | * possible to time stamp both Sync and Delay_Req messages | 
|  | * => fall back to time stamping all packets | 
|  | */ | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | 
|  | config.rx_filter = HWTSTAMP_FILTER_ALL; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; | 
|  | is_l4 = true; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | config.rx_filter = HWTSTAMP_FILTER_SOME; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: | 
|  | case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; | 
|  | tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE; | 
|  | is_l2 = true; | 
|  | is_l4 = true; | 
|  | config.rx_filter = HWTSTAMP_FILTER_SOME; | 
|  | break; | 
|  | case HWTSTAMP_FILTER_PTP_V2_EVENT: | 
|  | case HWTSTAMP_FILTER_PTP_V2_SYNC: | 
|  | case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; | 
|  | config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; | 
|  | is_l2 = true; | 
|  | break; | 
|  | default: | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | if (tsync_rx_ctl | tsync_tx_ctl) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-packet timestamping only works if all packets are | 
|  | * timestamped, so enable timestamping in all packets as | 
|  | * long as one rx filter was configured. | 
|  | */ | 
|  | if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) { | 
|  | tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; | 
|  | tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; | 
|  | } | 
|  |  | 
|  | /* enable/disable TX */ | 
|  | regval = rd32(E1000_TSYNCTXCTL); | 
|  | regval &= ~E1000_TSYNCTXCTL_ENABLED; | 
|  | regval |= tsync_tx_ctl; | 
|  | wr32(E1000_TSYNCTXCTL, regval); | 
|  |  | 
|  | /* enable/disable RX */ | 
|  | regval = rd32(E1000_TSYNCRXCTL); | 
|  | regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); | 
|  | regval |= tsync_rx_ctl; | 
|  | wr32(E1000_TSYNCRXCTL, regval); | 
|  |  | 
|  | /* define which PTP packets are time stamped */ | 
|  | wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); | 
|  |  | 
|  | /* define ethertype filter for timestamped packets */ | 
|  | if (is_l2) | 
|  | wr32(E1000_ETQF(3), | 
|  | (E1000_ETQF_FILTER_ENABLE | /* enable filter */ | 
|  | E1000_ETQF_1588 | /* enable timestamping */ | 
|  | ETH_P_1588));     /* 1588 eth protocol type */ | 
|  | else | 
|  | wr32(E1000_ETQF(3), 0); | 
|  |  | 
|  | #define PTP_PORT 319 | 
|  | /* L4 Queue Filter[3]: filter by destination port and protocol */ | 
|  | if (is_l4) { | 
|  | u32 ftqf = (IPPROTO_UDP /* UDP */ | 
|  | | E1000_FTQF_VF_BP /* VF not compared */ | 
|  | | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | 
|  | | E1000_FTQF_MASK); /* mask all inputs */ | 
|  | ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ | 
|  |  | 
|  | wr32(E1000_IMIR(3), htons(PTP_PORT)); | 
|  | wr32(E1000_IMIREXT(3), | 
|  | (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); | 
|  | if (hw->mac.type == e1000_82576) { | 
|  | /* enable source port check */ | 
|  | wr32(E1000_SPQF(3), htons(PTP_PORT)); | 
|  | ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; | 
|  | } | 
|  | wr32(E1000_FTQF(3), ftqf); | 
|  | } else { | 
|  | wr32(E1000_FTQF(3), E1000_FTQF_MASK); | 
|  | } | 
|  | wrfl(); | 
|  |  | 
|  | adapter->hwtstamp_config = config; | 
|  |  | 
|  | /* clear TX/RX time stamp registers, just to be sure */ | 
|  | regval = rd32(E1000_TXSTMPH); | 
|  | regval = rd32(E1000_RXSTMPH); | 
|  |  | 
|  | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? | 
|  | -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | case SIOCGMIIREG: | 
|  | case SIOCSMIIREG: | 
|  | return igb_mii_ioctl(netdev, ifr, cmd); | 
|  | case SIOCSHWTSTAMP: | 
|  | return igb_hwtstamp_ioctl(netdev, ifr, cmd); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | 
