|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/slab.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/coredump.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/path.h> | 
|  | #include <linux/timekeeping.h> | 
|  | #include <linux/elf.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/exec.h> | 
|  |  | 
|  | #include <trace/events/task.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | #include <trace/events/sched.h> | 
|  |  | 
|  | static bool dump_vma_snapshot(struct coredump_params *cprm); | 
|  | static void free_vma_snapshot(struct coredump_params *cprm); | 
|  |  | 
|  | int core_uses_pid; | 
|  | unsigned int core_pipe_limit; | 
|  | char core_pattern[CORENAME_MAX_SIZE] = "core"; | 
|  | static int core_name_size = CORENAME_MAX_SIZE; | 
|  |  | 
|  | struct core_name { | 
|  | char *corename; | 
|  | int used, size; | 
|  | }; | 
|  |  | 
|  | /* The maximal length of core_pattern is also specified in sysctl.c */ | 
|  |  | 
|  | static int expand_corename(struct core_name *cn, int size) | 
|  | { | 
|  | char *corename = krealloc(cn->corename, size, GFP_KERNEL); | 
|  |  | 
|  | if (!corename) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (size > core_name_size) /* racy but harmless */ | 
|  | core_name_size = size; | 
|  |  | 
|  | cn->size = ksize(corename); | 
|  | cn->corename = corename; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt, | 
|  | va_list arg) | 
|  | { | 
|  | int free, need; | 
|  | va_list arg_copy; | 
|  |  | 
|  | again: | 
|  | free = cn->size - cn->used; | 
|  |  | 
|  | va_copy(arg_copy, arg); | 
|  | need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy); | 
|  | va_end(arg_copy); | 
|  |  | 
|  | if (need < free) { | 
|  | cn->used += need; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!expand_corename(cn, cn->size + need - free + 1)) | 
|  | goto again; | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...) | 
|  | { | 
|  | va_list arg; | 
|  | int ret; | 
|  |  | 
|  | va_start(arg, fmt); | 
|  | ret = cn_vprintf(cn, fmt, arg); | 
|  | va_end(arg); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static __printf(2, 3) | 
|  | int cn_esc_printf(struct core_name *cn, const char *fmt, ...) | 
|  | { | 
|  | int cur = cn->used; | 
|  | va_list arg; | 
|  | int ret; | 
|  |  | 
|  | va_start(arg, fmt); | 
|  | ret = cn_vprintf(cn, fmt, arg); | 
|  | va_end(arg); | 
|  |  | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * Ensure that this coredump name component can't cause the | 
|  | * resulting corefile path to consist of a ".." or ".". | 
|  | */ | 
|  | if ((cn->used - cur == 1 && cn->corename[cur] == '.') || | 
|  | (cn->used - cur == 2 && cn->corename[cur] == '.' | 
|  | && cn->corename[cur+1] == '.')) | 
|  | cn->corename[cur] = '!'; | 
|  |  | 
|  | /* | 
|  | * Empty names are fishy and could be used to create a "//" in a | 
|  | * corefile name, causing the coredump to happen one directory | 
|  | * level too high. Enforce that all components of the core | 
|  | * pattern are at least one character long. | 
|  | */ | 
|  | if (cn->used == cur) | 
|  | ret = cn_printf(cn, "!"); | 
|  | } | 
|  |  | 
|  | for (; cur < cn->used; ++cur) { | 
|  | if (cn->corename[cur] == '/') | 
|  | cn->corename[cur] = '!'; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cn_print_exe_file(struct core_name *cn, bool name_only) | 
|  | { | 
|  | struct file *exe_file; | 
|  | char *pathbuf, *path, *ptr; | 
|  | int ret; | 
|  |  | 
|  | exe_file = get_mm_exe_file(current->mm); | 
|  | if (!exe_file) | 
|  | return cn_esc_printf(cn, "%s (path unknown)", current->comm); | 
|  |  | 
|  | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); | 
|  | if (!pathbuf) { | 
|  | ret = -ENOMEM; | 
|  | goto put_exe_file; | 
|  | } | 
|  |  | 
|  | path = file_path(exe_file, pathbuf, PATH_MAX); | 
|  | if (IS_ERR(path)) { | 
|  | ret = PTR_ERR(path); | 
|  | goto free_buf; | 
|  | } | 
|  |  | 
|  | if (name_only) { | 
|  | ptr = strrchr(path, '/'); | 
|  | if (ptr) | 
|  | path = ptr + 1; | 
|  | } | 
|  | ret = cn_esc_printf(cn, "%s", path); | 
|  |  | 
|  | free_buf: | 
|  | kfree(pathbuf); | 
|  | put_exe_file: | 
|  | fput(exe_file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* format_corename will inspect the pattern parameter, and output a | 
|  | * name into corename, which must have space for at least | 
