| /* | 
 |  * buffered writeback throttling. loosely based on CoDel. We can't drop | 
 |  * packets for IO scheduling, so the logic is something like this: | 
 |  * | 
 |  * - Monitor latencies in a defined window of time. | 
 |  * - If the minimum latency in the above window exceeds some target, increment | 
 |  *   scaling step and scale down queue depth by a factor of 2x. The monitoring | 
 |  *   window is then shrunk to 100 / sqrt(scaling step + 1). | 
 |  * - For any window where we don't have solid data on what the latencies | 
 |  *   look like, retain status quo. | 
 |  * - If latencies look good, decrement scaling step. | 
 |  * - If we're only doing writes, allow the scaling step to go negative. This | 
 |  *   will temporarily boost write performance, snapping back to a stable | 
 |  *   scaling step of 0 if reads show up or the heavy writers finish. Unlike | 
 |  *   positive scaling steps where we shrink the monitoring window, a negative | 
 |  *   scaling step retains the default step==0 window size. | 
 |  * | 
 |  * Copyright (C) 2016 Jens Axboe | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/blk_types.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include "blk-wbt.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/wbt.h> | 
 |  | 
 | static inline void wbt_clear_state(struct request *rq) | 
 | { | 
 | 	rq->wbt_flags = 0; | 
 | } | 
 |  | 
 | static inline enum wbt_flags wbt_flags(struct request *rq) | 
 | { | 
 | 	return rq->wbt_flags; | 
 | } | 
 |  | 
 | static inline bool wbt_is_tracked(struct request *rq) | 
 | { | 
 | 	return rq->wbt_flags & WBT_TRACKED; | 
 | } | 
 |  | 
 | static inline bool wbt_is_read(struct request *rq) | 
 | { | 
 | 	return rq->wbt_flags & WBT_READ; | 
 | } | 
 |  | 
 | enum { | 
 | 	/* | 
 | 	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1) | 
 | 	 * from here depending on device stats | 
 | 	 */ | 
 | 	RWB_DEF_DEPTH	= 16, | 
 |  | 
 | 	/* | 
 | 	 * 100msec window | 
 | 	 */ | 
 | 	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL, | 
 |  | 
 | 	/* | 
 | 	 * Disregard stats, if we don't meet this minimum | 
 | 	 */ | 
 | 	RWB_MIN_WRITE_SAMPLES	= 3, | 
 |  | 
 | 	/* | 
 | 	 * If we have this number of consecutive windows with not enough | 
 | 	 * information to scale up or down, scale up. | 
 | 	 */ | 
 | 	RWB_UNKNOWN_BUMP	= 5, | 
 | }; | 
 |  | 
 | static inline bool rwb_enabled(struct rq_wb *rwb) | 
 | { | 
 | 	return rwb && rwb->wb_normal != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, | 
 |  * false if 'v' + 1 would be bigger than 'below'. | 
 |  */ | 
 | static bool atomic_inc_below(atomic_t *v, int below) | 
 | { | 
 | 	int cur = atomic_read(v); | 
 |  | 
 | 	for (;;) { | 
 | 		int old; | 
 |  | 
 | 		if (cur >= below) | 
 | 			return false; | 
 | 		old = atomic_cmpxchg(v, cur, cur + 1); | 
 | 		if (old == cur) | 
 | 			break; | 
 | 		cur = old; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) | 
 | { | 
 | 	if (rwb_enabled(rwb)) { | 
 | 		const unsigned long cur = jiffies; | 
 |  | 
 | 		if (cur != *var) | 
 | 			*var = cur; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If a task was rate throttled in balance_dirty_pages() within the last | 
 |  * second or so, use that to indicate a higher cleaning rate. | 
 |  */ | 