|  | { | 
|  | struct igb_adapter *adapter = hw->back; | 
|  | u16 cap_offset; | 
|  |  | 
|  | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | if (!cap_offset) | 
|  | return -E1000_ERR_CONFIG; | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | 
|  | { | 
|  | struct igb_adapter *adapter = hw->back; | 
|  | u16 cap_offset; | 
|  |  | 
|  | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | if (!cap_offset) | 
|  | return -E1000_ERR_CONFIG; | 
|  |  | 
|  | pci_write_config_word(adapter->pdev, cap_offset + reg, *value); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void igb_vlan_rx_register(struct net_device *netdev, | 
|  | struct vlan_group *grp) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, rctl; | 
|  |  | 
|  | igb_irq_disable(adapter); | 
|  | adapter->vlgrp = grp; | 
|  |  | 
|  | if (grp) { | 
|  | /* enable VLAN tag insert/strip */ | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl |= E1000_CTRL_VME; | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | /* Disable CFI check */ | 
|  | rctl = rd32(E1000_RCTL); | 
|  | rctl &= ~E1000_RCTL_CFIEN; | 
|  | wr32(E1000_RCTL, rctl); | 
|  | } else { | 
|  | /* disable VLAN tag insert/strip */ | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl &= ~E1000_CTRL_VME; | 
|  | wr32(E1000_CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | igb_rlpml_set(adapter); | 
|  |  | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | igb_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int pf_id = adapter->vfs_allocated_count; | 
|  |  | 
|  | /* attempt to add filter to vlvf array */ | 
|  | igb_vlvf_set(adapter, vid, true, pf_id); | 
|  |  | 
|  | /* add the filter since PF can receive vlans w/o entry in vlvf */ | 
|  | igb_vfta_set(hw, vid, true); | 
|  | } | 
|  |  | 
|  | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int pf_id = adapter->vfs_allocated_count; | 
|  | s32 err; | 
|  |  | 
|  | igb_irq_disable(adapter); | 
|  | vlan_group_set_device(adapter->vlgrp, vid, NULL); | 
|  |  | 
|  | if (!test_bit(__IGB_DOWN, &adapter->state)) | 
|  | igb_irq_enable(adapter); | 
|  |  | 
|  | /* remove vlan from VLVF table array */ | 
|  | err = igb_vlvf_set(adapter, vid, false, pf_id); | 
|  |  | 
|  | /* if vid was not present in VLVF just remove it from table */ | 
|  | if (err) | 
|  | igb_vfta_set(hw, vid, false); | 
|  | } | 
|  |  | 
|  | static void igb_restore_vlan(struct igb_adapter *adapter) | 
|  | { | 
|  | igb_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
|  |  | 
|  | if (adapter->vlgrp) { | 
|  | u16 vid; | 
|  | for (vid = 0; vid < VLAN_N_VID; vid++) { | 
|  | if (!vlan_group_get_device(adapter->vlgrp, vid)) | 
|  | continue; | 
|  | igb_vlan_rx_add_vid(adapter->netdev, vid); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  |  | 
|  | mac->autoneg = 0; | 
|  |  | 
|  | /* Make sure dplx is at most 1 bit and lsb of speed is not set | 
|  | * for the switch() below to work */ | 
|  | if ((spd & 1) || (dplx & ~1)) | 
|  | goto err_inval; | 
|  |  | 
|  | /* Fiber NIC's only allow 1000 Gbps Full duplex */ | 
|  | if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && | 
|  | spd != SPEED_1000 && | 
|  | dplx != DUPLEX_FULL) | 
|  | goto err_inval; | 
|  |  | 
|  | switch (spd + dplx) { | 
|  | case SPEED_10 + DUPLEX_HALF: | 
|  | mac->forced_speed_duplex = ADVERTISE_10_HALF; | 
|  | break; | 
|  | case SPEED_10 + DUPLEX_FULL: | 
|  | mac->forced_speed_duplex = ADVERTISE_10_FULL; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_HALF: | 
|  | mac->forced_speed_duplex = ADVERTISE_100_HALF; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_FULL: | 
|  | mac->forced_speed_duplex = ADVERTISE_100_FULL; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_FULL: | 