|  | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | 
|  | */ | 
|  | static int format_corename(struct core_name *cn, struct coredump_params *cprm, | 
|  | size_t **argv, int *argc) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | const char *pat_ptr = core_pattern; | 
|  | int ispipe = (*pat_ptr == '|'); | 
|  | bool was_space = false; | 
|  | int pid_in_pattern = 0; | 
|  | int err = 0; | 
|  |  | 
|  | cn->used = 0; | 
|  | cn->corename = NULL; | 
|  | if (expand_corename(cn, core_name_size)) | 
|  | return -ENOMEM; | 
|  | cn->corename[0] = '\0'; | 
|  |  | 
|  | if (ispipe) { | 
|  | int argvs = sizeof(core_pattern) / 2; | 
|  | (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL); | 
|  | if (!(*argv)) | 
|  | return -ENOMEM; | 
|  | (*argv)[(*argc)++] = 0; | 
|  | ++pat_ptr; | 
|  | if (!(*pat_ptr)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Repeat as long as we have more pattern to process and more output | 
|  | space */ | 
|  | while (*pat_ptr) { | 
|  | /* | 
|  | * Split on spaces before doing template expansion so that | 
|  | * %e and %E don't get split if they have spaces in them | 
|  | */ | 
|  | if (ispipe) { | 
|  | if (isspace(*pat_ptr)) { | 
|  | if (cn->used != 0) | 
|  | was_space = true; | 
|  | pat_ptr++; | 
|  | continue; | 
|  | } else if (was_space) { | 
|  | was_space = false; | 
|  | err = cn_printf(cn, "%c", '\0'); | 
|  | if (err) | 
|  | return err; | 
|  | (*argv)[(*argc)++] = cn->used; | 
|  | } | 
|  | } | 
|  | if (*pat_ptr != '%') { | 
|  | err = cn_printf(cn, "%c", *pat_ptr++); | 
|  | } else { | 
|  | switch (*++pat_ptr) { | 
|  | /* single % at the end, drop that */ | 
|  | case 0: | 
|  | goto out; | 
|  | /* Double percent, output one percent */ | 
|  | case '%': | 
|  | err = cn_printf(cn, "%c", '%'); | 
|  | break; | 
|  | /* pid */ | 
|  | case 'p': | 
|  | pid_in_pattern = 1; | 
|  | err = cn_printf(cn, "%d", | 
|  | task_tgid_vnr(current)); | 
|  | break; | 
|  | /* global pid */ | 
|  | case 'P': | 
|  | err = cn_printf(cn, "%d", | 
|  | task_tgid_nr(current)); | 
|  | break; | 
|  | case 'i': | 
|  | err = cn_printf(cn, "%d", | 
|  | task_pid_vnr(current)); | 
|  | break; | 
|  | case 'I': | 
|  | err = cn_printf(cn, "%d", | 
|  | task_pid_nr(current)); | 
|  | break; | 
|  | /* uid */ | 
|  | case 'u': | 
|  | err = cn_printf(cn, "%u", | 
|  | from_kuid(&init_user_ns, | 
|  | cred->uid)); | 
|  | break; | 
|  | /* gid */ | 
|  | case 'g': | 
|  | err = cn_printf(cn, "%u", | 
|  | from_kgid(&init_user_ns, | 
|  | cred->gid)); | 
|  | break; | 
|  | case 'd': | 
|  | err = cn_printf(cn, "%d", | 
|  | __get_dumpable(cprm->mm_flags)); | 
|  | break; | 
|  | /* signal that caused the coredump */ | 
|  | case 's': | 
|  | err = cn_printf(cn, "%d", | 
|  | cprm->siginfo->si_signo); | 
|  | break; | 
|  | /* UNIX time of coredump */ | 
|  | case 't': { | 
|  | time64_t time; | 
|  |  | 
|  | time = ktime_get_real_seconds(); | 
|  | err = cn_printf(cn, "%lld", time); | 
|  | break; | 
|  | } | 
|  | /* hostname */ | 
|  | case 'h': | 
|  | down_read(&uts_sem); | 
|  | err = cn_esc_printf(cn, "%s", | 
|  | utsname()->nodename); | 
|  | up_read(&uts_sem); | 
|  | break; | 
|  | /* executable, could be changed by prctl PR_SET_NAME etc */ | 
|  | case 'e': | 
|  | err = cn_esc_printf(cn, "%s", current->comm); | 
|  | break; | 
|  | /* file name of executable */ | 
|  | case 'f': | 
|  | err = cn_print_exe_file(cn, true); | 
|  | break; | 
|  | case 'E': | 
|  | err = cn_print_exe_file(cn, false); | 
|  | break; | 
|  | /* core limit size */ | 
|  | case 'c': | 
|  | err = cn_printf(cn, "%lu", | 
|  | rlimit(RLIMIT_CORE)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ++pat_ptr; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Backward compatibility with core_uses_pid: | 
|  | * | 
|  | * If core_pattern does not include a %p (as is the default) | 
|  | * and core_uses_pid is set, then .%pid will be appended to | 
|  | * the filename. Do not do this for piped commands. */ | 
|  | if (!ispipe && !pid_in_pattern && core_uses_pid) { | 
|  | err = cn_printf(cn, ".%d", task_tgid_vnr(current)); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return ispipe; | 
|  | } | 
|  |  | 
|  | static int zap_process(struct task_struct *start, int exit_code, int flags) | 
|  | { | 