 | static bool wb_recent_wait(struct rq_wb *rwb) | 
 | { | 
 | 	struct bdi_writeback *wb = &rwb->queue->backing_dev_info->wb; | 
 |  | 
 | 	return time_before(jiffies, wb->dirty_sleep + HZ); | 
 | } | 
 |  | 
 | static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, | 
 | 					  enum wbt_flags wb_acct) | 
 | { | 
 | 	if (wb_acct & WBT_KSWAPD) | 
 | 		return &rwb->rq_wait[WBT_RWQ_KSWAPD]; | 
 | 	else if (wb_acct & WBT_DISCARD) | 
 | 		return &rwb->rq_wait[WBT_RWQ_DISCARD]; | 
 |  | 
 | 	return &rwb->rq_wait[WBT_RWQ_BG]; | 
 | } | 
 |  | 
 | static void rwb_wake_all(struct rq_wb *rwb) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < WBT_NUM_RWQ; i++) { | 
 | 		struct rq_wait *rqw = &rwb->rq_wait[i]; | 
 |  | 
 | 		if (waitqueue_active(&rqw->wait)) | 
 | 			wake_up_all(&rqw->wait); | 
 | 	} | 
 | } | 
 |  | 
 | void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct) | 
 | { | 
 | 	struct rq_wait *rqw; | 
 | 	int inflight, limit; | 
 |  | 
 | 	if (!(wb_acct & WBT_TRACKED)) | 
 | 		return; | 
 |  | 
 | 	rqw = get_rq_wait(rwb, wb_acct); | 
 | 	inflight = atomic_dec_return(&rqw->inflight); | 
 |  | 
 | 	/* | 
 | 	 * wbt got disabled with IO in flight. Wake up any potential | 
 | 	 * waiters, we don't have to do more than that. | 
 | 	 */ | 
 | 	if (unlikely(!rwb_enabled(rwb))) { | 
 | 		rwb_wake_all(rwb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For discards, our limit is always the background. For writes, if | 
 | 	 * the device does write back caching, drop further down before we | 
 | 	 * wake people up. | 
 | 	 */ | 
 | 	if (wb_acct & WBT_DISCARD) | 
 | 		limit = rwb->wb_background; | 
 | 	else if (rwb->wc && !wb_recent_wait(rwb)) | 
 | 		limit = 0; | 
 | 	else | 
 | 		limit = rwb->wb_normal; | 
 |  | 
 | 	/* | 
 | 	 * Don't wake anyone up if we are above the normal limit. | 
 | 	 */ | 
 | 	if (inflight && inflight >= limit) | 
 | 		return; | 
 |  | 
 | 	if (waitqueue_active(&rqw->wait)) { | 
 | 		int diff = limit - inflight; | 
 |  | 
 | 		if (!inflight || diff >= rwb->wb_background / 2) | 
 | 			wake_up_all(&rqw->wait); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called on completion of a request. Note that it's also called when | 
 |  * a request is merged, when the request gets freed. | 
 |  */ | 
 | void wbt_done(struct rq_wb *rwb, struct request *rq) | 
 | { | 
 | 	if (!rwb) | 
 | 		return; | 
 |  | 
 | 	if (!wbt_is_tracked(rq)) { | 
 | 		if (rwb->sync_cookie == rq) { | 
 | 			rwb->sync_issue = 0; | 
 | 			rwb->sync_cookie = NULL; | 
 | 		} | 
 |  | 
 | 		if (wbt_is_read(rq)) | 
 | 			wb_timestamp(rwb, &rwb->last_comp); | 
 | 	} else { | 
 | 		WARN_ON_ONCE(rq == rwb->sync_cookie); | 
 | 		__wbt_done(rwb, wbt_flags(rq)); | 
 | 	} | 
 | 	wbt_clear_state(rq); | 
 | } | 
 |  | 
 | /* | 
 |  * Return true, if we can't increase the depth further by scaling | 
 |  */ | 
 | static bool calc_wb_limits(struct rq_wb *rwb) | 
 | { | 
 | 	unsigned int depth; | 
 | 	bool ret = false; | 
 |  | 
 | 	if (!rwb->min_lat_nsec) { | 
 | 		rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For QD=1 devices, this is a special case. It's important for those | 
 | 	 * to have one request ready when one completes, so force a depth of | 
 | 	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway, | 