|  | mac->autoneg = 1; | 
|  | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | 
|  | default: | 
|  | goto err_inval; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_inval: | 
|  | dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, rctl, status; | 
|  | u32 wufc = adapter->wol; | 
|  | #ifdef CONFIG_PM | 
|  | int retval = 0; | 
|  | #endif | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | igb_close(netdev); | 
|  |  | 
|  | igb_clear_interrupt_scheme(adapter); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | retval = pci_save_state(pdev); | 
|  | if (retval) | 
|  | return retval; | 
|  | #endif | 
|  |  | 
|  | status = rd32(E1000_STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | wufc &= ~E1000_WUFC_LNKC; | 
|  |  | 
|  | if (wufc) { | 
|  | igb_setup_rctl(adapter); | 
|  | igb_set_rx_mode(netdev); | 
|  |  | 
|  | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | if (wufc & E1000_WUFC_MC) { | 
|  | rctl = rd32(E1000_RCTL); | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | wr32(E1000_RCTL, rctl); | 
|  | } | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | /* advertise wake from D3Cold */ | 
|  | #define E1000_CTRL_ADVD3WUC 0x00100000 | 
|  | /* phy power management enable */ | 
|  | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
|  | ctrl |= E1000_CTRL_ADVD3WUC; | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | igb_disable_pcie_master(hw); | 
|  |  | 
|  | wr32(E1000_WUC, E1000_WUC_PME_EN); | 
|  | wr32(E1000_WUFC, wufc); | 
|  | } else { | 
|  | wr32(E1000_WUC, 0); | 
|  | wr32(E1000_WUFC, 0); | 
|  | } | 
|  |  | 
|  | *enable_wake = wufc || adapter->en_mng_pt; | 
|  | if (!*enable_wake) | 
|  | igb_power_down_link(adapter); | 
|  | else | 
|  | igb_power_up_link(adapter); | 
|  |  | 
|  | /* Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. */ | 
|  | igb_release_hw_control(adapter); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | int retval; | 
|  | bool wake; | 
|  |  | 
|  | retval = __igb_shutdown(pdev, &wake); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (wake) { | 
|  | pci_prepare_to_sleep(pdev); | 
|  | } else { | 
|  | pci_wake_from_d3(pdev, false); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 err; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "igb: Cannot enable PCI device from suspend\n"); | 
|  | return err; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | if (igb_init_interrupt_scheme(adapter)) { | 
|  | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | igb_reset(adapter); | 
|  |  | 
|  | /* let the f/w know that the h/w is now under the control of the | 
|  | * driver. */ | 
|  | igb_get_hw_control(adapter); | 
|  |  | 
|  | wr32(E1000_WUS, ~0); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | err = igb_open(netdev); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void igb_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | bool wake; | 
|  |  | 
|  | __igb_shutdown(pdev, &wake); | 
|  |  | 
|  | if (system_state == SYSTEM_POWER_OFF) { | 
|  | pci_wake_from_d3(pdev, wake); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* | 
|  | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void igb_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int i; | 
|  |  | 
|  | if (!adapter->msix_entries) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[0]; | 
|  | igb_irq_disable(adapter); | 
|  | napi_schedule(&q_vector->napi); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < adapter->num_q_vectors; i++) { | 
|  | struct igb_q_vector *q_vector = adapter->q_vector[i]; | 
|  | wr32(E1000_EIMC, q_vector->eims_value); | 
|  | napi_schedule(&q_vector->napi); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_NET_POLL_CONTROLLER */ | 
|  |  | 
|  | /** | 