|  | struct task_struct *t; | 
|  | int nr = 0; | 
|  |  | 
|  | /* ignore all signals except SIGKILL, see prepare_signal() */ | 
|  | start->signal->flags = SIGNAL_GROUP_COREDUMP | flags; | 
|  | start->signal->group_exit_code = exit_code; | 
|  | start->signal->group_stop_count = 0; | 
|  |  | 
|  | for_each_thread(start, t) { | 
|  | task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); | 
|  | if (t != current && t->mm) { | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | nr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | 
|  | struct core_state *core_state, int exit_code) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | unsigned long flags; | 
|  | int nr = -EAGAIN; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | if (!signal_group_exit(tsk->signal)) { | 
|  | mm->core_state = core_state; | 
|  | tsk->signal->group_exit_task = tsk; | 
|  | nr = zap_process(tsk, exit_code, 0); | 
|  | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | if (unlikely(nr < 0)) | 
|  | return nr; | 
|  |  | 
|  | tsk->flags |= PF_DUMPCORE; | 
|  | if (atomic_read(&mm->mm_users) == nr + 1) | 
|  | goto done; | 
|  | /* | 
|  | * We should find and kill all tasks which use this mm, and we should | 
|  | * count them correctly into ->nr_threads. We don't take tasklist | 
|  | * lock, but this is safe wrt: | 
|  | * | 
|  | * fork: | 
|  | *	None of sub-threads can fork after zap_process(leader). All | 
|  | *	processes which were created before this point should be | 
|  | *	visible to zap_threads() because copy_process() adds the new | 
|  | *	process to the tail of init_task.tasks list, and lock/unlock | 
|  | *	of ->siglock provides a memory barrier. | 
|  | * | 
|  | * do_exit: | 
|  | *	The caller holds mm->mmap_lock. This means that the task which | 
|  | *	uses this mm can't pass exit_mm(), so it can't exit or clear | 
|  | *	its ->mm. | 
|  | * | 
|  | * de_thread: | 
|  | *	It does list_replace_rcu(&leader->tasks, ¤t->tasks), | 
|  | *	we must see either old or new leader, this does not matter. | 
|  | *	However, it can change p->sighand, so lock_task_sighand(p) | 
|  | *	must be used. Since p->mm != NULL and we hold ->mmap_lock | 
|  | *	it can't fail. | 
|  | * | 
|  | *	Note also that "g" can be the old leader with ->mm == NULL | 
|  | *	and already unhashed and thus removed from ->thread_group. | 
|  | *	This is OK, __unhash_process()->list_del_rcu() does not | 
|  | *	clear the ->next pointer, we will find the new leader via | 
|  | *	next_thread(). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for_each_process(g) { | 
|  | if (g == tsk->group_leader) | 
|  | continue; | 
|  | if (g->flags & PF_KTHREAD) | 
|  | continue; | 
|  |  | 
|  | for_each_thread(g, p) { | 
|  | if (unlikely(!p->mm)) | 
|  | continue; | 
|  | if (unlikely(p->mm == mm)) { | 
|  | lock_task_sighand(p, &flags); | 
|  | nr += zap_process(p, exit_code, | 
|  | SIGNAL_GROUP_EXIT); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | done: | 
|  | atomic_set(&core_state->nr_threads, nr); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int coredump_wait(int exit_code, struct core_state *core_state) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct mm_struct *mm = tsk->mm; | 
|  | int core_waiters = -EBUSY; | 
|  |  | 
|  | init_completion(&core_state->startup); | 
|  | core_state->dumper.task = tsk; | 
|  | core_state->dumper.next = NULL; | 
|  |  | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  |  | 
|  | if (!mm->core_state) | 
|  | core_waiters = zap_threads(tsk, mm, core_state, exit_code); | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | if (core_waiters > 0) { | 
|  | struct core_thread *ptr; | 
|  |  | 
|  | freezer_do_not_count(); | 
|  | wait_for_completion(&core_state->startup); | 
|  | freezer_count(); | 
|  | /* | 
|  | * Wait for all the threads to become inactive, so that | 
|  | * all the thread context (extended register state, like | 
|  | * fpu etc) gets copied to the memory. | 
|  | */ | 
|  | ptr = core_state->dumper.next; | 
|  | while (ptr != NULL) { | 
|  | wait_task_inactive(ptr->task, 0); | 
|  | ptr = ptr->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | return core_waiters; | 
|  | } | 
|  |  | 
|  | static void coredump_finish(struct mm_struct *mm, bool core_dumped) | 
|  | { | 
|  | struct core_thread *curr, *next; | 