 | 	 * since the device can't have more than that in flight. If we're | 
 | 	 * scaling down, then keep a setting of 1/1/1. | 
 | 	 */ | 
 | 	if (rwb->queue_depth == 1) { | 
 | 		if (rwb->scale_step > 0) | 
 | 			rwb->wb_max = rwb->wb_normal = 1; | 
 | 		else { | 
 | 			rwb->wb_max = rwb->wb_normal = 2; | 
 | 			ret = true; | 
 | 		} | 
 | 		rwb->wb_background = 1; | 
 | 	} else { | 
 | 		/* | 
 | 		 * scale_step == 0 is our default state. If we have suffered | 
 | 		 * latency spikes, step will be > 0, and we shrink the | 
 | 		 * allowed write depths. If step is < 0, we're only doing | 
 | 		 * writes, and we allow a temporarily higher depth to | 
 | 		 * increase performance. | 
 | 		 */ | 
 | 		depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth); | 
 | 		if (rwb->scale_step > 0) | 
 | 			depth = 1 + ((depth - 1) >> min(31, rwb->scale_step)); | 
 | 		else if (rwb->scale_step < 0) { | 
 | 			unsigned int maxd = 3 * rwb->queue_depth / 4; | 
 |  | 
 | 			depth = 1 + ((depth - 1) << -rwb->scale_step); | 
 | 			if (depth > maxd) { | 
 | 				depth = maxd; | 
 | 				ret = true; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Set our max/normal/bg queue depths based on how far | 
 | 		 * we have scaled down (->scale_step). | 
 | 		 */ | 
 | 		rwb->wb_max = depth; | 
 | 		rwb->wb_normal = (rwb->wb_max + 1) / 2; | 
 | 		rwb->wb_background = (rwb->wb_max + 3) / 4; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool stat_sample_valid(struct blk_rq_stat *stat) | 
 | { | 
 | 	/* | 
 | 	 * We need at least one read sample, and a minimum of | 
 | 	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know | 
 | 	 * that it's writes impacting us, and not just some sole read on | 
 | 	 * a device that is in a lower power state. | 
 | 	 */ | 
 | 	return (stat[READ].nr_samples >= 1 && | 
 | 		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); | 
 | } | 
 |  | 
 | static u64 rwb_sync_issue_lat(struct rq_wb *rwb) | 
 | { | 
 | 	u64 now, issue = READ_ONCE(rwb->sync_issue); | 
 |  | 
 | 	if (!issue || !rwb->sync_cookie) | 
 | 		return 0; | 
 |  | 
 | 	now = ktime_to_ns(ktime_get()); | 
 | 	return now - issue; | 
 | } | 
 |  | 
 | enum { | 
 | 	LAT_OK = 1, | 
 | 	LAT_UNKNOWN, | 
 | 	LAT_UNKNOWN_WRITES, | 
 | 	LAT_EXCEEDED, | 
 | }; | 
 |  | 
 | static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) | 
 | { | 
 | 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info; | 
 | 	u64 thislat; | 
 |  | 
 | 	/* | 
 | 	 * If our stored sync issue exceeds the window size, or it | 
 | 	 * exceeds our min target AND we haven't logged any entries, | 
 | 	 * flag the latency as exceeded. wbt works off completion latencies, | 
 | 	 * but for a flooded device, a single sync IO can take a long time | 
 | 	 * to complete after being issued. If this time exceeds our | 
 | 	 * monitoring window AND we didn't see any other completions in that | 
 | 	 * window, then count that sync IO as a violation of the latency. | 
 | 	 */ | 
 | 	thislat = rwb_sync_issue_lat(rwb); | 
 | 	if (thislat > rwb->cur_win_nsec || | 
 | 	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { | 
 | 		trace_wbt_lat(bdi, thislat); | 
 | 		return LAT_EXCEEDED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * No read/write mix, if stat isn't valid | 
 | 	 */ | 
 | 	if (!stat_sample_valid(stat)) { | 
 | 		/* | 
 | 		 * If we had writes in this stat window and the window is | 
 | 		 * current, we're only doing writes. If a task recently | 
 | 		 * waited or still has writes in flights, consider us doing | 
 | 		 * just writes as well. | 
 | 		 */ | 
 | 		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || | 
 | 		    wbt_inflight(rwb)) | 
 | 			return LAT_UNKNOWN_WRITES; | 
 | 		return LAT_UNKNOWN; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the 'min' latency exceeds our target, step down. | 
 | 	 */ | 
 | 	if (stat[READ].min > rwb->min_lat_nsec) { | 
 | 		trace_wbt_lat(bdi, stat[READ].min); | 
 | 		trace_wbt_stat(bdi, stat); | 
 | 		return LAT_EXCEEDED; | 
 | 	} | 
 |  | 
 | 	if (rwb->scale_step) | 
 | 		trace_wbt_stat(bdi, stat); | 
 |  | 
 | 	return LAT_OK; | 
 | } | 
 |  | 
 | static void rwb_trace_step(struct rq_wb *rwb, const char *msg) | 
 | { | 
 | 	struct backing_dev_info *bdi = rwb->queue->backing_dev_info; | 
 |  | 
 | 	trace_wbt_step(bdi, msg, rwb->scale_step, rwb->cur_win_nsec, | 
 | 			rwb->wb_background, rwb->wb_normal, rwb->wb_max); | 
 | } | 
 |  | 
 | static void scale_up(struct rq_wb *rwb) | 
 | { | 
 | 	/* | 
 | 	 * Hit max in previous round, stop here | 
 | 	 */ | 
 | 	if (rwb->scaled_max) | 
 | 		return; | 
 |  | 
 | 	rwb->scale_step--; | 
 | 	rwb->unknown_cnt = 0; | 
 |  | 
 | 	rwb->scaled_max = calc_wb_limits(rwb); | 
 |  | 
 | 	rwb_wake_all(rwb); | 
 |  | 
 | 	rwb_trace_step(rwb, "step up"); | 
 | } | 
 |  | 
 | /* | 
 |  * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we | 
 |  * had a latency violation. | 
 |  */ | 
 | static void scale_down(struct rq_wb *rwb, bool hard_throttle) | 
 | { | 
 | 	/* | 
 | 	 * Stop scaling down when we've hit the limit. This also prevents | 
 | 	 * ->scale_step from going to crazy values, if the device can't | 
 | 	 * keep up. | 
 | 	 */ | 
 | 	if (rwb->wb_max == 1) | 
 | 		return; | 
 |  | 
 | 	if (rwb->scale_step < 0 && hard_throttle) | 
 | 		rwb->scale_step = 0; | 
 | 	else | 
 | 		rwb->scale_step++; | 
 |  | 
 | 	rwb->scaled_max = false; | 
 | 	rwb->unknown_cnt = 0; | 
 | 	calc_wb_limits(rwb); | 
 | 	rwb_trace_step(rwb, "step down"); | 
 | } | 
 |  | 
 | static void rwb_arm_timer(struct rq_wb *rwb) | 
 | { | 
 | 	if (rwb->scale_step > 0) { | 
 | 		/* | 
 | 		 * We should speed this up, using some variant of a fast | 
 | 		 * integer inverse square root calculation. Since we only do | 
 | 		 * this for every window expiration, it's not a huge deal, | 
 | 		 * though. | 
 | 		 */ | 
 | 		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, | 
 | 					int_sqrt((rwb->scale_step + 1) << 8)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * For step < 0, we don't want to increase/decrease the | 
 | 		 * window size. | 
 | 		 */ | 
 | 		rwb->cur_win_nsec = rwb->win_nsec; | 
 | 	} | 
 |  | 
 | 	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); | 
 | } | 
 |  | 
 | static void wb_timer_fn(struct blk_stat_callback *cb) | 
 | { | 
 | 	struct rq_wb *rwb = cb->data; | 
 | 	unsigned int inflight = wbt_inflight(rwb); | 
 | 	int status; | 
 |  | 
 | 	status = latency_exceeded(rwb, cb->stat); | 
 |  | 
 | 	trace_wbt_timer(rwb->queue->backing_dev_info, status, rwb->scale_step, | 
 | 			inflight); | 
 |  | 
 | 	/* | 
 | 	 * If we exceeded the latency target, step down. If we did not, | 
 | 	 * step one level up. If we don't know enough to say either exceeded | 
 | 	 * or ok, then don't do anything. | 
 | 	 */ | 
 | 	switch (status) { | 
 | 	case LAT_EXCEEDED: | 
 | 		scale_down(rwb, true); | 
 | 		break; | 
 | 	case LAT_OK: | 
 | 		scale_up(rwb); | 
 | 		break; | 
 | 	case LAT_UNKNOWN_WRITES: | 
 | 		/* | 
 | 		 * We started a the center step, but don't have a valid | 
 | 		 * read/write sample, but we do have writes going on. | 
 | 		 * Allow step to go negative, to increase write perf. | 
 | 		 */ | 
 | 		scale_up(rwb); | 
 | 		break; | 
 | 	case LAT_UNKNOWN: | 
 | 		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) | 
 | 			break; | 
 | 		/* | 
 | 		 * We get here when previously scaled reduced depth, and we | 
 | 		 * currently don't have a valid read/write sample. For that | 
 | 		 * case, slowly return to center state (step == 0). | 
 | 		 */ | 
 | 		if (rwb->scale_step > 0) | 
 | 			scale_up(rwb); | 
 | 		else if (rwb->scale_step < 0) | 
 | 			scale_down(rwb, false); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Re-arm timer, if we have IO in flight | 
 | 	 */ | 
 | 	if (rwb->scale_step || inflight) | 
 | 		rwb_arm_timer(rwb); | 
 | } | 
 |  | 
 | void wbt_update_limits(struct rq_wb *rwb) | 
 | { | 
 | 	rwb->scale_step = 0; | 
 | 	rwb->scaled_max = false; | 
 | 	calc_wb_limits(rwb); | 
 |  | 
 | 	rwb_wake_all(rwb); | 
 | } | 
 |  | 
 | static bool close_io(struct rq_wb *rwb) | 
 | { | 
 | 	const unsigned long now = jiffies; | 
 |  | 
 | 	return time_before(now, rwb->last_issue + HZ / 10) || | 
 | 		time_before(now, rwb->last_comp + HZ / 10); | 
 | } | 
 |  | 
 | #define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO) | 
 |  | 
 | static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw) | 
 | { | 
 | 	unsigned int limit; | 
 |  | 
 | 	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD) | 
 | 		return rwb->wb_background; | 
 |  | 
 | 	/* | 
 | 	 * At this point we know it's a buffered write. If this is | 
 | 	 * kswapd trying to free memory, or REQ_SYNC is set, then | 
 | 	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for | 
 | 	 * that. If the write is marked as a background write, then use | 
 | 	 * the idle limit, or go to normal if we haven't had competing | 
 | 	 * IO for a bit. | 
 | 	 */ | 
 | 	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) | 
 | 		limit = rwb->wb_max; | 
 | 	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) { | 
 | 		/* | 
 | 		 * If less than 100ms since we completed unrelated IO, | 
 | 		 * limit us to half the depth for background writeback. | 
 | 		 */ | 
 | 		limit = rwb->wb_background; | 
 | 	} else | 
 | 		limit = rwb->wb_normal; | 
 |  | 
 | 	return limit; | 
 | } | 
 |  | 
 | static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw, | 
 | 			     wait_queue_entry_t *wait, unsigned long rw) | 
 | { | 
 | 	/* | 
 | 	 * inc it here even if disabled, since we'll dec it at completion. | 
 | 	 * this only happens if the task was sleeping in __wbt_wait(), | 
 | 	 * and someone turned it off at the same time. | 
 | 	 */ | 
 | 	if (!rwb_enabled(rwb)) { | 
 | 		atomic_inc(&rqw->inflight); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the waitqueue is already active and we are not the next | 
 | 	 * in line to be woken up, wait for our turn. | 
 | 	 */ | 
 | 	if (waitqueue_active(&rqw->wait) && | 
 | 	    rqw->wait.head.next != &wait->entry) | 
 | 		return false; | 
 |  | 
 | 	return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw)); | 
 | } | 
 |  | 
 | /* | 
 |  * Block if we will exceed our limit, or if we are currently waiting for | 
 |  * the timer to kick off queuing again. | 
 |  */ | 
 | static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, | 
 | 		       unsigned long rw, spinlock_t *lock) | 
 | 	__releases(lock) | 
 | 	__acquires(lock) | 
 | { | 
 | 	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	if (may_queue(rwb, rqw, &wait, rw)) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		prepare_to_wait_exclusive(&rqw->wait, &wait, | 
 | 						TASK_UNINTERRUPTIBLE); | 
 |  | 
 | 		if (may_queue(rwb, rqw, &wait, rw)) | 
 | 			break; | 
 |  | 
 | 		if (lock) { | 
 | 			spin_unlock_irq(lock); | 
 | 			io_schedule(); | 
 | 			spin_lock_irq(lock); | 
 | 		} else | 
 | 			io_schedule(); | 
 | 	} while (1); | 
 |  | 
 | 	finish_wait(&rqw->wait, &wait); | 
 | } | 
 |  | 
 | static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio) | 
 | { | 
 | 	switch (bio_op(bio)) { | 
 | 	case REQ_OP_WRITE: | 
 | 		/* | 
 | 		 * Don't throttle WRITE_ODIRECT | 
 | 		 */ | 
 | 		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == | 
 | 		    (REQ_SYNC | REQ_IDLE)) | 
 | 			return false; | 
 | 		/* fallthrough */ | 
 | 	case REQ_OP_DISCARD: | 
 | 		return true; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the IO request should be accounted, false if not. | 
 |  * May sleep, if we have exceeded the writeback limits. Caller can pass | 
 |  * in an irq held spinlock, if it holds one when calling this function. | 
 |  * If we do sleep, we'll release and re-grab it. | 
 |  */ | 
 | enum wbt_flags wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock) | 
 | { | 
 | 	enum wbt_flags ret = 0; | 
 |  | 
 | 	if (!rwb_enabled(rwb)) | 
 | 		return 0; | 
 |  | 
 | 	if (bio_op(bio) == REQ_OP_READ) | 
 | 		ret = WBT_READ; | 
 |  | 
 | 	if (!wbt_should_throttle(rwb, bio)) { | 
 | 		if (ret & WBT_READ) | 
 | 			wb_timestamp(rwb, &rwb->last_issue); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (current_is_kswapd()) | 
 | 		ret |= WBT_KSWAPD; | 
 | 	if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 		ret |= WBT_DISCARD; | 
 |  | 
 | 	__wbt_wait(rwb, ret, bio->bi_opf, lock); | 
 |  | 
 | 	if (!blk_stat_is_active(rwb->cb)) | 
 | 		rwb_arm_timer(rwb); | 
 |  | 
 | 	return ret | WBT_TRACKED; | 
 | } | 
 |  | 
 | void wbt_issue(struct rq_wb *rwb, struct request *rq) | 
 | { | 
 | 	if (!rwb_enabled(rwb)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Track sync issue, in case it takes a long time to complete. Allows us | 
 | 	 * to react quicker, if a sync IO takes a long time to complete. Note | 
 | 	 * that this is just a hint. The request can go away when it completes, | 
 | 	 * so it's important we never dereference it. We only use the address to | 
 | 	 * compare with, which is why we store the sync_issue time locally. | 
 | 	 */ | 
 | 	if (wbt_is_read(rq) && !rwb->sync_issue) { | 
 | 		rwb->sync_cookie = rq; | 
 | 		rwb->sync_issue = rq->io_start_time_ns; | 
 | 	} | 
 | } | 
 |  | 
 | void wbt_requeue(struct rq_wb *rwb, struct request *rq) | 
 | { | 
 | 	if (!rwb_enabled(rwb)) | 
 | 		return; | 
 | 	if (rq == rwb->sync_cookie) { | 
 | 		rwb->sync_issue = 0; | 
 | 		rwb->sync_cookie = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth) | 
 | { | 
 | 	if (rwb) { | 
 | 		rwb->queue_depth = depth; | 
 | 		wbt_update_limits(rwb); | 
 | 	} | 
 | } | 
 |  | 
 | void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on) | 
 | { | 
 | 	if (rwb) | 
 | 		rwb->wc = write_cache_on; | 
 | } | 
 |  | 
 | /* | 
 |  * Disable wbt, if enabled by default. | 
 |  */ | 
 | void wbt_disable_default(struct request_queue *q) | 
 | { | 
 | 	struct rq_wb *rwb = q->rq_wb; | 
 |  | 
 | 	if (rwb && rwb->enable_state == WBT_STATE_ON_DEFAULT) | 
 | 		wbt_exit(q); | 
 | } | 
 | EXPORT_SYMBOL_GPL(wbt_disable_default); | 
 |  | 
 | /* | 
 |  * Enable wbt if defaults are configured that way | 
 |  */ | 
 | void wbt_enable_default(struct request_queue *q) | 
 | { | 
 | 	/* Throttling already enabled? */ | 
 | 	if (q->rq_wb) | 
 | 		return; | 
 |  | 
 | 	/* Queue not registered? Maybe shutting down... */ | 
 | 	if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) | 
 | 		return; | 
 |  | 
 | 	if ((q->mq_ops && IS_ENABLED(CONFIG_BLK_WBT_MQ)) || | 
 | 	    (q->request_fn && IS_ENABLED(CONFIG_BLK_WBT_SQ))) | 
 | 		wbt_init(q); | 
 | } | 
 | EXPORT_SYMBOL_GPL(wbt_enable_default); | 
 |  | 
 | u64 wbt_default_latency_nsec(struct request_queue *q) | 
 | { | 
 | 	/* | 
 | 	 * We default to 2msec for non-rotational storage, and 75msec | 
 | 	 * for rotational storage. | 
 | 	 */ | 
 | 	if (blk_queue_nonrot(q)) | 
 | 		return 2000000ULL; | 
 | 	else | 
 | 		return 75000000ULL; | 
 | } | 
 |  | 
 | static int wbt_data_dir(const struct request *rq) | 
 | { | 
 | 	const int op = req_op(rq); | 
 |  | 
 | 	if (op == REQ_OP_READ) | 
 | 		return READ; | 
 | 	else if (op_is_write(op)) | 
 | 		return WRITE; | 
 |  | 
 | 	/* don't account */ | 
 | 	return -1; | 
 | } | 
 |  | 
 | int wbt_init(struct request_queue *q) | 
 | { | 
 | 	struct rq_wb *rwb; | 
 | 	int i; | 
 |  | 
 | 	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); | 
 | 	if (!rwb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); | 
 | 	if (!rwb->cb) { | 
 | 		kfree(rwb); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < WBT_NUM_RWQ; i++) { | 
 | 		atomic_set(&rwb->rq_wait[i].inflight, 0); | 
 | 		init_waitqueue_head(&rwb->rq_wait[i].wait); | 
 | 	} | 
 |  | 
 | 	rwb->last_comp = rwb->last_issue = jiffies; | 
 | 	rwb->queue = q; | 
 | 	rwb->win_nsec = RWB_WINDOW_NSEC; | 
 | 	rwb->enable_state = WBT_STATE_ON_DEFAULT; | 
 | 	wbt_update_limits(rwb); | 
 |  | 
 | 	/* | 
 | 	 * Assign rwb and add the stats callback. | 
 | 	 */ | 
 | 	q->rq_wb = rwb; | 
 | 	blk_stat_add_callback(q, rwb->cb); | 
 |  | 
 | 	rwb->min_lat_nsec = wbt_default_latency_nsec(q); | 
 |  | 
 | 	wbt_set_queue_depth(rwb, blk_queue_depth(q)); | 
 | 	wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void wbt_exit(struct request_queue *q) | 
 | { | 
 | 	struct rq_wb *rwb = q->rq_wb; | 
 |  | 
 | 	if (rwb) { | 
 | 		blk_stat_remove_callback(q, rwb->cb); | 
 | 		blk_stat_free_callback(rwb->cb); | 
 | 		q->rq_wb = NULL; | 
 | 		kfree(rwb); | 
 | 	} | 
 | } |