|  | * igb_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (state == pci_channel_io_perm_failure) | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | igb_down(adapter); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | * resembles the first-half of the igb_resume routine. | 
|  | */ | 
|  | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | pci_ers_result_t result; | 
|  | int err; | 
|  |  | 
|  | if (pci_enable_device_mem(pdev)) { | 
|  | dev_err(&pdev->dev, | 
|  | "Cannot re-enable PCI device after reset.\n"); | 
|  | result = PCI_ERS_RESULT_DISCONNECT; | 
|  | } else { | 
|  | pci_set_master(pdev); | 
|  | pci_restore_state(pdev); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | igb_reset(adapter); | 
|  | wr32(E1000_WUS, ~0); | 
|  | result = PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | err = pci_cleanup_aer_uncorrect_error_status(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " | 
|  | "failed 0x%0x\n", err); | 
|  | /* non-fatal, continue */ | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. Implementation resembles the | 
|  | * second-half of the igb_resume routine. | 
|  | */ | 
|  | static void igb_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (igb_up(adapter)) { | 
|  | dev_err(&pdev->dev, "igb_up failed after reset\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | /* let the f/w know that the h/w is now under the control of the | 
|  | * driver. */ | 
|  | igb_get_hw_control(adapter); | 
|  | } | 
|  |  | 
|  | static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, | 
|  | u8 qsel) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* HW expects these in little endian so we reverse the byte order | 
|  | * from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | 
|  | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | 
|  | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | 
|  |  | 
|  | /* Indicate to hardware the Address is Valid. */ | 
|  | rar_high |= E1000_RAH_AV; | 
|  |  | 
|  | if (hw->mac.type == e1000_82575) | 
|  | rar_high |= E1000_RAH_POOL_1 * qsel; | 
|  | else | 
|  | rar_high |= E1000_RAH_POOL_1 << qsel; | 
|  |  | 
|  | wr32(E1000_RAL(index), rar_low); | 
|  | wrfl(); | 
|  | wr32(E1000_RAH(index), rar_high); | 
|  | wrfl(); | 
|  | } | 
|  |  | 
|  | static int igb_set_vf_mac(struct igb_adapter *adapter, | 
|  | int vf, unsigned char *mac_addr) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | /* VF MAC addresses start at end of receive addresses and moves | 
|  | * torwards the first, as a result a collision should not be possible */ | 
|  | int rar_entry = hw->mac.rar_entry_count - (vf + 1); | 
|  |  | 
|  | memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); | 
|  |  | 
|  | igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) | 
|  | return -EINVAL; | 
|  | adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; | 
|  | dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); | 
|  | dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" | 
|  | " change effective."); | 
|  | if (test_bit(__IGB_DOWN, &adapter->state)) { | 
|  | dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," | 
|  | " but the PF device is not up.\n"); | 
|  | dev_warn(&adapter->pdev->dev, "Bring the PF device up before" | 
|  | " attempting to use the VF device.\n"); | 
|  | } | 
|  | return igb_set_vf_mac(adapter, vf, mac); | 
|  | } | 
|  |  | 
|  | static int igb_link_mbps(int internal_link_speed) | 
|  | { | 
|  | switch (internal_link_speed) { | 
|  | case SPEED_100: | 
|  | return 100; | 
|  | case SPEED_1000: | 
|  | return 1000; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, | 
|  | int link_speed) | 
|  | { | 
|  | int rf_dec, rf_int; | 
|  | u32 bcnrc_val; | 
|  |  | 
|  | if (tx_rate != 0) { | 
|  | /* Calculate the rate factor values to set */ | 
|  | rf_int = link_speed / tx_rate; | 
|  | rf_dec = (link_speed - (rf_int * tx_rate)); | 
|  | rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; | 
|  |  | 
|  | bcnrc_val = E1000_RTTBCNRC_RS_ENA; | 
|  | bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & | 
|  | E1000_RTTBCNRC_RF_INT_MASK); | 
|  | bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); | 
|  | } else { | 
|  | bcnrc_val = 0; | 
|  | } | 
|  |  | 
|  | wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ | 
|  | wr32(E1000_RTTBCNRC, bcnrc_val); | 
|  | } | 
|  |  | 
|  | static void igb_check_vf_rate_limit(struct igb_adapter *adapter) | 
|  | { | 
|  | int actual_link_speed, i; | 
|  | bool reset_rate = false; | 
|  |  | 
|  | /* VF TX rate limit was not set or not supported */ | 
|  | if ((adapter->vf_rate_link_speed == 0) || | 
|  | (adapter->hw.mac.type != e1000_82576)) | 
|  | return; | 
|  |  | 
|  | actual_link_speed = igb_link_mbps(adapter->link_speed); | 
|  | if (actual_link_speed != adapter->vf_rate_link_speed) { | 
|  | reset_rate = true; | 
|  | adapter->vf_rate_link_speed = 0; | 
|  | dev_info(&adapter->pdev->dev, | 
|  | "Link speed has been changed. VF Transmit " | 
|  | "rate is disabled\n"); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < adapter->vfs_allocated_count; i++) { | 
|  | if (reset_rate) | 
|  | adapter->vf_data[i].tx_rate = 0; | 
|  |  | 
|  | igb_set_vf_rate_limit(&adapter->hw, i, | 
|  | adapter->vf_data[i].tx_rate, | 
|  | actual_link_speed); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int actual_link_speed; | 
|  |  | 
|  | if (hw->mac.type != e1000_82576) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | actual_link_speed = igb_link_mbps(adapter->link_speed); | 
|  | if ((vf >= adapter->vfs_allocated_count) || | 
|  | (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || | 
|  | (tx_rate < 0) || (tx_rate > actual_link_speed)) | 
|  | return -EINVAL; | 
|  |  | 
|  | adapter->vf_rate_link_speed = actual_link_speed; | 
|  | adapter->vf_data[vf].tx_rate = (u16)tx_rate; | 
|  | igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int igb_ndo_get_vf_config(struct net_device *netdev, | 
|  | int vf, struct ifla_vf_info *ivi) | 
|  | { | 
|  | struct igb_adapter *adapter = netdev_priv(netdev); | 
|  | if (vf >= adapter->vfs_allocated_count) | 
|  | return -EINVAL; | 
|  | ivi->vf = vf; | 
|  | memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); | 
|  | ivi->tx_rate = adapter->vf_data[vf].tx_rate; | 
|  | ivi->vlan = adapter->vf_data[vf].pf_vlan; | 
|  | ivi->qos = adapter->vf_data[vf].pf_qos; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void igb_vmm_control(struct igb_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 reg; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82575: | 
|  | default: | 
|  | /* replication is not supported for 82575 */ | 
|  | return; | 
|  | case e1000_82576: | 
|  | /* notify HW that the MAC is adding vlan tags */ | 
|  | reg = rd32(E1000_DTXCTL); | 
|  | reg |= E1000_DTXCTL_VLAN_ADDED; | 
|  | wr32(E1000_DTXCTL, reg); | 
|  | case e1000_82580: | 
|  | /* enable replication vlan tag stripping */ | 
|  | reg = rd32(E1000_RPLOLR); | 
|  | reg |= E1000_RPLOLR_STRVLAN; | 
|  | wr32(E1000_RPLOLR, reg); | 
|  | case e1000_i350: | 
|  | /* none of the above registers are supported by i350 */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (adapter->vfs_allocated_count) { | 
|  | igb_vmdq_set_loopback_pf(hw, true); | 
|  | igb_vmdq_set_replication_pf(hw, true); | 
|  | igb_vmdq_set_anti_spoofing_pf(hw, true, | 
|  | adapter->vfs_allocated_count); | 
|  | } else { | 
|  | igb_vmdq_set_loopback_pf(hw, false); | 
|  | igb_vmdq_set_replication_pf(hw, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* igb_main.c */ |