|  | struct task_struct *task; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | if (core_dumped && !__fatal_signal_pending(current)) | 
|  | current->signal->group_exit_code |= 0x80; | 
|  | current->signal->group_exit_task = NULL; | 
|  | current->signal->flags = SIGNAL_GROUP_EXIT; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | next = mm->core_state->dumper.next; | 
|  | while ((curr = next) != NULL) { | 
|  | next = curr->next; | 
|  | task = curr->task; | 
|  | /* | 
|  | * see exit_mm(), curr->task must not see | 
|  | * ->task == NULL before we read ->next. | 
|  | */ | 
|  | smp_mb(); | 
|  | curr->task = NULL; | 
|  | wake_up_process(task); | 
|  | } | 
|  |  | 
|  | mm->core_state = NULL; | 
|  | } | 
|  |  | 
|  | static bool dump_interrupted(void) | 
|  | { | 
|  | /* | 
|  | * SIGKILL or freezing() interrupt the coredumping. Perhaps we | 
|  | * can do try_to_freeze() and check __fatal_signal_pending(), | 
|  | * but then we need to teach dump_write() to restart and clear | 
|  | * TIF_SIGPENDING. | 
|  | */ | 
|  | return signal_pending(current); | 
|  | } | 
|  |  | 
|  | static void wait_for_dump_helpers(struct file *file) | 
|  | { | 
|  | struct pipe_inode_info *pipe = file->private_data; | 
|  |  | 
|  | pipe_lock(pipe); | 
|  | pipe->readers++; | 
|  | pipe->writers--; | 
|  | wake_up_interruptible_sync(&pipe->rd_wait); | 
|  | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); | 
|  | pipe_unlock(pipe); | 
|  |  | 
|  | /* | 
|  | * We actually want wait_event_freezable() but then we need | 
|  | * to clear TIF_SIGPENDING and improve dump_interrupted(). | 
|  | */ | 
|  | wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); | 
|  |  | 
|  | pipe_lock(pipe); | 
|  | pipe->readers--; | 
|  | pipe->writers++; | 
|  | pipe_unlock(pipe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * umh_pipe_setup | 
|  | * helper function to customize the process used | 
|  | * to collect the core in userspace.  Specifically | 
|  | * it sets up a pipe and installs it as fd 0 (stdin) | 
|  | * for the process.  Returns 0 on success, or | 
|  | * PTR_ERR on failure. | 
|  | * Note that it also sets the core limit to 1.  This | 
|  | * is a special value that we use to trap recursive | 
|  | * core dumps | 
|  | */ | 
|  | static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) | 
|  | { | 
|  | struct file *files[2]; | 
|  | struct coredump_params *cp = (struct coredump_params *)info->data; | 
|  | int err = create_pipe_files(files, 0); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | cp->file = files[1]; | 
|  |  | 
|  | err = replace_fd(0, files[0], 0); | 
|  | fput(files[0]); | 
|  | /* and disallow core files too */ | 
|  | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void do_coredump(const kernel_siginfo_t *siginfo) | 
|  | { | 
|  | struct core_state core_state; | 
|  | struct core_name cn; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct linux_binfmt * binfmt; | 
|  | const struct cred *old_cred; | 
|  | struct cred *cred; | 
|  | int retval = 0; | 
|  | int ispipe; | 
|  | size_t *argv = NULL; | 
|  | int argc = 0; | 
|  | struct files_struct *displaced; | 
|  | /* require nonrelative corefile path and be extra careful */ | 
|  | bool need_suid_safe = false; | 
|  | bool core_dumped = false; | 
|  | static atomic_t core_dump_count = ATOMIC_INIT(0); | 
|  | struct coredump_params cprm = { | 
|  | .siginfo = siginfo, | 
|  | .regs = signal_pt_regs(), | 
|  | .limit = rlimit(RLIMIT_CORE), | 
|  | /* | 
|  | * We must use the same mm->flags while dumping core to avoid | 
|  | * inconsistency of bit flags, since this flag is not protected | 
|  | * by any locks. | 
|  | */ | 
|  | .mm_flags = mm->flags, | 
|  | .vma_meta = NULL, | 
|  | }; | 
|  |  | 
|  | audit_core_dumps(siginfo->si_signo); | 
|  |  | 
|  | binfmt = mm->binfmt; | 
|  | if (!binfmt || !binfmt->core_dump) | 
|  | goto fail; | 
|  | if (!__get_dumpable(cprm.mm_flags)) | 
|  | goto fail; | 
|  |  | 
|  | cred = prepare_creds(); | 
|  | if (!cred) | 
|  | goto fail; | 
|  | /* | 
|  | * We cannot trust fsuid as being the "true" uid of the process | 
|  | * nor do we know its entire history. We only know it was tainted | 
|  | * so we dump it as root in mode 2, and only into a controlled | 
|  | * environment (pipe handler or fully qualified path). | 
