|  | #include <linux/mm.h> | 
|  | #include <linux/vmacache.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/huge_mm.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/shmem_fs.h> | 
|  |  | 
|  | #include <asm/elf.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | void task_mem(struct seq_file *m, struct mm_struct *mm) | 
|  | { | 
|  | unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; | 
|  | unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; | 
|  |  | 
|  | anon = get_mm_counter(mm, MM_ANONPAGES); | 
|  | file = get_mm_counter(mm, MM_FILEPAGES); | 
|  | shmem = get_mm_counter(mm, MM_SHMEMPAGES); | 
|  |  | 
|  | /* | 
|  | * Note: to minimize their overhead, mm maintains hiwater_vm and | 
|  | * hiwater_rss only when about to *lower* total_vm or rss.  Any | 
|  | * collector of these hiwater stats must therefore get total_vm | 
|  | * and rss too, which will usually be the higher.  Barriers? not | 
|  | * worth the effort, such snapshots can always be inconsistent. | 
|  | */ | 
|  | hiwater_vm = total_vm = mm->total_vm; | 
|  | if (hiwater_vm < mm->hiwater_vm) | 
|  | hiwater_vm = mm->hiwater_vm; | 
|  | hiwater_rss = total_rss = anon + file + shmem; | 
|  | if (hiwater_rss < mm->hiwater_rss) | 
|  | hiwater_rss = mm->hiwater_rss; | 
|  |  | 
|  | text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; | 
|  | lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; | 
|  | swap = get_mm_counter(mm, MM_SWAPENTS); | 
|  | ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); | 
|  | pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); | 
|  | seq_printf(m, | 
|  | "VmPeak:\t%8lu kB\n" | 
|  | "VmSize:\t%8lu kB\n" | 
|  | "VmLck:\t%8lu kB\n" | 
|  | "VmPin:\t%8lu kB\n" | 
|  | "VmHWM:\t%8lu kB\n" | 
|  | "VmRSS:\t%8lu kB\n" | 
|  | "RssAnon:\t%8lu kB\n" | 
|  | "RssFile:\t%8lu kB\n" | 
|  | "RssShmem:\t%8lu kB\n" | 
|  | "VmData:\t%8lu kB\n" | 
|  | "VmStk:\t%8lu kB\n" | 
|  | "VmExe:\t%8lu kB\n" | 
|  | "VmLib:\t%8lu kB\n" | 
|  | "VmPTE:\t%8lu kB\n" | 
|  | "VmPMD:\t%8lu kB\n" | 
|  | "VmSwap:\t%8lu kB\n", | 
|  | hiwater_vm << (PAGE_SHIFT-10), | 
|  | total_vm << (PAGE_SHIFT-10), | 
|  | mm->locked_vm << (PAGE_SHIFT-10), | 
|  | mm->pinned_vm << (PAGE_SHIFT-10), | 
|  | hiwater_rss << (PAGE_SHIFT-10), | 
|  | total_rss << (PAGE_SHIFT-10), | 
|  | anon << (PAGE_SHIFT-10), | 
|  | file << (PAGE_SHIFT-10), | 
|  | shmem << (PAGE_SHIFT-10), | 
|  | mm->data_vm << (PAGE_SHIFT-10), | 
|  | mm->stack_vm << (PAGE_SHIFT-10), text, lib, | 
|  | ptes >> 10, | 
|  | pmds >> 10, | 
|  | swap << (PAGE_SHIFT-10)); | 
|  | hugetlb_report_usage(m, mm); | 
|  | } | 
|  |  | 
|  | unsigned long task_vsize(struct mm_struct *mm) | 
|  | { | 
|  | return PAGE_SIZE * mm->total_vm; | 
|  | } | 
|  |  | 
|  | unsigned long task_statm(struct mm_struct *mm, | 
|  | unsigned long *shared, unsigned long *text, | 
|  | unsigned long *data, unsigned long *resident) | 
|  | { | 
|  | *shared = get_mm_counter(mm, MM_FILEPAGES) + | 
|  | get_mm_counter(mm, MM_SHMEMPAGES); | 
|  | *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) | 
|  | >> PAGE_SHIFT; | 
|  | *data = mm->data_vm + mm->stack_vm; | 
|  | *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); | 
|  | return mm->total_vm; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Save get_task_policy() for show_numa_map(). | 
|  | */ | 
|  | static void hold_task_mempolicy(struct proc_maps_private *priv) | 
|  | { | 
|  | struct task_struct *task = priv->task; | 
|  |  | 
|  | task_lock(task); | 
|  | priv->task_mempolicy = get_task_policy(task); | 
|  | mpol_get(priv->task_mempolicy); | 
|  | task_unlock(task); | 
|  | } | 
|  | static void release_task_mempolicy(struct proc_maps_private *priv) | 
|  | { | 
|  | mpol_put(priv->task_mempolicy); | 
|  | } | 
|  | #else | 
|  | static void hold_task_mempolicy(struct proc_maps_private *priv) | 
|  | { | 
|  | } | 
|  | static void release_task_mempolicy(struct proc_maps_private *priv) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void vma_stop(struct proc_maps_private *priv) | 
|  | { | 
|  | struct mm_struct *mm = priv->mm; | 
|  |  | 
|  | release_task_mempolicy(priv); | 
|  | up_read(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct * | 
|  | m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) | 
|  | { | 
|  | if (vma == priv->tail_vma) | 
|  | return NULL; | 
|  | return vma->vm_next ?: priv->tail_vma; | 
|  | } | 
|  |  | 
|  | static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) | 
|  | { | 
|  | if (m->count < m->size)	/* vma is copied successfully */ | 
|  | m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; | 
|  | } | 
|  |  | 
|  | static void *m_start(struct seq_file *m, loff_t *ppos) | 
|  | { | 
|  | struct proc_maps_private *priv = m->private; | 
|  | unsigned long last_addr = m->version; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned int pos = *ppos; | 
|  |  | 
|  | /* See m_cache_vma(). Zero at the start or after lseek. */ | 
|  | if (last_addr == -1UL) | 
|  | return NULL; | 
|  |  | 
|  | priv->task = get_proc_task(priv->inode); | 
|  | if (!priv->task) | 
|  | return ERR_PTR(-ESRCH); | 
|  |  | 
|  | mm = priv->mm; | 
|  | if (!mm || !atomic_inc_not_zero(&mm->mm_users)) | 
|  | return NULL; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | hold_task_mempolicy(priv); | 
|  | priv->tail_vma = get_gate_vma(mm); | 
|  |  | 
|  | if (last_addr) { | 
|  | vma = find_vma(mm, last_addr - 1); | 
|  | if (vma && vma->vm_start <= last_addr) | 
|  | vma = m_next_vma(priv, vma); | 
|  | if (vma) | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | m->version = 0; | 
|  | if (pos < mm->map_count) { | 
|  | for (vma = mm->mmap; pos; pos--) { | 
|  | m->version = vma->vm_start; | 
|  | vma = vma->vm_next; | 
|  | } | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | /* we do not bother to update m->version in this case */ | 
|  | if (pos == mm->map_count && priv->tail_vma) | 
|  | return priv->tail_vma; | 
|  |  | 
|  | vma_stop(priv); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *m_next(struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | struct proc_maps_private *priv = m->private; | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | (*pos)++; | 