|  | */ | 
|  | if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) { | 
|  | /* Setuid core dump mode */ | 
|  | cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */ | 
|  | need_suid_safe = true; | 
|  | } | 
|  |  | 
|  | retval = coredump_wait(siginfo->si_signo, &core_state); | 
|  | if (retval < 0) | 
|  | goto fail_creds; | 
|  |  | 
|  | old_cred = override_creds(cred); | 
|  |  | 
|  | ispipe = format_corename(&cn, &cprm, &argv, &argc); | 
|  |  | 
|  | if (ispipe) { | 
|  | int argi; | 
|  | int dump_count; | 
|  | char **helper_argv; | 
|  | struct subprocess_info *sub_info; | 
|  |  | 
|  | if (ispipe < 0) { | 
|  | printk(KERN_WARNING "format_corename failed\n"); | 
|  | printk(KERN_WARNING "Aborting core\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | if (cprm.limit == 1) { | 
|  | /* See umh_pipe_setup() which sets RLIMIT_CORE = 1. | 
|  | * | 
|  | * Normally core limits are irrelevant to pipes, since | 
|  | * we're not writing to the file system, but we use | 
|  | * cprm.limit of 1 here as a special value, this is a | 
|  | * consistent way to catch recursive crashes. | 
|  | * We can still crash if the core_pattern binary sets | 
|  | * RLIM_CORE = !1, but it runs as root, and can do | 
|  | * lots of stupid things. | 
|  | * | 
|  | * Note that we use task_tgid_vnr here to grab the pid | 
|  | * of the process group leader.  That way we get the | 
|  | * right pid if a thread in a multi-threaded | 
|  | * core_pattern process dies. | 
|  | */ | 
|  | printk(KERN_WARNING | 
|  | "Process %d(%s) has RLIMIT_CORE set to 1\n", | 
|  | task_tgid_vnr(current), current->comm); | 
|  | printk(KERN_WARNING "Aborting core\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  | cprm.limit = RLIM_INFINITY; | 
|  |  | 
|  | dump_count = atomic_inc_return(&core_dump_count); | 
|  | if (core_pipe_limit && (core_pipe_limit < dump_count)) { | 
|  | printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", | 
|  | task_tgid_vnr(current), current->comm); | 
|  | printk(KERN_WARNING "Skipping core dump\n"); | 
|  | goto fail_dropcount; | 
|  | } | 
|  |  | 
|  | helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv), | 
|  | GFP_KERNEL); | 
|  | if (!helper_argv) { | 
|  | printk(KERN_WARNING "%s failed to allocate memory\n", | 
|  | __func__); | 
|  | goto fail_dropcount; | 
|  | } | 
|  | for (argi = 0; argi < argc; argi++) | 
|  | helper_argv[argi] = cn.corename + argv[argi]; | 
|  | helper_argv[argi] = NULL; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | sub_info = call_usermodehelper_setup(helper_argv[0], | 
|  | helper_argv, NULL, GFP_KERNEL, | 
|  | umh_pipe_setup, NULL, &cprm); | 
|  | if (sub_info) | 
|  | retval = call_usermodehelper_exec(sub_info, | 
|  | UMH_WAIT_EXEC); | 
|  |  | 
|  | kfree(helper_argv); | 
|  | if (retval) { | 
|  | printk(KERN_INFO "Core dump to |%s pipe failed\n", | 
|  | cn.corename); | 
|  | goto close_fail; | 
|  | } | 
|  | } else { | 
|  | struct inode *inode; | 
|  | int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW | | 
|  | O_LARGEFILE | O_EXCL; | 
|  |  | 
|  | if (cprm.limit < binfmt->min_coredump) | 
|  | goto fail_unlock; | 
|  |  | 
|  | if (need_suid_safe && cn.corename[0] != '/') { | 
|  | printk(KERN_WARNING "Pid %d(%s) can only dump core "\ | 
|  | "to fully qualified path!\n", | 
|  | task_tgid_vnr(current), current->comm); | 
|  | printk(KERN_WARNING "Skipping core dump\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink the file if it exists unless this is a SUID | 
|  | * binary - in that case, we're running around with root | 
|  | * privs and don't want to unlink another user's coredump. | 
|  | */ | 
|  | if (!need_suid_safe) { | 
|  | /* | 
|  | * If it doesn't exist, that's fine. If there's some | 
|  | * other problem, we'll catch it at the filp_open(). | 
|  | */ | 
|  | do_unlinkat(AT_FDCWD, getname_kernel(cn.corename)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is a race between unlinking and creating the | 
|  | * file, but if that causes an EEXIST here, that's | 
|  | * fine - another process raced with us while creating | 
|  | * the corefile, and the other process won. To userspace, | 
|  | * what matters is that at least one of the two processes | 
|  | * writes its coredump successfully, not which one. | 
|  | */ | 
|  | if (need_suid_safe) { | 
|  | /* | 
|  | * Using user namespaces, normal user tasks can change | 
|  | * their current->fs->root to point to arbitrary | 
|  | * directories. Since the intention of the "only dump | 
|  | * with a fully qualified path" rule is to control where | 
|  | * coredumps may be placed using root privileges, | 
|  | * current->fs->root must not be used. Instead, use the | 
|  | * root directory of init_task. | 
|  | */ | 
|  | struct path root; | 
|  |  | 
|  | task_lock(&init_task); | 
|  | get_fs_root(init_task.fs, &root); | 
|  | task_unlock(&init_task); | 
|  | cprm.file = file_open_root(root.dentry, root.mnt, | 
|  | cn.corename, open_flags, 0600); | 
|  | path_put(&root); | 
|  | } else { | 
|  | cprm.file = filp_open(cn.corename, open_flags, 0600); | 
|  | } | 
|  | if (IS_ERR(cprm.file)) | 
|  | goto fail_unlock; | 
|  |  | 
|  | inode = file_inode(cprm.file); | 
|  | if (inode->i_nlink > 1) | 
|  | goto close_fail; | 
|  | if (d_unhashed(cprm.file->f_path.dentry)) | 
|  | goto close_fail; | 
|  | /* | 
|  | * AK: actually i see no reason to not allow this for named | 
|  | * pipes etc, but keep the previous behaviour for now. | 
|  | */ | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | goto close_fail; | 
|  | /* | 
|  | * Don't dump core if the filesystem changed owner or mode | 
|  | * of the file during file creation. This is an issue when | 
|  | * a process dumps core while its cwd is e.g. on a vfat | 
|  | * filesystem. | 
|  | */ | 
|  | if (!uid_eq(inode->i_uid, current_fsuid())) | 
|  | goto close_fail; | 
|  | if ((inode->i_mode & 0677) != 0600) | 
|  | goto close_fail; | 
|  | if (!(cprm.file->f_mode & FMODE_CAN_WRITE)) | 
|  | goto close_fail; | 
|  | if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) | 
|  | goto close_fail; | 
|  | } | 
|  |  | 
|  | /* get us an unshared descriptor table; almost always a no-op */ | 
|  | retval = unshare_files(&displaced); | 
|  | if (retval) | 
|  | goto close_fail; | 
|  | if (displaced) | 
|  | put_files_struct(displaced); | 
|  | if (!dump_interrupted()) { | 
|  | /* | 
|  | * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would | 
|  | * have this set to NULL. | 
|  | */ | 
|  | if (!cprm.file) { | 
|  | pr_info("Core dump to |%s disabled\n", cn.corename); | 
|  | goto close_fail; | 
|  | } | 
|  | if (!dump_vma_snapshot(&cprm)) | 
|  | goto close_fail; | 
|  |  | 
|  | file_start_write(cprm.file); | 
|  | core_dumped = binfmt->core_dump(&cprm); | 
|  | file_end_write(cprm.file); | 
|  | free_vma_snapshot(&cprm); | 
|  | } | 
|  | if (ispipe && core_pipe_limit) | 
|  | wait_for_dump_helpers(cprm.file); | 
|  | close_fail: | 
|  | if (cprm.file) | 
|  | filp_close(cprm.file, NULL); | 
|  | fail_dropcount: | 
|  | if (ispipe) | 
|  | atomic_dec(&core_dump_count); | 
|  | fail_unlock: | 
|  | kfree(argv); | 
|  | kfree(cn.corename); | 
|  | coredump_finish(mm, core_dumped); | 
|  | revert_creds(old_cred); | 
|  | fail_creds: | 
|  | put_cred(cred); | 
|  | fail: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Core dumping helper functions.  These are the only things you should | 
|  | * do on a core-file: use only these functions to write out all the | 
|  | * necessary info. | 
|  | */ | 
|  | int dump_emit(struct coredump_params *cprm, const void *addr, int nr) | 
|  | { | 
|  | struct file *file = cprm->file; | 
|  | loff_t pos = file->f_pos; | 
|  | ssize_t n; | 
|  | if (cprm->written + nr > cprm->limit) | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | if (dump_interrupted()) | 
|  | return 0; | 
|  | n = __kernel_write(file, addr, nr, &pos); | 
|  | if (n != nr) | 
|  | return 0; | 
|  | file->f_pos = pos; | 
|  | cprm->written += n; | 
|  | cprm->pos += n; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_emit); | 
|  |  | 
|  | int dump_skip(struct coredump_params *cprm, size_t nr) | 
|  | { | 
|  | static char zeroes[PAGE_SIZE]; | 
|  | struct file *file = cprm->file; | 
|  | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | 
|  | if (dump_interrupted() || | 
|  | file->f_op->llseek(file, nr, SEEK_CUR) < 0) | 
|  | return 0; | 
|  | cprm->pos += nr; | 
|  | return 1; | 
|  | } else { | 
|  | while (nr > PAGE_SIZE) { | 
|  | if (!dump_emit(cprm, zeroes, PAGE_SIZE)) | 
|  | return 0; | 
|  | nr -= PAGE_SIZE; | 
|  | } | 