|  | next = m_next_vma(priv, v); | 
|  | if (!next) | 
|  | vma_stop(priv); | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static void m_stop(struct seq_file *m, void *v) | 
|  | { | 
|  | struct proc_maps_private *priv = m->private; | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(v)) | 
|  | vma_stop(priv); | 
|  | if (priv->task) { | 
|  | put_task_struct(priv->task); | 
|  | priv->task = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int proc_maps_open(struct inode *inode, struct file *file, | 
|  | const struct seq_operations *ops, int psize) | 
|  | { | 
|  | struct proc_maps_private *priv = __seq_open_private(file, ops, psize); | 
|  |  | 
|  | if (!priv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | priv->inode = inode; | 
|  | priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); | 
|  | if (IS_ERR(priv->mm)) { | 
|  | int err = PTR_ERR(priv->mm); | 
|  |  | 
|  | seq_release_private(inode, file); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int proc_map_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct seq_file *seq = file->private_data; | 
|  | struct proc_maps_private *priv = seq->private; | 
|  |  | 
|  | if (priv->mm) | 
|  | mmdrop(priv->mm); | 
|  |  | 
|  | return seq_release_private(inode, file); | 
|  | } | 
|  |  | 
|  | static int do_maps_open(struct inode *inode, struct file *file, | 
|  | const struct seq_operations *ops) | 
|  | { | 
|  | return proc_maps_open(inode, file, ops, | 
|  | sizeof(struct proc_maps_private)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Indicate if the VMA is a stack for the given task; for | 
|  | * /proc/PID/maps that is the stack of the main task. | 
|  | */ | 
|  | static int is_stack(struct proc_maps_private *priv, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * We make no effort to guess what a given thread considers to be | 
|  | * its "stack".  It's not even well-defined for programs written | 
|  | * languages like Go. | 
|  | */ | 
|  | return vma->vm_start <= vma->vm_mm->start_stack && | 
|  | vma->vm_end >= vma->vm_mm->start_stack; | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct file *file = vma->vm_file; | 
|  | struct proc_maps_private *priv = m->private; | 
|  | vm_flags_t flags = vma->vm_flags; | 
|  | unsigned long ino = 0; | 
|  | unsigned long long pgoff = 0; | 
|  | unsigned long start, end; | 
|  | dev_t dev = 0; | 
|  | const char *name = NULL; | 
|  |  | 
|  | if (file) { | 
|  | struct inode *inode = file_inode(vma->vm_file); | 
|  | dev = inode->i_sb->s_dev; | 
|  | ino = inode->i_ino; | 
|  | pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | /* We don't show the stack guard page in /proc/maps */ | 
|  | start = vma->vm_start; | 
|  | if (stack_guard_page_start(vma, start)) | 
|  | start += PAGE_SIZE; | 
|  | end = vma->vm_end; | 
|  | if (stack_guard_page_end(vma, end)) | 
|  | end -= PAGE_SIZE; | 
|  |  | 
|  | seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); | 
|  | seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", | 
|  | start, | 
|  | end, | 
|  | flags & VM_READ ? 'r' : '-', | 
|  | flags & VM_WRITE ? 'w' : '-', | 
|  | flags & VM_EXEC ? 'x' : '-', | 
|  | flags & VM_MAYSHARE ? 's' : 'p', | 
|  | pgoff, | 
|  | MAJOR(dev), MINOR(dev), ino); | 
|  |  | 
|  | /* | 
|  | * Print the dentry name for named mappings, and a | 
|  | * special [heap] marker for the heap: | 
|  | */ | 
|  | if (file) { | 
|  | seq_pad(m, ' '); | 
|  | seq_file_path(m, file, "\n"); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->name) { | 
|  | name = vma->vm_ops->name(vma); | 
|  | if (name) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | name = arch_vma_name(vma); | 
|  | if (!name) { | 
|  | if (!mm) { | 
|  | name = "[vdso]"; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (vma->vm_start <= mm->brk && | 
|  | vma->vm_end >= mm->start_brk) { | 
|  | name = "[heap]"; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (is_stack(priv, vma)) | 
|  | name = "[stack]"; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (name) { | 
|  | seq_pad(m, ' '); | 
|  | seq_puts(m, name); | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static int show_map(struct seq_file *m, void *v, int is_pid) | 
|  | { | 
|  | show_map_vma(m, v, is_pid); | 
|  | m_cache_vma(m, v); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int show_pid_map(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_map(m, v, 1); | 
|  | } | 
|  |  | 
|  | static int show_tid_map(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_map(m, v, 0); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations proc_pid_maps_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= show_pid_map | 
|  | }; | 
|  |  | 
|  | static const struct seq_operations proc_tid_maps_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= show_tid_map | 
|  | }; | 
|  |  | 
|  | static int pid_maps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return do_maps_open(inode, file, &proc_pid_maps_op); | 
|  | } | 
|  |  | 
|  | static int tid_maps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return do_maps_open(inode, file, &proc_tid_maps_op); | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_pid_maps_operations = { | 
|  | .open		= pid_maps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  |  | 
|  | const struct file_operations proc_tid_maps_operations = { | 
|  | .open		= tid_maps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Proportional Set Size(PSS): my share of RSS. | 
|  | * | 
|  | * PSS of a process is the count of pages it has in memory, where each | 
|  | * page is divided by the number of processes sharing it.  So if a | 
|  | * process has 1000 pages all to itself, and 1000 shared with one other | 
|  | * process, its PSS will be 1500. | 
|  | * | 
|  | * To keep (accumulated) division errors low, we adopt a 64bit | 
|  | * fixed-point pss counter to minimize division errors. So (pss >> | 
|  | * PSS_SHIFT) would be the real byte count. | 
|  | * | 
|  | * A shift of 12 before division means (assuming 4K page size): | 
|  | * 	- 1M 3-user-pages add up to 8KB errors; | 
|  | * 	- supports mapcount up to 2^24, or 16M; | 
|  | * 	- supports PSS up to 2^52 bytes, or 4PB. | 
|  | */ | 
|  | #define PSS_SHIFT 12 | 
|  |  | 
|  | #ifdef CONFIG_PROC_PAGE_MONITOR | 
|  | struct mem_size_stats { | 
|  | unsigned long resident; | 
|  | unsigned long shared_clean; | 
|  | unsigned long shared_dirty; | 
|  | unsigned long private_clean; | 
|  | unsigned long private_dirty; | 
|  | unsigned long referenced; | 
|  | unsigned long anonymous; | 
|  | unsigned long anonymous_thp; | 
|  | unsigned long shmem_thp; | 
|  | unsigned long swap; | 
|  | unsigned long shared_hugetlb; | 
|  | unsigned long private_hugetlb; | 
|  | u64 pss; | 
|  | u64 swap_pss; | 
|  | bool check_shmem_swap; | 
|  | }; | 
|  |  | 
|  | static void smaps_account(struct mem_size_stats *mss, struct page *page, | 
|  | bool compound, bool young, bool dirty) | 
|  | { | 
|  | int i, nr = compound ? 1 << compound_order(page) : 1; | 
|  | unsigned long size = nr * PAGE_SIZE; | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | mss->anonymous += size; | 
|  |  | 
|  | mss->resident += size; | 
|  | /* Accumulate the size in pages that have been accessed. */ | 
|  | if (young || page_is_young(page) || PageReferenced(page)) | 
|  | mss->referenced += size; | 
|  |  | 
|  | /* | 
|  | * page_count(page) == 1 guarantees the page is mapped exactly once. | 
|  | * If any subpage of the compound page mapped with PTE it would elevate | 
|  | * page_count(). | 
|  | */ | 
|  | if (page_count(page) == 1) { | 
|  | if (dirty || PageDirty(page)) | 
|  | mss->private_dirty += size; | 
|  | else | 
|  | mss->private_clean += size; | 
|  | mss->pss += (u64)size << PSS_SHIFT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr; i++, page++) { | 
|  | int mapcount = page_mapcount(page); | 
|  |  | 
|  | if (mapcount >= 2) { | 
|  | if (dirty || PageDirty(page)) | 
|  | mss->shared_dirty += PAGE_SIZE; | 
|  | else | 
|  | mss->shared_clean += PAGE_SIZE; | 
|  | mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; | 
|  | } else { | 
|  | if (dirty || PageDirty(page)) | 
|  | mss->private_dirty += PAGE_SIZE; | 
|  | else | 
|  | mss->private_clean += PAGE_SIZE; | 
|  | mss->pss += PAGE_SIZE << PSS_SHIFT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | static int smaps_pte_hole(unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct mem_size_stats *mss = walk->private; | 
|  |  | 
|  | mss->swap += shmem_partial_swap_usage( | 
|  | walk->vma->vm_file->f_mapping, addr, end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void smaps_pte_entry(pte_t *pte, unsigned long addr, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct mem_size_stats *mss = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (pte_present(*pte)) { | 
|  | page = vm_normal_page(vma, addr, *pte); | 
|  | } else if (is_swap_pte(*pte)) { | 
|  | swp_entry_t swpent = pte_to_swp_entry(*pte); | 
|  |  | 
|  | if (!non_swap_entry(swpent)) { | 
|  | int mapcount; | 
|  |  | 
|  | mss->swap += PAGE_SIZE; | 
|  | mapcount = swp_swapcount(swpent); | 
|  | if (mapcount >= 2) { | 
|  | u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; | 
|  |  | 
|  | do_div(pss_delta, mapcount); | 
|  | mss->swap_pss += pss_delta; | 
|  | } else { | 
|  | mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; | 
|  | } | 
|  | } else if (is_migration_entry(swpent)) | 
|  | page = migration_entry_to_page(swpent); | 
|  | } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap | 
|  | && pte_none(*pte))) { | 
|  | page = find_get_entry(vma->vm_file->f_mapping, | 
|  | linear_page_index(vma, addr)); | 
|  | if (!page) | 
|  | return; | 
|  |  | 
|  | if (radix_tree_exceptional_entry(page)) | 
|  | mss->swap += PAGE_SIZE; | 
|  | else | 
|  | put_page(page); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!page) | 
|  | return; | 
|  |  | 
|  | smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct mem_size_stats *mss = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct page *page; | 
|  |  | 
|  | /* FOLL_DUMP will return -EFAULT on huge zero page */ | 
|  | page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); | 
|  | if (IS_ERR_OR_NULL(page)) | 
|  | return; | 
|  | if (PageAnon(page)) | 
|  | mss->anonymous_thp += HPAGE_PMD_SIZE; | 
|  | else if (PageSwapBacked(page)) | 
|  | mss->shmem_thp += HPAGE_PMD_SIZE; | 
|  | else if (is_zone_device_page(page)) | 
|  | /* pass */; | 
|  | else | 
|  | VM_BUG_ON_PAGE(1, page); | 
|  | smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); | 
|  | } | 
|  | #else | 
|  | static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | smaps_pmd_entry(pmd, addr, walk); | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | /* | 
|  | * The mmap_sem held all the way back in m_start() is what | 
|  | * keeps khugepaged out of here and from collapsing things | 
|  | * in here. | 
|  | */ | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) | 
|  | smaps_pte_entry(pte, addr, walk); | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * Don't forget to update Documentation/ on changes. | 
|  | */ | 
|  | static const char mnemonics[BITS_PER_LONG][2] = { | 
|  | /* | 
|  | * In case if we meet a flag we don't know about. | 
|  | */ | 
|  | [0 ... (BITS_PER_LONG-1)] = "??", | 
|  |  | 
|  | [ilog2(VM_READ)]	= "rd", | 
|  | [ilog2(VM_WRITE)]	= "wr", | 
|  | [ilog2(VM_EXEC)]	= "ex", | 
|  | [ilog2(VM_SHARED)]	= "sh", | 
|  | [ilog2(VM_MAYREAD)]	= "mr", | 
|  | [ilog2(VM_MAYWRITE)]	= "mw", | 
|  | [ilog2(VM_MAYEXEC)]	= "me", | 
|  | [ilog2(VM_MAYSHARE)]	= "ms", | 
|  | [ilog2(VM_GROWSDOWN)]	= "gd", | 
|  | [ilog2(VM_PFNMAP)]	= "pf", | 
|  | [ilog2(VM_DENYWRITE)]	= "dw", | 
|  | #ifdef CONFIG_X86_INTEL_MPX | 
|  | [ilog2(VM_MPX)]		= "mp", | 
|  | #endif | 
|  | [ilog2(VM_LOCKED)]	= "lo", | 
|  | [ilog2(VM_IO)]		= "io", | 
|  | [ilog2(VM_SEQ_READ)]	= "sr", | 
|  | [ilog2(VM_RAND_READ)]	= "rr", | 
|  | [ilog2(VM_DONTCOPY)]	= "dc", | 
|  | [ilog2(VM_DONTEXPAND)]	= "de", | 
|  | [ilog2(VM_ACCOUNT)]	= "ac", | 
|  | [ilog2(VM_NORESERVE)]	= "nr", | 
|  | [ilog2(VM_HUGETLB)]	= "ht", | 
|  | [ilog2(VM_ARCH_1)]	= "ar", | 
|  | [ilog2(VM_DONTDUMP)]	= "dd", | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | [ilog2(VM_SOFTDIRTY)]	= "sd", | 
|  | #endif | 
|  | [ilog2(VM_MIXEDMAP)]	= "mm", | 
|  | [ilog2(VM_HUGEPAGE)]	= "hg", | 
|  | [ilog2(VM_NOHUGEPAGE)]	= "nh", | 
|  | [ilog2(VM_MERGEABLE)]	= "mg", | 
|  | [ilog2(VM_UFFD_MISSING)]= "um", | 
|  | [ilog2(VM_UFFD_WP)]	= "uw", | 
|  | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | 
|  | /* These come out via ProtectionKey: */ | 
|  | [ilog2(VM_PKEY_BIT0)]	= "", | 
|  | [ilog2(VM_PKEY_BIT1)]	= "", | 
|  | [ilog2(VM_PKEY_BIT2)]	= "", | 
|  | [ilog2(VM_PKEY_BIT3)]	= "", | 
|  | #endif | 
|  | }; | 
|  | size_t i; | 
|  |  | 
|  | seq_puts(m, "VmFlags: "); | 
|  | for (i = 0; i < BITS_PER_LONG; i++) { | 
|  | if (!mnemonics[i][0]) | 
|  | continue; | 
|  | if (vma->vm_flags & (1UL << i)) { | 
|  | seq_printf(m, "%c%c ", | 
|  | mnemonics[i][0], mnemonics[i][1]); | 
|  | } | 
|  | } | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct mem_size_stats *mss = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (pte_present(*pte)) { | 
|  | page = vm_normal_page(vma, addr, *pte); | 
|  | } else if (is_swap_pte(*pte)) { | 
|  | swp_entry_t swpent = pte_to_swp_entry(*pte); | 
|  |  | 
|  | if (is_migration_entry(swpent)) | 
|  | page = migration_entry_to_page(swpent); | 
|  | } | 
|  | if (page) { | 
|  | int mapcount = page_mapcount(page); | 
|  |  | 
|  | if (mapcount >= 2) | 
|  | mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); | 
|  | else | 
|  | mss->private_hugetlb += huge_page_size(hstate_vma(vma)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif /* HUGETLB_PAGE */ | 
|  |  | 
|  | void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int show_smap(struct seq_file *m, void *v, int is_pid) | 
|  | { | 
|  | struct vm_area_struct *vma = v; | 
|  | struct mem_size_stats mss; | 
|  | struct mm_walk smaps_walk = { | 
|  | .pmd_entry = smaps_pte_range, | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | .hugetlb_entry = smaps_hugetlb_range, | 
|  | #endif | 
|  | .mm = vma->vm_mm, | 
|  | .private = &mss, | 
|  | }; | 
|  |  | 
|  | memset(&mss, 0, sizeof mss); | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { | 
|  | /* | 
|  | * For shared or readonly shmem mappings we know that all | 
|  | * swapped out pages belong to the shmem object, and we can | 
|  | * obtain the swap value much more efficiently. For private | 
|  | * writable mappings, we might have COW pages that are | 
|  | * not affected by the parent swapped out pages of the shmem | 
|  | * object, so we have to distinguish them during the page walk. | 
|  | * Unless we know that the shmem object (or the part mapped by | 
|  | * our VMA) has no swapped out pages at all. | 
|  | */ | 
|  | unsigned long shmem_swapped = shmem_swap_usage(vma); | 
|  |  | 
|  | if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || | 
|  | !(vma->vm_flags & VM_WRITE)) { | 
|  | mss.swap = shmem_swapped; | 
|  | } else { | 
|  | mss.check_shmem_swap = true; | 
|  | smaps_walk.pte_hole = smaps_pte_hole; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* mmap_sem is held in m_start */ | 
|  | walk_page_vma(vma, &smaps_walk); | 
|  |  | 
|  | show_map_vma(m, vma, is_pid); | 
|  |  | 
|  | seq_printf(m, | 
|  | "Size:           %8lu kB\n" | 
|  | "Rss:            %8lu kB\n" | 
|  | "Pss:            %8lu kB\n" | 
|  | "Shared_Clean:   %8lu kB\n" | 
|  | "Shared_Dirty:   %8lu kB\n" | 
|  | "Private_Clean:  %8lu kB\n" | 
|  | "Private_Dirty:  %8lu kB\n" | 
|  | "Referenced:     %8lu kB\n" | 
|  | "Anonymous:      %8lu kB\n" | 
|  | "AnonHugePages:  %8lu kB\n" | 
|  | "ShmemPmdMapped: %8lu kB\n" | 
|  | "Shared_Hugetlb: %8lu kB\n" | 
|  | "Private_Hugetlb: %7lu kB\n" | 
|  | "Swap:           %8lu kB\n" | 
|  | "SwapPss:        %8lu kB\n" | 
|  | "KernelPageSize: %8lu kB\n" | 
|  | "MMUPageSize:    %8lu kB\n" | 
|  | "Locked:         %8lu kB\n", | 
|  | (vma->vm_end - vma->vm_start) >> 10, | 
|  | mss.resident >> 10, | 
|  | (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), | 
|  | mss.shared_clean  >> 10, | 
|  | mss.shared_dirty  >> 10, | 
|  | mss.private_clean >> 10, | 
|  | mss.private_dirty >> 10, | 
|  | mss.referenced >> 10, | 
|  | mss.anonymous >> 10, | 
|  | mss.anonymous_thp >> 10, | 
|  | mss.shmem_thp >> 10, | 
|  | mss.shared_hugetlb >> 10, | 
|  | mss.private_hugetlb >> 10, | 
|  | mss.swap >> 10, | 
|  | (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), | 
|  | vma_kernel_pagesize(vma) >> 10, | 
|  | vma_mmu_pagesize(vma) >> 10, | 
|  | (vma->vm_flags & VM_LOCKED) ? | 
|  | (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); | 
|  |  | 
|  | arch_show_smap(m, vma); | 
|  | show_smap_vma_flags(m, vma); | 
|  | m_cache_vma(m, vma); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int show_pid_smap(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_smap(m, v, 1); | 
|  | } | 
|  |  | 
|  | static int show_tid_smap(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_smap(m, v, 0); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations proc_pid_smaps_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= show_pid_smap | 
|  | }; | 
|  |  | 
|  | static const struct seq_operations proc_tid_smaps_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= show_tid_smap | 
|  | }; | 
|  |  | 
|  | static int pid_smaps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return do_maps_open(inode, file, &proc_pid_smaps_op); | 
|  | } | 
|  |  | 
|  | static int tid_smaps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return do_maps_open(inode, file, &proc_tid_smaps_op); | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_pid_smaps_operations = { | 
|  | .open		= pid_smaps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  |  | 
|  | const struct file_operations proc_tid_smaps_operations = { | 
|  | .open		= tid_smaps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  |  | 
|  | enum clear_refs_types { | 
|  | CLEAR_REFS_ALL = 1, | 
|  | CLEAR_REFS_ANON, | 
|  | CLEAR_REFS_MAPPED, | 
|  | CLEAR_REFS_SOFT_DIRTY, | 
|  | CLEAR_REFS_MM_HIWATER_RSS, | 
|  | CLEAR_REFS_LAST, | 
|  | }; | 
|  |  | 
|  | struct clear_refs_private { | 
|  | enum clear_refs_types type; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | static inline void clear_soft_dirty(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *pte) | 
|  | { | 
|  | /* | 
|  | * The soft-dirty tracker uses #PF-s to catch writes | 
|  | * to pages, so write-protect the pte as well. See the | 
|  | * Documentation/vm/soft-dirty.txt for full description | 
|  | * of how soft-dirty works. | 
|  | */ | 
|  | pte_t ptent = *pte; | 
|  |  | 
|  | if (pte_present(ptent)) { | 
|  | ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); | 
|  | ptent = pte_wrprotect(ptent); | 
|  | ptent = pte_clear_soft_dirty(ptent); | 
|  | ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); | 
|  | } else if (is_swap_pte(ptent)) { | 
|  | ptent = pte_swp_clear_soft_dirty(ptent); | 
|  | set_pte_at(vma->vm_mm, addr, pte, ptent); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline void clear_soft_dirty(struct vm_area_struct *vma, | 
|  | unsigned long addr, pte_t *pte) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
|  | static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmdp) | 
|  | { | 
|  | pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); | 
|  |  | 
|  | pmd = pmd_wrprotect(pmd); | 
|  | pmd = pmd_clear_soft_dirty(pmd); | 
|  |  | 
|  | set_pmd_at(vma->vm_mm, addr, pmdp, pmd); | 
|  | } | 
|  | #else | 
|  | static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, | 
|  | unsigned long addr, pmd_t *pmdp) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | struct clear_refs_private *cp = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | pte_t *pte, ptent; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | if (cp->type == CLEAR_REFS_SOFT_DIRTY) { | 
|  | clear_soft_dirty_pmd(vma, addr, pmd); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = pmd_page(*pmd); | 
|  |  | 
|  | /* Clear accessed and referenced bits. */ | 
|  | pmdp_test_and_clear_young(vma, addr, pmd); | 
|  | test_and_clear_page_young(page); | 
|  | ClearPageReferenced(page); | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  |  | 
|  | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | for (; addr != end; pte++, addr += PAGE_SIZE) { | 
|  | ptent = *pte; | 
|  |  | 
|  | if (cp->type == CLEAR_REFS_SOFT_DIRTY) { | 
|  | clear_soft_dirty(vma, addr, pte); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!pte_present(ptent)) | 
|  | continue; | 
|  |  | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (!page) | 
|  | continue; | 
|  |  | 
|  | /* Clear accessed and referenced bits. */ | 
|  | ptep_test_and_clear_young(vma, addr, pte); | 
|  | test_and_clear_page_young(page); | 
|  | ClearPageReferenced(page); | 
|  | } | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | cond_resched(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int clear_refs_test_walk(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct clear_refs_private *cp = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  |  | 
|  | if (vma->vm_flags & VM_PFNMAP) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Writing 1 to /proc/pid/clear_refs affects all pages. | 
|  | * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. | 
|  | * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. | 
|  | * Writing 4 to /proc/pid/clear_refs affects all pages. | 
|  | */ | 
|  | if (cp->type == CLEAR_REFS_ANON && vma->vm_file) | 
|  | return 1; | 
|  | if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t clear_refs_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct task_struct *task; | 
|  | char buffer[PROC_NUMBUF]; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | enum clear_refs_types type; | 
|  | int itype; | 
|  | int rv; | 
|  |  | 
|  | memset(buffer, 0, sizeof(buffer)); | 
|  | if (count > sizeof(buffer) - 1) | 
|  | count = sizeof(buffer) - 1; | 
|  | if (copy_from_user(buffer, buf, count)) | 
|  | return -EFAULT; | 
|  | rv = kstrtoint(strstrip(buffer), 10, &itype); | 
|  | if (rv < 0) | 
|  | return rv; | 
|  | type = (enum clear_refs_types)itype; | 
|  | if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) | 
|  | return -EINVAL; | 
|  |  | 
|  | task = get_proc_task(file_inode(file)); | 
|  | if (!task) | 
|  | return -ESRCH; | 
|  | mm = get_task_mm(task); | 
|  | if (mm) { | 
|  | struct clear_refs_private cp = { | 
|  | .type = type, | 
|  | }; | 
|  | struct mm_walk clear_refs_walk = { | 
|  | .pmd_entry = clear_refs_pte_range, | 
|  | .test_walk = clear_refs_test_walk, | 
|  | .mm = mm, | 
|  | .private = &cp, | 
|  | }; | 
|  |  | 
|  | if (type == CLEAR_REFS_MM_HIWATER_RSS) { | 
|  | if (down_write_killable(&mm->mmap_sem)) { | 
|  | count = -EINTR; | 
|  | goto out_mm; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writing 5 to /proc/pid/clear_refs resets the peak | 
|  | * resident set size to this mm's current rss value. | 
|  | */ | 
|  | reset_mm_hiwater_rss(mm); | 
|  | up_write(&mm->mmap_sem); | 
|  | goto out_mm; | 
|  | } | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | if (type == CLEAR_REFS_SOFT_DIRTY) { | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (!(vma->vm_flags & VM_SOFTDIRTY)) | 
|  | continue; | 
|  | up_read(&mm->mmap_sem); | 
|  | if (down_write_killable(&mm->mmap_sem)) { | 
|  | count = -EINTR; | 
|  | goto out_mm; | 
|  | } | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | vma->vm_flags &= ~VM_SOFTDIRTY; | 
|  | vma_set_page_prot(vma); | 
|  | } | 
|  | downgrade_write(&mm->mmap_sem); | 
|  | break; | 
|  | } | 
|  | mmu_notifier_invalidate_range_start(mm, 0, -1); | 
|  | } | 
|  | walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); | 
|  | if (type == CLEAR_REFS_SOFT_DIRTY) | 
|  | mmu_notifier_invalidate_range_end(mm, 0, -1); | 
|  | flush_tlb_mm(mm); | 
|  | up_read(&mm->mmap_sem); | 
|  | out_mm: | 
|  | mmput(mm); | 
|  | } | 
|  | put_task_struct(task); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_clear_refs_operations = { | 
|  | .write		= clear_refs_write, | 
|  | .llseek		= noop_llseek, | 
|  | }; | 
|  |  | 
|  | typedef struct { | 
|  | u64 pme; | 
|  | } pagemap_entry_t; | 
|  |  | 
|  | struct pagemapread { | 
|  | int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */ | 
|  | pagemap_entry_t *buffer; | 
|  | bool show_pfn; | 
|  | }; | 
|  |  | 
|  | #define PAGEMAP_WALK_SIZE	(PMD_SIZE) | 
|  | #define PAGEMAP_WALK_MASK	(PMD_MASK) | 
|  |  | 
|  | #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t) | 
|  | #define PM_PFRAME_BITS		55 | 
|  | #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0) | 
|  | #define PM_SOFT_DIRTY		BIT_ULL(55) | 
|  | #define PM_MMAP_EXCLUSIVE	BIT_ULL(56) | 
|  | #define PM_FILE			BIT_ULL(61) | 
|  | #define PM_SWAP			BIT_ULL(62) | 
|  | #define PM_PRESENT		BIT_ULL(63) | 
|  |  | 
|  | #define PM_END_OF_BUFFER    1 | 
|  |  | 
|  | static inline pagemap_entry_t make_pme(u64 frame, u64 flags) | 
|  | { | 
|  | return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; | 
|  | } | 
|  |  | 
|  | static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, | 
|  | struct pagemapread *pm) | 
|  | { | 
|  | pm->buffer[pm->pos++] = *pme; | 
|  | if (pm->pos >= pm->len) | 
|  | return PM_END_OF_BUFFER; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pagemap_pte_hole(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct pagemapread *pm = walk->private; | 
|  | unsigned long addr = start; | 
|  | int err = 0; | 
|  |  | 
|  | while (addr < end) { | 
|  | struct vm_area_struct *vma = find_vma(walk->mm, addr); | 
|  | pagemap_entry_t pme = make_pme(0, 0); | 
|  | /* End of address space hole, which we mark as non-present. */ | 
|  | unsigned long hole_end; | 
|  |  | 
|  | if (vma) | 
|  | hole_end = min(end, vma->vm_start); | 
|  | else | 
|  | hole_end = end; | 
|  |  | 
|  | for (; addr < hole_end; addr += PAGE_SIZE) { | 
|  | err = add_to_pagemap(addr, &pme, pm); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!vma) | 
|  | break; | 
|  |  | 
|  | /* Addresses in the VMA. */ | 
|  | if (vma->vm_flags & VM_SOFTDIRTY) | 
|  | pme = make_pme(0, PM_SOFT_DIRTY); | 
|  | for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { | 
|  | err = add_to_pagemap(addr, &pme, pm); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, | 
|  | struct vm_area_struct *vma, unsigned long addr, pte_t pte) | 
|  | { | 
|  | u64 frame = 0, flags = 0; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | if (pte_present(pte)) { | 
|  | if (pm->show_pfn) | 
|  | frame = pte_pfn(pte); | 
|  | flags |= PM_PRESENT; | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (pte_soft_dirty(pte)) | 
|  | flags |= PM_SOFT_DIRTY; | 
|  | } else if (is_swap_pte(pte)) { | 
|  | swp_entry_t entry; | 
|  | if (pte_swp_soft_dirty(pte)) | 
|  | flags |= PM_SOFT_DIRTY; | 
|  | entry = pte_to_swp_entry(pte); | 
|  | frame = swp_type(entry) | | 
|  | (swp_offset(entry) << MAX_SWAPFILES_SHIFT); | 
|  | flags |= PM_SWAP; | 
|  | if (is_migration_entry(entry)) | 
|  | page = migration_entry_to_page(entry); | 
|  | } | 
|  |  | 
|  | if (page && !PageAnon(page)) | 
|  | flags |= PM_FILE; | 
|  | if (page && page_mapcount(page) == 1) | 
|  | flags |= PM_MMAP_EXCLUSIVE; | 
|  | if (vma->vm_flags & VM_SOFTDIRTY) | 
|  | flags |= PM_SOFT_DIRTY; | 
|  |  | 
|  | return make_pme(frame, flags); | 
|  | } | 
|  |  | 
|  | static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | struct pagemapread *pm = walk->private; | 
|  | spinlock_t *ptl; | 
|  | pte_t *pte, *orig_pte; | 
|  | int err = 0; | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | ptl = pmd_trans_huge_lock(pmdp, vma); | 
|  | if (ptl) { | 
|  | u64 flags = 0, frame = 0; | 
|  | pmd_t pmd = *pmdp; | 
|  |  | 
|  | if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) | 
|  | flags |= PM_SOFT_DIRTY; | 
|  |  | 
|  | /* | 
|  | * Currently pmd for thp is always present because thp | 
|  | * can not be swapped-out, migrated, or HWPOISONed | 
|  | * (split in such cases instead.) | 
|  | * This if-check is just to prepare for future implementation. | 
|  | */ | 
|  | if (pmd_present(pmd)) { | 
|  | struct page *page = pmd_page(pmd); | 
|  |  | 
|  | if (page_mapcount(page) == 1) | 
|  | flags |= PM_MMAP_EXCLUSIVE; | 
|  |  | 
|  | flags |= PM_PRESENT; | 
|  | if (pm->show_pfn) | 
|  | frame = pmd_pfn(pmd) + | 
|  | ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | for (; addr != end; addr += PAGE_SIZE) { | 
|  | pagemap_entry_t pme = make_pme(frame, flags); | 
|  |  | 
|  | err = add_to_pagemap(addr, &pme, pm); | 
|  | if (err) | 
|  | break; | 
|  | if (pm->show_pfn && (flags & PM_PRESENT)) | 
|  | frame++; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmdp)) | 
|  | return 0; | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | /* | 
|  | * We can assume that @vma always points to a valid one and @end never | 
|  | * goes beyond vma->vm_end. | 
|  | */ | 
|  | orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); | 
|  | for (; addr < end; pte++, addr += PAGE_SIZE) { | 
|  | pagemap_entry_t pme; | 
|  |  | 
|  | pme = pte_to_pagemap_entry(pm, vma, addr, *pte); | 
|  | err = add_to_pagemap(addr, &pme, pm); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | pte_unmap_unlock(orig_pte, ptl); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* This function walks within one hugetlb entry in the single call */ | 
|  | static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct pagemapread *pm = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | u64 flags = 0, frame = 0; | 
|  | int err = 0; | 
|  | pte_t pte; | 
|  |  | 
|  | if (vma->vm_flags & VM_SOFTDIRTY) | 
|  | flags |= PM_SOFT_DIRTY; | 
|  |  | 
|  | pte = huge_ptep_get(ptep); | 
|  | if (pte_present(pte)) { | 
|  | struct page *page = pte_page(pte); | 
|  |  | 
|  | if (!PageAnon(page)) | 
|  | flags |= PM_FILE; | 
|  |  | 
|  | if (page_mapcount(page) == 1) | 
|  | flags |= PM_MMAP_EXCLUSIVE; | 
|  |  | 
|  | flags |= PM_PRESENT; | 
|  | if (pm->show_pfn) | 
|  | frame = pte_pfn(pte) + | 
|  | ((addr & ~hmask) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | for (; addr != end; addr += PAGE_SIZE) { | 
|  | pagemap_entry_t pme = make_pme(frame, flags); | 
|  |  | 
|  | err = add_to_pagemap(addr, &pme, pm); | 
|  | if (err) | 
|  | return err; | 
|  | if (pm->show_pfn && (flags & PM_PRESENT)) | 
|  | frame++; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | #endif /* HUGETLB_PAGE */ | 
|  |  | 
|  | /* | 
|  | * /proc/pid/pagemap - an array mapping virtual pages to pfns | 
|  | * | 
|  | * For each page in the address space, this file contains one 64-bit entry | 
|  | * consisting of the following: | 
|  | * | 
|  | * Bits 0-54  page frame number (PFN) if present | 
|  | * Bits 0-4   swap type if swapped | 
|  | * Bits 5-54  swap offset if swapped | 
|  | * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt) | 
|  | * Bit  56    page exclusively mapped | 
|  | * Bits 57-60 zero | 
|  | * Bit  61    page is file-page or shared-anon | 
|  | * Bit  62    page swapped | 
|  | * Bit  63    page present | 
|  | * | 
|  | * If the page is not present but in swap, then the PFN contains an | 
|  | * encoding of the swap file number and the page's offset into the | 
|  | * swap. Unmapped pages return a null PFN. This allows determining | 
|  | * precisely which pages are mapped (or in swap) and comparing mapped | 
|  | * pages between processes. | 
|  | * | 
|  | * Efficient users of this interface will use /proc/pid/maps to | 
|  | * determine which areas of memory are actually mapped and llseek to | 
|  | * skip over unmapped regions. | 
|  | */ | 
|  | static ssize_t pagemap_read(struct file *file, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct mm_struct *mm = file->private_data; | 
|  | struct pagemapread pm; | 
|  | struct mm_walk pagemap_walk = {}; | 
|  | unsigned long src; | 
|  | unsigned long svpfn; | 
|  | unsigned long start_vaddr; | 
|  | unsigned long end_vaddr; | 
|  | int ret = 0, copied = 0; | 
|  |  | 
|  | if (!mm || !atomic_inc_not_zero(&mm->mm_users)) | 
|  | goto out; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | /* file position must be aligned */ | 
|  | if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) | 
|  | goto out_mm; | 
|  |  | 
|  | ret = 0; | 
|  | if (!count) | 
|  | goto out_mm; | 
|  |  | 
|  | /* do not disclose physical addresses: attack vector */ | 
|  | pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); | 
|  |  | 
|  | pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); | 
|  | pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); | 
|  | ret = -ENOMEM; | 
|  | if (!pm.buffer) | 
|  | goto out_mm; | 
|  |  | 
|  | pagemap_walk.pmd_entry = pagemap_pmd_range; | 
|  | pagemap_walk.pte_hole = pagemap_pte_hole; | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; | 
|  | #endif | 
|  | pagemap_walk.mm = mm; | 
|  | pagemap_walk.private = ± | 
|  |  | 
|  | src = *ppos; | 
|  | svpfn = src / PM_ENTRY_BYTES; | 
|  | start_vaddr = svpfn << PAGE_SHIFT; | 
|  | end_vaddr = mm->task_size; | 
|  |  | 
|  | /* watch out for wraparound */ | 
|  | if (svpfn > mm->task_size >> PAGE_SHIFT) | 
|  | start_vaddr = end_vaddr; | 
|  |  | 
|  | /* | 
|  | * The odds are that this will stop walking way | 
|  | * before end_vaddr, because the length of the | 
|  | * user buffer is tracked in "pm", and the walk | 
|  | * will stop when we hit the end of the buffer. | 
|  | */ | 
|  | ret = 0; | 
|  | while (count && (start_vaddr < end_vaddr)) { | 
|  | int len; | 
|  | unsigned long end; | 
|  |  | 
|  | pm.pos = 0; | 
|  | end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; | 
|  | /* overflow ? */ | 
|  | if (end < start_vaddr || end > end_vaddr) | 
|  | end = end_vaddr; | 
|  | down_read(&mm->mmap_sem); | 
|  | ret = walk_page_range(start_vaddr, end, &pagemap_walk); | 
|  | up_read(&mm->mmap_sem); | 
|  | start_vaddr = end; | 
|  |  | 
|  | len = min(count, PM_ENTRY_BYTES * pm.pos); | 
|  | if (copy_to_user(buf, pm.buffer, len)) { | 
|  | ret = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | copied += len; | 
|  | buf += len; | 
|  | count -= len; | 
|  | } | 
|  | *ppos += copied; | 
|  | if (!ret || ret == PM_END_OF_BUFFER) | 
|  | ret = copied; | 
|  |  | 
|  | out_free: | 
|  | kfree(pm.buffer); | 
|  | out_mm: | 
|  | mmput(mm); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pagemap_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | mm = proc_mem_open(inode, PTRACE_MODE_READ); | 
|  | if (IS_ERR(mm)) | 
|  | return PTR_ERR(mm); | 
|  | file->private_data = mm; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pagemap_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct mm_struct *mm = file->private_data; | 
|  |  | 
|  | if (mm) | 
|  | mmdrop(mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_pagemap_operations = { | 
|  | .llseek		= mem_lseek, /* borrow this */ | 
|  | .read		= pagemap_read, | 
|  | .open		= pagemap_open, | 
|  | .release	= pagemap_release, | 
|  | }; | 
|  | #endif /* CONFIG_PROC_PAGE_MONITOR */ | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | struct numa_maps { | 
|  | unsigned long pages; | 
|  | unsigned long anon; | 
|  | unsigned long active; | 
|  | unsigned long writeback; | 
|  | unsigned long mapcount_max; | 
|  | unsigned long dirty; | 
|  | unsigned long swapcache; | 
|  | unsigned long node[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | struct numa_maps_private { | 
|  | struct proc_maps_private proc_maps; | 
|  | struct numa_maps md; | 
|  | }; | 
|  |  | 
|  | static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | int count = page_mapcount(page); | 
|  |  | 
|  | md->pages += nr_pages; | 
|  | if (pte_dirty || PageDirty(page)) | 
|  | md->dirty += nr_pages; | 
|  |  | 
|  | if (PageSwapCache(page)) | 
|  | md->swapcache += nr_pages; | 
|  |  | 
|  | if (PageActive(page) || PageUnevictable(page)) | 
|  | md->active += nr_pages; | 
|  |  | 
|  | if (PageWriteback(page)) | 
|  | md->writeback += nr_pages; | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | md->anon += nr_pages; | 
|  |  | 
|  | if (count > md->mapcount_max) | 
|  | md->mapcount_max = count; | 
|  |  | 
|  | md->node[page_to_nid(page)] += nr_pages; | 
|  | } | 
|  |  | 
|  | static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  | int nid; | 
|  |  | 
|  | if (!pte_present(pte)) | 
|  | return NULL; | 
|  |  | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | if (PageReserved(page)) | 
|  | return NULL; | 
|  |  | 
|  | nid = page_to_nid(page); | 
|  | if (!node_isset(nid, node_states[N_MEMORY])) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static struct page *can_gather_numa_stats_pmd(pmd_t pmd, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  | int nid; | 
|  |  | 
|  | if (!pmd_present(pmd)) | 
|  | return NULL; | 
|  |  | 
|  | page = vm_normal_page_pmd(vma, addr, pmd); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | if (PageReserved(page)) | 
|  | return NULL; | 
|  |  | 
|  | nid = page_to_nid(page); | 
|  | if (!node_isset(nid, node_states[N_MEMORY])) | 
|  | return NULL; | 
|  |  | 
|  | return page; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int gather_pte_stats(pmd_t *pmd, unsigned long addr, | 
|  | unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | struct numa_maps *md = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | spinlock_t *ptl; | 
|  | pte_t *orig_pte; | 
|  | pte_t *pte; | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (ptl) { | 
|  | struct page *page; | 
|  |  | 
|  | page = can_gather_numa_stats_pmd(*pmd, vma, addr); | 
|  | if (page) | 
|  | gather_stats(page, md, pmd_dirty(*pmd), | 
|  | HPAGE_PMD_SIZE/PAGE_SIZE); | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pmd_trans_unstable(pmd)) | 
|  | return 0; | 
|  | #endif | 
|  | orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); | 
|  | do { | 
|  | struct page *page = can_gather_numa_stats(*pte, vma, addr); | 
|  | if (!page) | 
|  | continue; | 
|  | gather_stats(page, md, pte_dirty(*pte), 1); | 
|  |  | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | pte_unmap_unlock(orig_pte, ptl); | 
|  | return 0; | 
|  | } | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | pte_t huge_pte = huge_ptep_get(pte); | 
|  | struct numa_maps *md; | 
|  | struct page *page; | 
|  |  | 
|  | if (!pte_present(huge_pte)) | 
|  | return 0; | 
|  |  | 
|  | page = pte_page(huge_pte); | 
|  | if (!page) | 
|  | return 0; | 
|  |  | 
|  | md = walk->private; | 
|  | gather_stats(page, md, pte_dirty(huge_pte), 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, | 
|  | unsigned long addr, unsigned long end, struct mm_walk *walk) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Display pages allocated per node and memory policy via /proc. | 
|  | */ | 
|  | static int show_numa_map(struct seq_file *m, void *v, int is_pid) | 
|  | { | 
|  | struct numa_maps_private *numa_priv = m->private; | 
|  | struct proc_maps_private *proc_priv = &numa_priv->proc_maps; | 
|  | struct vm_area_struct *vma = v; | 
|  | struct numa_maps *md = &numa_priv->md; | 
|  | struct file *file = vma->vm_file; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mm_walk walk = { | 
|  | .hugetlb_entry = gather_hugetlb_stats, | 
|  | .pmd_entry = gather_pte_stats, | 
|  | .private = md, | 
|  | .mm = mm, | 
|  | }; | 
|  | struct mempolicy *pol; | 
|  | char buffer[64]; | 
|  | int nid; | 
|  |  | 
|  | if (!mm) | 
|  | return 0; | 
|  |  | 
|  | /* Ensure we start with an empty set of numa_maps statistics. */ | 
|  | memset(md, 0, sizeof(*md)); | 
|  |  | 
|  | pol = __get_vma_policy(vma, vma->vm_start); | 
|  | if (pol) { | 
|  | mpol_to_str(buffer, sizeof(buffer), pol); | 
|  | mpol_cond_put(pol); | 
|  | } else { | 
|  | mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "%08lx %s", vma->vm_start, buffer); | 
|  |  | 
|  | if (file) { | 
|  | seq_puts(m, " file="); | 
|  | seq_file_path(m, file, "\n\t= "); | 
|  | } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { | 
|  | seq_puts(m, " heap"); | 
|  | } else if (is_stack(proc_priv, vma)) { | 
|  | seq_puts(m, " stack"); | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | seq_puts(m, " huge"); | 
|  |  | 
|  | /* mmap_sem is held by m_start */ | 
|  | walk_page_vma(vma, &walk); | 
|  |  | 
|  | if (!md->pages) | 
|  | goto out; | 
|  |  | 
|  | if (md->anon) | 
|  | seq_printf(m, " anon=%lu", md->anon); | 
|  |  | 
|  | if (md->dirty) | 
|  | seq_printf(m, " dirty=%lu", md->dirty); | 
|  |  | 
|  | if (md->pages != md->anon && md->pages != md->dirty) | 
|  | seq_printf(m, " mapped=%lu", md->pages); | 
|  |  | 
|  | if (md->mapcount_max > 1) | 
|  | seq_printf(m, " mapmax=%lu", md->mapcount_max); | 
|  |  | 
|  | if (md->swapcache) | 
|  | seq_printf(m, " swapcache=%lu", md->swapcache); | 
|  |  | 
|  | if (md->active < md->pages && !is_vm_hugetlb_page(vma)) | 
|  | seq_printf(m, " active=%lu", md->active); | 
|  |  | 
|  | if (md->writeback) | 
|  | seq_printf(m, " writeback=%lu", md->writeback); | 
|  |  | 
|  | for_each_node_state(nid, N_MEMORY) | 
|  | if (md->node[nid]) | 
|  | seq_printf(m, " N%d=%lu", nid, md->node[nid]); | 
|  |  | 
|  | seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); | 
|  | out: | 
|  | seq_putc(m, '\n'); | 
|  | m_cache_vma(m, vma); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int show_pid_numa_map(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_numa_map(m, v, 1); | 
|  | } | 
|  |  | 
|  | static int show_tid_numa_map(struct seq_file *m, void *v) | 
|  | { | 
|  | return show_numa_map(m, v, 0); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations proc_pid_numa_maps_op = { | 
|  | .start  = m_start, | 
|  | .next   = m_next, | 
|  | .stop   = m_stop, | 
|  | .show   = show_pid_numa_map, | 
|  | }; | 
|  |  | 
|  | static const struct seq_operations proc_tid_numa_maps_op = { | 
|  | .start  = m_start, | 
|  | .next   = m_next, | 
|  | .stop   = m_stop, | 
|  | .show   = show_tid_numa_map, | 
|  | }; | 
|  |  | 
|  | static int numa_maps_open(struct inode *inode, struct file *file, | 
|  | const struct seq_operations *ops) | 
|  | { | 
|  | return proc_maps_open(inode, file, ops, | 
|  | sizeof(struct numa_maps_private)); | 
|  | } | 
|  |  | 
|  | static int pid_numa_maps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return numa_maps_open(inode, file, &proc_pid_numa_maps_op); | 
|  | } | 
|  |  | 
|  | static int tid_numa_maps_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return numa_maps_open(inode, file, &proc_tid_numa_maps_op); | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_pid_numa_maps_operations = { | 
|  | .open		= pid_numa_maps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  |  | 
|  | const struct file_operations proc_tid_numa_maps_operations = { | 
|  | .open		= tid_numa_maps_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= proc_map_release, | 
|  | }; | 
|  | #endif /* CONFIG_NUMA */ |