|  | return dump_emit(cprm, zeroes, nr); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dump_skip); | 
|  |  | 
|  | #ifdef CONFIG_ELF_CORE | 
|  | int dump_user_range(struct coredump_params *cprm, unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | for (addr = start; addr < start + len; addr += PAGE_SIZE) { | 
|  | struct page *page; | 
|  | int stop; | 
|  |  | 
|  | /* | 
|  | * To avoid having to allocate page tables for virtual address | 
|  | * ranges that have never been used yet, and also to make it | 
|  | * easy to generate sparse core files, use a helper that returns | 
|  | * NULL when encountering an empty page table entry that would | 
|  | * otherwise have been filled with the zero page. | 
|  | */ | 
|  | page = get_dump_page(addr); | 
|  | if (page) { | 
|  | void *kaddr = kmap(page); | 
|  |  | 
|  | stop = !dump_emit(cprm, kaddr, PAGE_SIZE); | 
|  | kunmap(page); | 
|  | put_page(page); | 
|  | } else { | 
|  | stop = !dump_skip(cprm, PAGE_SIZE); | 
|  | } | 
|  | if (stop) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int dump_align(struct coredump_params *cprm, int align) | 
|  | { | 
|  | unsigned mod = cprm->pos & (align - 1); | 
|  | if (align & (align - 1)) | 
|  | return 0; | 
|  | return mod ? dump_skip(cprm, align - mod) : 1; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_align); | 
|  |  | 
|  | /* | 
|  | * Ensures that file size is big enough to contain the current file | 
|  | * postion. This prevents gdb from complaining about a truncated file | 
|  | * if the last "write" to the file was dump_skip. | 
|  | */ | 
|  | void dump_truncate(struct coredump_params *cprm) | 
|  | { | 
|  | struct file *file = cprm->file; | 
|  | loff_t offset; | 
|  |  | 
|  | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | 
|  | offset = file->f_op->llseek(file, 0, SEEK_CUR); | 
|  | if (i_size_read(file->f_mapping->host) < offset) | 
|  | do_truncate(file->f_path.dentry, offset, 0, file); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dump_truncate); | 
|  |  | 
|  | /* | 
|  | * The purpose of always_dump_vma() is to make sure that special kernel mappings | 
|  | * that are useful for post-mortem analysis are included in every core dump. | 
|  | * In that way we ensure that the core dump is fully interpretable later | 
|  | * without matching up the same kernel and hardware config to see what PC values | 
|  | * meant. These special mappings include - vDSO, vsyscall, and other | 
|  | * architecture specific mappings | 
|  | */ | 
|  | static bool always_dump_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | /* Any vsyscall mappings? */ | 
|  | if (vma == get_gate_vma(vma->vm_mm)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * Assume that all vmas with a .name op should always be dumped. | 
|  | * If this changes, a new vm_ops field can easily be added. | 
|  | */ | 
|  | if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * arch_vma_name() returns non-NULL for special architecture mappings, | 
|  | * such as vDSO sections. | 
|  | */ | 
|  | if (arch_vma_name(vma)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1 | 
|  |  | 
|  | /* | 
|  | * Decide how much of @vma's contents should be included in a core dump. | 
|  | */ | 
|  | static unsigned long vma_dump_size(struct vm_area_struct *vma, | 
|  | unsigned long mm_flags) | 
|  | { | 
|  | #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type)) | 
|  |  | 
|  | /* always dump the vdso and vsyscall sections */ | 
|  | if (always_dump_vma(vma)) | 
|  | goto whole; | 
|  |  | 
|  | if (vma->vm_flags & VM_DONTDUMP) | 
|  | return 0; | 
|  |  | 
|  | /* support for DAX */ | 
|  | if (vma_is_dax(vma)) { | 
|  | if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED)) | 
|  | goto whole; | 
|  | if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE)) | 
|  | goto whole; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Hugetlb memory check */ | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) | 
|  | goto whole; | 
|  | if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) | 
|  | goto whole; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do not dump I/O mapped devices or special mappings */ | 
|  | if (vma->vm_flags & VM_IO) | 
|  | return 0; | 
|  |  | 
|  | /* By default, dump shared memory if mapped from an anonymous file. */ | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | if (file_inode(vma->vm_file)->i_nlink == 0 ? | 
|  | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) | 
|  | goto whole; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Dump segments that have been written to.  */ | 
|  | if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE)) | 
|  | goto whole; | 
|  | if (vma->vm_file == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (FILTER(MAPPED_PRIVATE)) | 
|  | goto whole; | 
|  |  | 
|  | /* | 
|  | * If this is the beginning of an executable file mapping, | 
|  | * dump the first page to aid in determining what was mapped here. | 
|  | */ | 
|  | if (FILTER(ELF_HEADERS) && | 
|  | vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { | 
|  | if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0) | 
|  | return PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * ELF libraries aren't always executable. | 
|  | * We'll want to check whether the mapping starts with the ELF | 
|  | * magic, but not now - we're holding the mmap lock, | 
|  | * so copy_from_user() doesn't work here. | 
|  | * Use a placeholder instead, and fix it up later in | 
|  | * dump_vma_snapshot(). | 
|  | */ | 
|  | return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER; | 
|  | } | 
|  |  | 
|  | #undef	FILTER | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | whole: | 
|  | return vma->vm_end - vma->vm_start; | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *first_vma(struct task_struct *tsk, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret = tsk->mm->mmap; | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | return gate_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for iterating across a vma list.  It ensures that the caller | 
|  | * will visit `gate_vma' prior to terminating the search. | 
|  | */ | 
|  | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret; | 
|  |  | 
|  | ret = this_vma->vm_next; | 
|  | if (ret) | 
|  | return ret; | 
|  | if (this_vma == gate_vma) | 
|  | return NULL; | 
|  | return gate_vma; | 
|  | } | 
|  |  | 
|  | static void free_vma_snapshot(struct coredump_params *cprm) | 
|  | { | 
|  | if (cprm->vma_meta) { | 
|  | int i; | 
|  | for (i = 0; i < cprm->vma_count; i++) { | 
|  | struct file *file = cprm->vma_meta[i].file; | 
|  | if (file) | 
|  | fput(file); | 
|  | } | 
|  | kvfree(cprm->vma_meta); | 
|  | cprm->vma_meta = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Under the mmap_lock, take a snapshot of relevant information about the task's | 
|  | * VMAs. | 
|  | */ | 
|  | static bool dump_vma_snapshot(struct coredump_params *cprm) | 
|  | { | 
|  | struct vm_area_struct *vma, *gate_vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Once the stack expansion code is fixed to not change VMA bounds | 
|  | * under mmap_lock in read mode, this can be changed to take the | 
|  | * mmap_lock in read mode. | 
|  | */ | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return false; | 
|  |  | 
|  | cprm->vma_data_size = 0; | 
|  | gate_vma = get_gate_vma(mm); | 
|  | cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0); | 
|  |  | 
|  | cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL); | 
|  | if (!cprm->vma_meta) { | 
|  | mmap_write_unlock(mm); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (i = 0, vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma), i++) { | 
|  | struct core_vma_metadata *m = cprm->vma_meta + i; | 
|  |  | 
|  | m->start = vma->vm_start; | 
|  | m->end = vma->vm_end; | 
|  | m->flags = vma->vm_flags; | 
|  | m->dump_size = vma_dump_size(vma, cprm->mm_flags); | 
|  | m->pgoff = vma->vm_pgoff; | 
|  |  | 
|  | m->file = vma->vm_file; | 
|  | if (m->file) | 
|  | get_file(m->file); | 
|  | } | 
|  |  | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | for (i = 0; i < cprm->vma_count; i++) { | 
|  | struct core_vma_metadata *m = cprm->vma_meta + i; | 
|  |  | 
|  | if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) { | 
|  | char elfmag[SELFMAG]; | 
|  |  | 
|  | if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) || | 
|  | memcmp(elfmag, ELFMAG, SELFMAG) != 0) { | 
|  | m->dump_size = 0; | 
|  | } else { | 
|  | m->dump_size = PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | cprm->vma_data_size += m->dump_size; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |