|  | /* | 
|  | * drivers/ata/sata_dwc_460ex.c | 
|  | * | 
|  | * Synopsys DesignWare Cores (DWC) SATA host driver | 
|  | * | 
|  | * Author: Mark Miesfeld <[email protected]> | 
|  | * | 
|  | * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <[email protected]> | 
|  | * Copyright 2008 DENX Software Engineering | 
|  | * | 
|  | * Based on versions provided by AMCC and Synopsys which are: | 
|  | *          Copyright 2006 Applied Micro Circuits Corporation | 
|  | *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED | 
|  | * | 
|  | * This program is free software; you can redistribute  it and/or modify it | 
|  | * under  the terms of  the GNU General  Public License as published by the | 
|  | * Free Software Foundation;  either version 2 of the  License, or (at your | 
|  | * option) any later version. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SATA_DWC_DEBUG | 
|  | #define DEBUG | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SATA_DWC_VDEBUG | 
|  | #define VERBOSE_DEBUG | 
|  | #define DEBUG_NCQ | 
|  | #endif | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/libata.h> | 
|  | #include <linux/slab.h> | 
|  | #include "libata.h" | 
|  |  | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  |  | 
|  | /* These two are defined in "libata.h" */ | 
|  | #undef	DRV_NAME | 
|  | #undef	DRV_VERSION | 
|  |  | 
|  | #define DRV_NAME        "sata-dwc" | 
|  | #define DRV_VERSION     "1.3" | 
|  |  | 
|  | /* SATA DMA driver Globals */ | 
|  | #define DMA_NUM_CHANS		1 | 
|  | #define DMA_NUM_CHAN_REGS	8 | 
|  |  | 
|  | /* SATA DMA Register definitions */ | 
|  | #define AHB_DMA_BRST_DFLT	64	/* 16 data items burst length*/ | 
|  |  | 
|  | struct dmareg { | 
|  | u32 low;		/* Low bits 0-31 */ | 
|  | u32 high;		/* High bits 32-63 */ | 
|  | }; | 
|  |  | 
|  | /* DMA Per Channel registers */ | 
|  | struct dma_chan_regs { | 
|  | struct dmareg sar;	/* Source Address */ | 
|  | struct dmareg dar;	/* Destination address */ | 
|  | struct dmareg llp;	/* Linked List Pointer */ | 
|  | struct dmareg ctl;	/* Control */ | 
|  | struct dmareg sstat;	/* Source Status not implemented in core */ | 
|  | struct dmareg dstat;	/* Destination Status not implemented in core*/ | 
|  | struct dmareg sstatar;	/* Source Status Address not impl in core */ | 
|  | struct dmareg dstatar;	/* Destination Status Address not implemente */ | 
|  | struct dmareg cfg;	/* Config */ | 
|  | struct dmareg sgr;	/* Source Gather */ | 
|  | struct dmareg dsr;	/* Destination Scatter */ | 
|  | }; | 
|  |  | 
|  | /* Generic Interrupt Registers */ | 
|  | struct dma_interrupt_regs { | 
|  | struct dmareg tfr;	/* Transfer Interrupt */ | 
|  | struct dmareg block;	/* Block Interrupt */ | 
|  | struct dmareg srctran;	/* Source Transfer Interrupt */ | 
|  | struct dmareg dsttran;	/* Dest Transfer Interrupt */ | 
|  | struct dmareg error;	/* Error */ | 
|  | }; | 
|  |  | 
|  | struct ahb_dma_regs { | 
|  | struct dma_chan_regs	chan_regs[DMA_NUM_CHAN_REGS]; | 
|  | struct dma_interrupt_regs interrupt_raw;	/* Raw Interrupt */ | 
|  | struct dma_interrupt_regs interrupt_status;	/* Interrupt Status */ | 
|  | struct dma_interrupt_regs interrupt_mask;	/* Interrupt Mask */ | 
|  | struct dma_interrupt_regs interrupt_clear;	/* Interrupt Clear */ | 
|  | struct dmareg		statusInt;	/* Interrupt combined*/ | 
|  | struct dmareg		rq_srcreg;	/* Src Trans Req */ | 
|  | struct dmareg		rq_dstreg;	/* Dst Trans Req */ | 
|  | struct dmareg		rq_sgl_srcreg;	/* Sngl Src Trans Req*/ | 
|  | struct dmareg		rq_sgl_dstreg;	/* Sngl Dst Trans Req*/ | 
|  | struct dmareg		rq_lst_srcreg;	/* Last Src Trans Req*/ | 
|  | struct dmareg		rq_lst_dstreg;	/* Last Dst Trans Req*/ | 
|  | struct dmareg		dma_cfg;		/* DMA Config */ | 
|  | struct dmareg		dma_chan_en;		/* DMA Channel Enable*/ | 
|  | struct dmareg		dma_id;			/* DMA ID */ | 
|  | struct dmareg		dma_test;		/* DMA Test */ | 
|  | struct dmareg		res1;			/* reserved */ | 
|  | struct dmareg		res2;			/* reserved */ | 
|  | /* | 
|  | * DMA Comp Params | 
|  | * Param 6 = dma_param[0], Param 5 = dma_param[1], | 
|  | * Param 4 = dma_param[2] ... | 
|  | */ | 
|  | struct dmareg		dma_params[6]; | 
|  | }; | 
|  |  | 
|  | /* Data structure for linked list item */ | 
|  | struct lli { | 
|  | u32		sar;		/* Source Address */ | 
|  | u32		dar;		/* Destination address */ | 
|  | u32		llp;		/* Linked List Pointer */ | 
|  | struct dmareg	ctl;		/* Control */ | 
|  | struct dmareg	dstat;		/* Destination Status */ | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | SATA_DWC_DMAC_LLI_SZ =	(sizeof(struct lli)), | 
|  | SATA_DWC_DMAC_LLI_NUM =	256, | 
|  | SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \ | 
|  | SATA_DWC_DMAC_LLI_NUM), | 
|  | SATA_DWC_DMAC_TWIDTH_BYTES = 4, | 
|  | SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \ | 
|  | SATA_DWC_DMAC_TWIDTH_BYTES), | 
|  | }; | 
|  |  | 
|  | /* DMA Register Operation Bits */ | 
|  | enum { | 
|  | DMA_EN	=		0x00000001, /* Enable AHB DMA */ | 
|  | DMA_CTL_LLP_SRCEN =	0x10000000, /* Blk chain enable Src */ | 
|  | DMA_CTL_LLP_DSTEN =	0x08000000, /* Blk chain enable Dst */ | 
|  | }; | 
|  |  | 
|  | #define	DMA_CTL_BLK_TS(size)	((size) & 0x000000FFF)	/* Blk Transfer size */ | 
|  | #define DMA_CHANNEL(ch)		(0x00000001 << (ch))	/* Select channel */ | 
|  | /* Enable channel */ | 
|  | #define	DMA_ENABLE_CHAN(ch)	((0x00000001 << (ch)) |			\ | 
|  | ((0x000000001 << (ch)) << 8)) | 
|  | /* Disable channel */ | 
|  | #define	DMA_DISABLE_CHAN(ch)	(0x00000000 | ((0x000000001 << (ch)) << 8)) | 
|  | /* Transfer Type & Flow Controller */ | 
|  | #define	DMA_CTL_TTFC(type)	(((type) & 0x7) << 20) | 
|  | #define	DMA_CTL_SMS(num)	(((num) & 0x3) << 25) /* Src Master Select */ | 
|  | #define	DMA_CTL_DMS(num)	(((num) & 0x3) << 23)/* Dst Master Select */ | 
|  | /* Src Burst Transaction Length */ | 
|  | #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14) | 
|  | /* Dst Burst Transaction Length */ | 
|  | #define	DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11) | 
|  | /* Source Transfer Width */ | 
|  | #define	DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4) | 
|  | /* Destination Transfer Width */ | 
|  | #define	DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1) | 
|  |  | 
|  | /* Assign HW handshaking interface (x) to destination / source peripheral */ | 
|  | #define	DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11) | 
|  | #define	DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7) | 
|  | #define	DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5) | 
|  | #define	DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) | 
|  |  | 
|  | /* | 
|  | * This define is used to set block chaining disabled in the control low | 
|  | * register.  It is already in little endian format so it can be &'d dirctly. | 
|  | * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) | 
|  | */ | 
|  | enum { | 
|  | DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7, | 
|  | DMA_CTL_TTFC_P2M_DMAC =	0x00000002, /* Per to mem, DMAC cntr */ | 
|  | DMA_CTL_TTFC_M2P_PER =	0x00000003, /* Mem to per, peripheral cntr */ | 
|  | DMA_CTL_SINC_INC =	0x00000000, /* Source Address Increment */ | 
|  | DMA_CTL_SINC_DEC =	0x00000200, | 
|  | DMA_CTL_SINC_NOCHANGE =	0x00000400, | 
|  | DMA_CTL_DINC_INC =	0x00000000, /* Destination Address Increment */ | 
|  | DMA_CTL_DINC_DEC =	0x00000080, | 
|  | DMA_CTL_DINC_NOCHANGE =	0x00000100, | 
|  | DMA_CTL_INT_EN =	0x00000001, /* Interrupt Enable */ | 
|  |  | 
|  | /* Channel Configuration Register high bits */ | 
|  | DMA_CFG_FCMOD_REQ =	0x00000001, /* Flow Control - request based */ | 
|  | DMA_CFG_PROTCTL	=	(0x00000003 << 2),/* Protection Control */ | 
|  |  | 
|  | /* Channel Configuration Register low bits */ | 
|  | DMA_CFG_RELD_DST =	0x80000000, /* Reload Dest / Src Addr */ | 
|  | DMA_CFG_RELD_SRC =	0x40000000, | 
|  | DMA_CFG_HS_SELSRC =	0x00000800, /* Software handshake Src/ Dest */ | 
|  | DMA_CFG_HS_SELDST =	0x00000400, | 
|  | DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */ | 
|  |  | 
|  | /* Channel Linked List Pointer Register */ | 
|  | DMA_LLP_AHBMASTER1 =	0,	/* List Master Select */ | 
|  | DMA_LLP_AHBMASTER2 =	1, | 
|  |  | 
|  | SATA_DWC_MAX_PORTS = 1, | 
|  |  | 
|  | SATA_DWC_SCR_OFFSET = 0x24, | 
|  | SATA_DWC_REG_OFFSET = 0x64, | 
|  | }; | 
|  |  | 
|  | /* DWC SATA Registers */ | 
|  | struct sata_dwc_regs { | 
|  | u32 fptagr;		/* 1st party DMA tag */ | 
|  | u32 fpbor;		/* 1st party DMA buffer offset */ | 
|  | u32 fptcr;		/* 1st party DMA Xfr count */ | 
|  | u32 dmacr;		/* DMA Control */ | 
|  | u32 dbtsr;		/* DMA Burst Transac size */ | 
|  | u32 intpr;		/* Interrupt Pending */ | 
|  | u32 intmr;		/* Interrupt Mask */ | 
|  | u32 errmr;		/* Error Mask */ | 
|  | u32 llcr;		/* Link Layer Control */ | 
|  | u32 phycr;		/* PHY Control */ | 
|  | u32 physr;		/* PHY Status */ | 
|  | u32 rxbistpd;		/* Recvd BIST pattern def register */ | 
|  | u32 rxbistpd1;		/* Recvd BIST data dword1 */ | 
|  | u32 rxbistpd2;		/* Recvd BIST pattern data dword2 */ | 
|  | u32 txbistpd;		/* Trans BIST pattern def register */ | 
|  | u32 txbistpd1;		/* Trans BIST data dword1 */ | 
|  | u32 txbistpd2;		/* Trans BIST data dword2 */ | 
|  | u32 bistcr;		/* BIST Control Register */ | 
|  | u32 bistfctr;		/* BIST FIS Count Register */ | 
|  | u32 bistsr;		/* BIST Status Register */ | 
|  | u32 bistdecr;		/* BIST Dword Error count register */ | 
|  | u32 res[15];		/* Reserved locations */ | 
|  | u32 testr;		/* Test Register */ | 
|  | u32 versionr;		/* Version Register */ | 
|  | u32 idr;		/* ID Register */ | 
|  | u32 unimpl[192];	/* Unimplemented */ | 
|  | u32 dmadr[256];	/* FIFO Locations in DMA Mode */ | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | SCR_SCONTROL_DET_ENABLE	=	0x00000001, | 
|  | SCR_SSTATUS_DET_PRESENT	=	0x00000001, | 
|  | SCR_SERROR_DIAG_X	=	0x04000000, | 
|  | /* DWC SATA Register Operations */ | 
|  | SATA_DWC_TXFIFO_DEPTH	=	0x01FF, | 
|  | SATA_DWC_RXFIFO_DEPTH	=	0x01FF, | 
|  | SATA_DWC_DMACR_TMOD_TXCHEN =	0x00000004, | 
|  | SATA_DWC_DMACR_TXCHEN	= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), | 
|  | SATA_DWC_DMACR_RXCHEN	= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), | 
|  | SATA_DWC_DMACR_TXRXCH_CLEAR =	SATA_DWC_DMACR_TMOD_TXCHEN, | 
|  | SATA_DWC_INTPR_DMAT	=	0x00000001, | 
|  | SATA_DWC_INTPR_NEWFP	=	0x00000002, | 
|  | SATA_DWC_INTPR_PMABRT	=	0x00000004, | 
|  | SATA_DWC_INTPR_ERR	=	0x00000008, | 
|  | SATA_DWC_INTPR_NEWBIST	=	0x00000010, | 
|  | SATA_DWC_INTPR_IPF	=	0x10000000, | 
|  | SATA_DWC_INTMR_DMATM	=	0x00000001, | 
|  | SATA_DWC_INTMR_NEWFPM	=	0x00000002, | 
|  | SATA_DWC_INTMR_PMABRTM	=	0x00000004, | 
|  | SATA_DWC_INTMR_ERRM	=	0x00000008, | 
|  | SATA_DWC_INTMR_NEWBISTM	=	0x00000010, | 
|  | SATA_DWC_LLCR_SCRAMEN	=	0x00000001, | 
|  | SATA_DWC_LLCR_DESCRAMEN	=	0x00000002, | 
|  | SATA_DWC_LLCR_RPDEN	=	0x00000004, | 
|  | /* This is all error bits, zero's are reserved fields. */ | 
|  | SATA_DWC_SERROR_ERR_BITS =	0x0FFF0F03 | 
|  | }; | 
|  |  | 
|  | #define SATA_DWC_SCR0_SPD_GET(v)	(((v) >> 4) & 0x0000000F) | 
|  | #define SATA_DWC_DMACR_TX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_TXCHEN) |\ | 
|  | SATA_DWC_DMACR_TMOD_TXCHEN) | 
|  | #define SATA_DWC_DMACR_RX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_RXCHEN) |\ | 
|  | SATA_DWC_DMACR_TMOD_TXCHEN) | 
|  | #define SATA_DWC_DBTSR_MWR(size)	(((size)/4) & SATA_DWC_TXFIFO_DEPTH) | 
|  | #define SATA_DWC_DBTSR_MRD(size)	((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ | 
|  | << 16) | 
|  | struct sata_dwc_device { | 
|  | struct device		*dev;		/* generic device struct */ | 
|  | struct ata_probe_ent	*pe;		/* ptr to probe-ent */ | 
|  | struct ata_host		*host; | 
|  | u8			*reg_base; | 
|  | struct sata_dwc_regs	*sata_dwc_regs;	/* DW Synopsys SATA specific */ | 
|  | int			irq_dma; | 
|  | }; | 
|  |  | 
|  | #define SATA_DWC_QCMD_MAX	32 | 
|  |  | 
|  | struct sata_dwc_device_port { | 
|  | struct sata_dwc_device	*hsdev; | 
|  | int			cmd_issued[SATA_DWC_QCMD_MAX]; | 
|  | struct lli		*llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */ | 
|  | dma_addr_t		llit_dma[SATA_DWC_QCMD_MAX]; | 
|  | u32			dma_chan[SATA_DWC_QCMD_MAX]; | 
|  | int			dma_pending[SATA_DWC_QCMD_MAX]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Commonly used DWC SATA driver Macros | 
|  | */ | 
|  | #define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\ | 
|  | (host)->private_data) | 
|  | #define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\ | 
|  | (ap)->host->private_data) | 
|  | #define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\ | 
|  | (ap)->private_data) | 
|  | #define HSDEV_FROM_QC(qc)	((struct sata_dwc_device *)\ | 
|  | (qc)->ap->host->private_data) | 
|  | #define HSDEV_FROM_HSDEVP(p)	((struct sata_dwc_device *)\ | 
|  | (hsdevp)->hsdev) | 
|  |  | 
|  | enum { | 
|  | SATA_DWC_CMD_ISSUED_NOT		= 0, | 
|  | SATA_DWC_CMD_ISSUED_PEND	= 1, | 
|  | SATA_DWC_CMD_ISSUED_EXEC	= 2, | 
|  | SATA_DWC_CMD_ISSUED_NODATA	= 3, | 
|  |  | 
|  | SATA_DWC_DMA_PENDING_NONE	= 0, | 
|  | SATA_DWC_DMA_PENDING_TX		= 1, | 
|  | SATA_DWC_DMA_PENDING_RX		= 2, | 
|  | }; | 
|  |  | 
|  | struct sata_dwc_host_priv { | 
|  | void	__iomem	 *scr_addr_sstatus; | 
|  | u32	sata_dwc_sactive_issued ; | 
|  | u32	sata_dwc_sactive_queued ; | 
|  | u32	dma_interrupt_count; | 
|  | struct	ahb_dma_regs	*sata_dma_regs; | 
|  | struct	device	*dwc_dev; | 
|  | int	dma_channel; | 
|  | }; | 
|  | struct sata_dwc_host_priv host_pvt; | 
|  | /* | 
|  | * Prototypes | 
|  | */ | 
|  | static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); | 
|  | static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, | 
|  | u32 check_status); | 
|  | static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); | 
|  | static void sata_dwc_port_stop(struct ata_port *ap); | 
|  | static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); | 
|  | static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); | 
|  | static void dma_dwc_exit(struct sata_dwc_device *hsdev); | 
|  | static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, | 
|  | struct lli *lli, dma_addr_t dma_lli, | 
|  | void __iomem *addr, int dir); | 
|  | static void dma_dwc_xfer_start(int dma_ch); | 
|  |  | 
|  | static const char *get_prot_descript(u8 protocol) | 
|  | { | 
|  | switch ((enum ata_tf_protocols)protocol) { | 
|  | case ATA_PROT_NODATA: | 
|  | return "ATA no data"; | 
|  | case ATA_PROT_PIO: | 
|  | return "ATA PIO"; | 
|  | case ATA_PROT_DMA: | 
|  | return "ATA DMA"; | 
|  | case ATA_PROT_NCQ: | 
|  | return "ATA NCQ"; | 
|  | case ATAPI_PROT_NODATA: | 
|  | return "ATAPI no data"; | 
|  | case ATAPI_PROT_PIO: | 
|  | return "ATAPI PIO"; | 
|  | case ATAPI_PROT_DMA: | 
|  | return "ATAPI DMA"; | 
|  | default: | 
|  | return "unknown"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *get_dma_dir_descript(int dma_dir) | 
|  | { | 
|  | switch ((enum dma_data_direction)dma_dir) { | 
|  | case DMA_BIDIRECTIONAL: | 
|  | return "bidirectional"; | 
|  | case DMA_TO_DEVICE: | 
|  | return "to device"; | 
|  | case DMA_FROM_DEVICE: | 
|  | return "from device"; | 
|  | default: | 
|  | return "none"; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sata_dwc_tf_dump(struct ata_taskfile *tf) | 
|  | { | 
|  | dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:" | 
|  | "0x%lx device: %x\n", tf->command, | 
|  | get_prot_descript(tf->protocol), tf->flags, tf->device); | 
|  | dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x " | 
|  | "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, | 
|  | tf->lbam, tf->lbah); | 
|  | dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x " | 
|  | "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", | 
|  | tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, | 
|  | tf->hob_lbah); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: get_burst_length_encode | 
|  | * arguments: datalength: length in bytes of data | 
|  | * returns value to be programmed in register corresponding to data length | 
|  | * This value is effectively the log(base 2) of the length | 
|  | */ | 
|  | static  int get_burst_length_encode(int datalength) | 
|  | { | 
|  | int items = datalength >> 2;	/* div by 4 to get lword count */ | 
|  |  | 
|  | if (items >= 64) | 
|  | return 5; | 
|  |  | 
|  | if (items >= 32) | 
|  | return 4; | 
|  |  | 
|  | if (items >= 16) | 
|  | return 3; | 
|  |  | 
|  | if (items >= 8) | 
|  | return 2; | 
|  |  | 
|  | if (items >= 4) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static  void clear_chan_interrupts(int c) | 
|  | { | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low), | 
|  | DMA_CHANNEL(c)); | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low), | 
|  | DMA_CHANNEL(c)); | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low), | 
|  | DMA_CHANNEL(c)); | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low), | 
|  | DMA_CHANNEL(c)); | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low), | 
|  | DMA_CHANNEL(c)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_request_channel | 
|  | * arguments: None | 
|  | * returns channel number if available else -1 | 
|  | * This function assigns the next available DMA channel from the list to the | 
|  | * requester | 
|  | */ | 
|  | static int dma_request_channel(void) | 
|  | { | 
|  | /* Check if the channel is not currently in use */ | 
|  | if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) & | 
|  | DMA_CHANNEL(host_pvt.dma_channel))) | 
|  | return host_pvt.dma_channel; | 
|  | dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n", | 
|  | __func__, host_pvt.dma_channel); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_dwc_interrupt | 
|  | * arguments: irq, dev_id, pt_regs | 
|  | * returns channel number if available else -1 | 
|  | * Interrupt Handler for DW AHB SATA DMA | 
|  | */ | 
|  | static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance) | 
|  | { | 
|  | int chan; | 
|  | u32 tfr_reg, err_reg; | 
|  | unsigned long flags; | 
|  | struct sata_dwc_device *hsdev = hsdev_instance; | 
|  | struct ata_host *host = (struct ata_host *)hsdev->host; | 
|  | struct ata_port *ap; | 
|  | struct sata_dwc_device_port *hsdevp; | 
|  | u8 tag = 0; | 
|  | unsigned int port = 0; | 
|  |  | 
|  | spin_lock_irqsave(&host->lock, flags); | 
|  | ap = host->ports[port]; | 
|  | hsdevp = HSDEVP_FROM_AP(ap); | 
|  | tag = ap->link.active_tag; | 
|  |  | 
|  | tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\ | 
|  | .low)); | 
|  | err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\ | 
|  | .low)); | 
|  |  | 
|  | dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", | 
|  | tfr_reg, err_reg, hsdevp->dma_pending[tag], port); | 
|  |  | 
|  | chan = host_pvt.dma_channel; | 
|  | if (chan >= 0) { | 
|  | /* Check for end-of-transfer interrupt. */ | 
|  | if (tfr_reg & DMA_CHANNEL(chan)) { | 
|  | /* | 
|  | * Each DMA command produces 2 interrupts.  Only | 
|  | * complete the command after both interrupts have been | 
|  | * seen. (See sata_dwc_isr()) | 
|  | */ | 
|  | host_pvt.dma_interrupt_count++; | 
|  | sata_dwc_clear_dmacr(hsdevp, tag); | 
|  |  | 
|  | if (hsdevp->dma_pending[tag] == | 
|  | SATA_DWC_DMA_PENDING_NONE) { | 
|  | dev_err(ap->dev, "DMA not pending eot=0x%08x " | 
|  | "err=0x%08x tag=0x%02x pending=%d\n", | 
|  | tfr_reg, err_reg, tag, | 
|  | hsdevp->dma_pending[tag]); | 
|  | } | 
|  |  | 
|  | if ((host_pvt.dma_interrupt_count % 2) == 0) | 
|  | sata_dwc_dma_xfer_complete(ap, 1); | 
|  |  | 
|  | /* Clear the interrupt */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ | 
|  | .tfr.low), | 
|  | DMA_CHANNEL(chan)); | 
|  | } | 
|  |  | 
|  | /* Check for error interrupt. */ | 
|  | if (err_reg & DMA_CHANNEL(chan)) { | 
|  | /* TODO Need error handler ! */ | 
|  | dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", | 
|  | err_reg); | 
|  |  | 
|  | /* Clear the interrupt. */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ | 
|  | .error.low), | 
|  | DMA_CHANNEL(chan)); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&host->lock, flags); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_request_interrupts | 
|  | * arguments: hsdev | 
|  | * returns status | 
|  | * This function registers ISR for a particular DMA channel interrupt | 
|  | */ | 
|  | static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) | 
|  | { | 
|  | int retval = 0; | 
|  | int chan = host_pvt.dma_channel; | 
|  |  | 
|  | if (chan >= 0) { | 
|  | /* Unmask error interrupt */ | 
|  | out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low, | 
|  | DMA_ENABLE_CHAN(chan)); | 
|  |  | 
|  | /* Unmask end-of-transfer interrupt */ | 
|  | out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low, | 
|  | DMA_ENABLE_CHAN(chan)); | 
|  | } | 
|  |  | 
|  | retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev); | 
|  | if (retval) { | 
|  | dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n", | 
|  | __func__, irq); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Mark this interrupt as requested */ | 
|  | hsdev->irq_dma = irq; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: map_sg_to_lli | 
|  | * The Synopsis driver has a comment proposing that better performance | 
|  | * is possible by only enabling interrupts on the last item in the linked list. | 
|  | * However, it seems that could be a problem if an error happened on one of the | 
|  | * first items.  The transfer would halt, but no error interrupt would occur. | 
|  | * Currently this function sets interrupts enabled for each linked list item: | 
|  | * DMA_CTL_INT_EN. | 
|  | */ | 
|  | static int map_sg_to_lli(struct scatterlist *sg, int num_elems, | 
|  | struct lli *lli, dma_addr_t dma_lli, | 
|  | void __iomem *dmadr_addr, int dir) | 
|  | { | 
|  | int i, idx = 0; | 
|  | int fis_len = 0; | 
|  | dma_addr_t next_llp; | 
|  | int bl; | 
|  | int sms_val, dms_val; | 
|  |  | 
|  | sms_val = 0; | 
|  | dms_val = 1 + host_pvt.dma_channel; | 
|  | dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x" | 
|  | " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, | 
|  | (u32)dmadr_addr); | 
|  |  | 
|  | bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); | 
|  |  | 
|  | for (i = 0; i < num_elems; i++, sg++) { | 
|  | u32 addr, offset; | 
|  | u32 sg_len, len; | 
|  |  | 
|  | addr = (u32) sg_dma_address(sg); | 
|  | sg_len = sg_dma_len(sg); | 
|  |  | 
|  | dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len" | 
|  | "=%d\n", __func__, i, addr, sg_len); | 
|  |  | 
|  | while (sg_len) { | 
|  | if (idx >= SATA_DWC_DMAC_LLI_NUM) { | 
|  | /* The LLI table is not large enough. */ | 
|  | dev_err(host_pvt.dwc_dev, "LLI table overrun " | 
|  | "(idx=%d)\n", idx); | 
|  | break; | 
|  | } | 
|  | len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? | 
|  | SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; | 
|  |  | 
|  | offset = addr & 0xffff; | 
|  | if ((offset + sg_len) > 0x10000) | 
|  | len = 0x10000 - offset; | 
|  |  | 
|  | /* | 
|  | * Make sure a LLI block is not created that will span | 
|  | * 8K max FIS boundary.  If the block spans such a FIS | 
|  | * boundary, there is a chance that a DMA burst will | 
|  | * cross that boundary -- this results in an error in | 
|  | * the host controller. | 
|  | */ | 
|  | if (fis_len + len > 8192) { | 
|  | dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len=" | 
|  | "%d(0x%x) len=%d(0x%x)\n", fis_len, | 
|  | fis_len, len, len); | 
|  | len = 8192 - fis_len; | 
|  | fis_len = 0; | 
|  | } else { | 
|  | fis_len += len; | 
|  | } | 
|  | if (fis_len == 8192) | 
|  | fis_len = 0; | 
|  |  | 
|  | /* | 
|  | * Set DMA addresses and lower half of control register | 
|  | * based on direction. | 
|  | */ | 
|  | if (dir == DMA_FROM_DEVICE) { | 
|  | lli[idx].dar = cpu_to_le32(addr); | 
|  | lli[idx].sar = cpu_to_le32((u32)dmadr_addr); | 
|  |  | 
|  | lli[idx].ctl.low = cpu_to_le32( | 
|  | DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | | 
|  | DMA_CTL_SMS(sms_val) | | 
|  | DMA_CTL_DMS(dms_val) | | 
|  | DMA_CTL_SRC_MSIZE(bl) | | 
|  | DMA_CTL_DST_MSIZE(bl) | | 
|  | DMA_CTL_SINC_NOCHANGE | | 
|  | DMA_CTL_SRC_TRWID(2) | | 
|  | DMA_CTL_DST_TRWID(2) | | 
|  | DMA_CTL_INT_EN | | 
|  | DMA_CTL_LLP_SRCEN | | 
|  | DMA_CTL_LLP_DSTEN); | 
|  | } else {	/* DMA_TO_DEVICE */ | 
|  | lli[idx].sar = cpu_to_le32(addr); | 
|  | lli[idx].dar = cpu_to_le32((u32)dmadr_addr); | 
|  |  | 
|  | lli[idx].ctl.low = cpu_to_le32( | 
|  | DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | | 
|  | DMA_CTL_SMS(dms_val) | | 
|  | DMA_CTL_DMS(sms_val) | | 
|  | DMA_CTL_SRC_MSIZE(bl) | | 
|  | DMA_CTL_DST_MSIZE(bl) | | 
|  | DMA_CTL_DINC_NOCHANGE | | 
|  | DMA_CTL_SRC_TRWID(2) | | 
|  | DMA_CTL_DST_TRWID(2) | | 
|  | DMA_CTL_INT_EN | | 
|  | DMA_CTL_LLP_SRCEN | | 
|  | DMA_CTL_LLP_DSTEN); | 
|  | } | 
|  |  | 
|  | dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: " | 
|  | "0x%08x val: 0x%08x\n", __func__, | 
|  | len, DMA_CTL_BLK_TS(len / 4)); | 
|  |  | 
|  | /* Program the LLI CTL high register */ | 
|  | lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\ | 
|  | (len / 4)); | 
|  |  | 
|  | /* Program the next pointer.  The next pointer must be | 
|  | * the physical address, not the virtual address. | 
|  | */ | 
|  | next_llp = (dma_lli + ((idx + 1) * sizeof(struct \ | 
|  | lli))); | 
|  |  | 
|  | /* The last 2 bits encode the list master select. */ | 
|  | next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); | 
|  |  | 
|  | lli[idx].llp = cpu_to_le32(next_llp); | 
|  | idx++; | 
|  | sg_len -= len; | 
|  | addr += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The last next ptr has to be zero and the last control low register | 
|  | * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source | 
|  | * and destination enable) set back to 0 (disabled.) This is what tells | 
|  | * the core that this is the last item in the linked list. | 
|  | */ | 
|  | if (idx) { | 
|  | lli[idx-1].llp = 0x00000000; | 
|  | lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; | 
|  |  | 
|  | /* Flush cache to memory */ | 
|  | dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), | 
|  | DMA_BIDIRECTIONAL); | 
|  | } | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_dwc_xfer_start | 
|  | * arguments: Channel number | 
|  | * Return : None | 
|  | * Enables the DMA channel | 
|  | */ | 
|  | static void dma_dwc_xfer_start(int dma_ch) | 
|  | { | 
|  | /* Enable the DMA channel */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low), | 
|  | in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) | | 
|  | DMA_ENABLE_CHAN(dma_ch)); | 
|  | } | 
|  |  | 
|  | static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, | 
|  | struct lli *lli, dma_addr_t dma_lli, | 
|  | void __iomem *addr, int dir) | 
|  | { | 
|  | int dma_ch; | 
|  | int num_lli; | 
|  | /* Acquire DMA channel */ | 
|  | dma_ch = dma_request_channel(); | 
|  | if (dma_ch == -1) { | 
|  | dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n", | 
|  | __func__); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Convert SG list to linked list of items (LLIs) for AHB DMA */ | 
|  | num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir); | 
|  |  | 
|  | dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:" | 
|  | " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems, | 
|  | lli, (u32)dma_lli, addr, num_lli); | 
|  |  | 
|  | clear_chan_interrupts(dma_ch); | 
|  |  | 
|  | /* Program the CFG register. */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high), | 
|  | DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) | | 
|  | DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); | 
|  | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), | 
|  | DMA_CFG_HW_CH_PRIOR(dma_ch)); | 
|  |  | 
|  | /* Program the address of the linked list */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low), | 
|  | DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); | 
|  |  | 
|  | /* Program the CTL register with src enable / dst enable */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low), | 
|  | DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); | 
|  | return dma_ch; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_dwc_exit | 
|  | * arguments: None | 
|  | * returns status | 
|  | * This function exits the SATA DMA driver | 
|  | */ | 
|  | static void dma_dwc_exit(struct sata_dwc_device *hsdev) | 
|  | { | 
|  | dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__); | 
|  | if (host_pvt.sata_dma_regs) { | 
|  | iounmap(host_pvt.sata_dma_regs); | 
|  | host_pvt.sata_dma_regs = NULL; | 
|  | } | 
|  |  | 
|  | if (hsdev->irq_dma) { | 
|  | free_irq(hsdev->irq_dma, hsdev); | 
|  | hsdev->irq_dma = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function: dma_dwc_init | 
|  | * arguments: hsdev | 
|  | * returns status | 
|  | * This function initializes the SATA DMA driver | 
|  | */ | 
|  | static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = dma_request_interrupts(hsdev, irq); | 
|  | if (err) { | 
|  | dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns" | 
|  | " %d\n", __func__, err); | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | /* Enabe DMA */ | 
|  | out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN); | 
|  |  | 
|  | dev_notice(host_pvt.dwc_dev, "DMA initialized\n"); | 
|  | dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\ | 
|  | sata_dma_regs); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_out: | 
|  | dma_dwc_exit(hsdev); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) | 
|  | { | 
|  | if (scr > SCR_NOTIFICATION) { | 
|  | dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", | 
|  | __func__, scr); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); | 
|  | dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", | 
|  | __func__, link->ap->print_id, scr, *val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) | 
|  | { | 
|  | dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", | 
|  | __func__, link->ap->print_id, scr, val); | 
|  | if (scr > SCR_NOTIFICATION) { | 
|  | dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", | 
|  | __func__, scr); | 
|  | return -EINVAL; | 
|  | } | 
|  | out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 core_scr_read(unsigned int scr) | 
|  | { | 
|  | return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\ | 
|  | (scr * 4)); | 
|  | } | 
|  |  | 
|  | static void core_scr_write(unsigned int scr, u32 val) | 
|  | { | 
|  | out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4), | 
|  | val); | 
|  | } | 
|  |  | 
|  | static void clear_serror(void) | 
|  | { | 
|  | u32 val; | 
|  | val = core_scr_read(SCR_ERROR); | 
|  | core_scr_write(SCR_ERROR, val); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) | 
|  | { | 
|  | out_le32(&hsdev->sata_dwc_regs->intpr, | 
|  | in_le32(&hsdev->sata_dwc_regs->intpr)); | 
|  | } | 
|  |  | 
|  | static u32 qcmd_tag_to_mask(u8 tag) | 
|  | { | 
|  | return 0x00000001 << (tag & 0x1f); | 
|  | } | 
|  |  | 
|  | /* See ahci.c */ | 
|  | static void sata_dwc_error_intr(struct ata_port *ap, | 
|  | struct sata_dwc_device *hsdev, uint intpr) | 
|  | { | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  | struct ata_eh_info *ehi = &ap->link.eh_info; | 
|  | unsigned int err_mask = 0, action = 0; | 
|  | struct ata_queued_cmd *qc; | 
|  | u32 serror; | 
|  | u8 status, tag; | 
|  | u32 err_reg; | 
|  |  | 
|  | ata_ehi_clear_desc(ehi); | 
|  |  | 
|  | serror = core_scr_read(SCR_ERROR); | 
|  | status = ap->ops->sff_check_status(ap); | 
|  |  | 
|  | err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\ | 
|  | low)); | 
|  | tag = ap->link.active_tag; | 
|  |  | 
|  | dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " | 
|  | "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", | 
|  | __func__, serror, intpr, status, host_pvt.dma_interrupt_count, | 
|  | hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); | 
|  |  | 
|  | /* Clear error register and interrupt bit */ | 
|  | clear_serror(); | 
|  | clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); | 
|  |  | 
|  | /* This is the only error happening now.  TODO check for exact error */ | 
|  |  | 
|  | err_mask |= AC_ERR_HOST_BUS; | 
|  | action |= ATA_EH_RESET; | 
|  |  | 
|  | /* Pass this on to EH */ | 
|  | ehi->serror |= serror; | 
|  | ehi->action |= action; | 
|  |  | 
|  | qc = ata_qc_from_tag(ap, tag); | 
|  | if (qc) | 
|  | qc->err_mask |= err_mask; | 
|  | else | 
|  | ehi->err_mask |= err_mask; | 
|  |  | 
|  | ata_port_abort(ap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function : sata_dwc_isr | 
|  | * arguments : irq, void *dev_instance, struct pt_regs *regs | 
|  | * Return value : irqreturn_t - status of IRQ | 
|  | * This Interrupt handler called via port ops registered function. | 
|  | * .irq_handler = sata_dwc_isr | 
|  | */ | 
|  | static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) | 
|  | { | 
|  | struct ata_host *host = (struct ata_host *)dev_instance; | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); | 
|  | struct ata_port *ap; | 
|  | struct ata_queued_cmd *qc; | 
|  | unsigned long flags; | 
|  | u8 status, tag; | 
|  | int handled, num_processed, port = 0; | 
|  | uint intpr, sactive, sactive2, tag_mask; | 
|  | struct sata_dwc_device_port *hsdevp; | 
|  | host_pvt.sata_dwc_sactive_issued = 0; | 
|  |  | 
|  | spin_lock_irqsave(&host->lock, flags); | 
|  |  | 
|  | /* Read the interrupt register */ | 
|  | intpr = in_le32(&hsdev->sata_dwc_regs->intpr); | 
|  |  | 
|  | ap = host->ports[port]; | 
|  | hsdevp = HSDEVP_FROM_AP(ap); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, | 
|  | ap->link.active_tag); | 
|  |  | 
|  | /* Check for error interrupt */ | 
|  | if (intpr & SATA_DWC_INTPR_ERR) { | 
|  | sata_dwc_error_intr(ap, hsdev, intpr); | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  |  | 
|  | /* Check for DMA SETUP FIS (FP DMA) interrupt */ | 
|  | if (intpr & SATA_DWC_INTPR_NEWFP) { | 
|  | clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); | 
|  |  | 
|  | tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); | 
|  | dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); | 
|  | if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) | 
|  | dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); | 
|  |  | 
|  | host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); | 
|  |  | 
|  | qc = ata_qc_from_tag(ap, tag); | 
|  | /* | 
|  | * Start FP DMA for NCQ command.  At this point the tag is the | 
|  | * active tag.  It is the tag that matches the command about to | 
|  | * be completed. | 
|  | */ | 
|  | qc->ap->link.active_tag = tag; | 
|  | sata_dwc_bmdma_start_by_tag(qc, tag); | 
|  |  | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  | sactive = core_scr_read(SCR_ACTIVE); | 
|  | tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; | 
|  |  | 
|  | /* If no sactive issued and tag_mask is zero then this is not NCQ */ | 
|  | if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) { | 
|  | if (ap->link.active_tag == ATA_TAG_POISON) | 
|  | tag = 0; | 
|  | else | 
|  | tag = ap->link.active_tag; | 
|  | qc = ata_qc_from_tag(ap, tag); | 
|  |  | 
|  | /* DEV interrupt w/ no active qc? */ | 
|  | if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { | 
|  | dev_err(ap->dev, "%s interrupt with no active qc " | 
|  | "qc=%p\n", __func__, qc); | 
|  | ap->ops->sff_check_status(ap); | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  | status = ap->ops->sff_check_status(ap); | 
|  |  | 
|  | qc->ap->link.active_tag = tag; | 
|  | hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; | 
|  |  | 
|  | if (status & ATA_ERR) { | 
|  | dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); | 
|  | sata_dwc_qc_complete(ap, qc, 1); | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  |  | 
|  | dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", | 
|  | __func__, get_prot_descript(qc->tf.protocol)); | 
|  | DRVSTILLBUSY: | 
|  | if (ata_is_dma(qc->tf.protocol)) { | 
|  | /* | 
|  | * Each DMA transaction produces 2 interrupts. The DMAC | 
|  | * transfer complete interrupt and the SATA controller | 
|  | * operation done interrupt. The command should be | 
|  | * completed only after both interrupts are seen. | 
|  | */ | 
|  | host_pvt.dma_interrupt_count++; | 
|  | if (hsdevp->dma_pending[tag] == \ | 
|  | SATA_DWC_DMA_PENDING_NONE) { | 
|  | dev_err(ap->dev, "%s: DMA not pending " | 
|  | "intpr=0x%08x status=0x%08x pending" | 
|  | "=%d\n", __func__, intpr, status, | 
|  | hsdevp->dma_pending[tag]); | 
|  | } | 
|  |  | 
|  | if ((host_pvt.dma_interrupt_count % 2) == 0) | 
|  | sata_dwc_dma_xfer_complete(ap, 1); | 
|  | } else if (ata_is_pio(qc->tf.protocol)) { | 
|  | ata_sff_hsm_move(ap, qc, status, 0); | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } else { | 
|  | if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) | 
|  | goto DRVSTILLBUSY; | 
|  | } | 
|  |  | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a NCQ command. At this point we need to figure out for which | 
|  | * tags we have gotten a completion interrupt.  One interrupt may serve | 
|  | * as completion for more than one operation when commands are queued | 
|  | * (NCQ).  We need to process each completed command. | 
|  | */ | 
|  |  | 
|  | /* process completed commands */ | 
|  | sactive = core_scr_read(SCR_ACTIVE); | 
|  | tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; | 
|  |  | 
|  | if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \ | 
|  | tag_mask > 1) { | 
|  | dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x" | 
|  | "tag_mask=0x%08x\n", __func__, sactive, | 
|  | host_pvt.sata_dwc_sactive_issued, tag_mask); | 
|  | } | 
|  |  | 
|  | if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \ | 
|  | (host_pvt.sata_dwc_sactive_issued)) { | 
|  | dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x " | 
|  | "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask" | 
|  | "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued, | 
|  | tag_mask); | 
|  | } | 
|  |  | 
|  | /* read just to clear ... not bad if currently still busy */ | 
|  | status = ap->ops->sff_check_status(ap); | 
|  | dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); | 
|  |  | 
|  | tag = 0; | 
|  | num_processed = 0; | 
|  | while (tag_mask) { | 
|  | num_processed++; | 
|  | while (!(tag_mask & 0x00000001)) { | 
|  | tag++; | 
|  | tag_mask <<= 1; | 
|  | } | 
|  |  | 
|  | tag_mask &= (~0x00000001); | 
|  | qc = ata_qc_from_tag(ap, tag); | 
|  |  | 
|  | /* To be picked up by completion functions */ | 
|  | qc->ap->link.active_tag = tag; | 
|  | hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; | 
|  |  | 
|  | /* Let libata/scsi layers handle error */ | 
|  | if (status & ATA_ERR) { | 
|  | dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, | 
|  | status); | 
|  | sata_dwc_qc_complete(ap, qc, 1); | 
|  | handled = 1; | 
|  | goto DONE; | 
|  | } | 
|  |  | 
|  | /* Process completed command */ | 
|  | dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, | 
|  | get_prot_descript(qc->tf.protocol)); | 
|  | if (ata_is_dma(qc->tf.protocol)) { | 
|  | host_pvt.dma_interrupt_count++; | 
|  | if (hsdevp->dma_pending[tag] == \ | 
|  | SATA_DWC_DMA_PENDING_NONE) | 
|  | dev_warn(ap->dev, "%s: DMA not pending?\n", | 
|  | __func__); | 
|  | if ((host_pvt.dma_interrupt_count % 2) == 0) | 
|  | sata_dwc_dma_xfer_complete(ap, 1); | 
|  | } else { | 
|  | if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) | 
|  | goto STILLBUSY; | 
|  | } | 
|  | continue; | 
|  |  | 
|  | STILLBUSY: | 
|  | ap->stats.idle_irq++; | 
|  | dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", | 
|  | ap->print_id); | 
|  | } /* while tag_mask */ | 
|  |  | 
|  | /* | 
|  | * Check to see if any commands completed while we were processing our | 
|  | * initial set of completed commands (read status clears interrupts, | 
|  | * so we might miss a completed command interrupt if one came in while | 
|  | * we were processing --we read status as part of processing a completed | 
|  | * command). | 
|  | */ | 
|  | sactive2 = core_scr_read(SCR_ACTIVE); | 
|  | if (sactive2 != sactive) { | 
|  | dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2" | 
|  | "=0x%x\n", sactive, sactive2); | 
|  | } | 
|  | handled = 1; | 
|  |  | 
|  | DONE: | 
|  | spin_unlock_irqrestore(&host->lock, flags); | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) | 
|  | { | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); | 
|  |  | 
|  | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { | 
|  | out_le32(&(hsdev->sata_dwc_regs->dmacr), | 
|  | SATA_DWC_DMACR_RX_CLEAR( | 
|  | in_le32(&(hsdev->sata_dwc_regs->dmacr)))); | 
|  | } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { | 
|  | out_le32(&(hsdev->sata_dwc_regs->dmacr), | 
|  | SATA_DWC_DMACR_TX_CLEAR( | 
|  | in_le32(&(hsdev->sata_dwc_regs->dmacr)))); | 
|  | } else { | 
|  | /* | 
|  | * This should not happen, it indicates the driver is out of | 
|  | * sync.  If it does happen, clear dmacr anyway. | 
|  | */ | 
|  | dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and" | 
|  | "TX DMA not pending tag=0x%02x pending=%d" | 
|  | " dmacr: 0x%08x\n", __func__, tag, | 
|  | hsdevp->dma_pending[tag], | 
|  | in_le32(&(hsdev->sata_dwc_regs->dmacr))); | 
|  | out_le32(&(hsdev->sata_dwc_regs->dmacr), | 
|  | SATA_DWC_DMACR_TXRXCH_CLEAR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) | 
|  | { | 
|  | struct ata_queued_cmd *qc; | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); | 
|  | u8 tag = 0; | 
|  |  | 
|  | tag = ap->link.active_tag; | 
|  | qc = ata_qc_from_tag(ap, tag); | 
|  | if (!qc) { | 
|  | dev_err(ap->dev, "failed to get qc"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_NCQ | 
|  | if (tag > 0) { | 
|  | dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " | 
|  | "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, | 
|  | get_dma_dir_descript(qc->dma_dir), | 
|  | get_prot_descript(qc->tf.protocol), | 
|  | in_le32(&(hsdev->sata_dwc_regs->dmacr))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (ata_is_dma(qc->tf.protocol)) { | 
|  | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { | 
|  | dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " | 
|  | "pending dmacr: 0x%08x\n", __func__, | 
|  | in_le32(&(hsdev->sata_dwc_regs->dmacr))); | 
|  | } | 
|  |  | 
|  | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; | 
|  | sata_dwc_qc_complete(ap, qc, check_status); | 
|  | ap->link.active_tag = ATA_TAG_POISON; | 
|  | } else { | 
|  | sata_dwc_qc_complete(ap, qc, check_status); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, | 
|  | u32 check_status) | 
|  | { | 
|  | u8 status = 0; | 
|  | u32 mask = 0x0; | 
|  | u8 tag = qc->tag; | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  | host_pvt.sata_dwc_sactive_queued = 0; | 
|  | dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); | 
|  |  | 
|  | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) | 
|  | dev_err(ap->dev, "TX DMA PENDING\n"); | 
|  | else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) | 
|  | dev_err(ap->dev, "RX DMA PENDING\n"); | 
|  | dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:" | 
|  | " protocol=%d\n", qc->tf.command, status, ap->print_id, | 
|  | qc->tf.protocol); | 
|  |  | 
|  | /* clear active bit */ | 
|  | mask = (~(qcmd_tag_to_mask(tag))); | 
|  | host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \ | 
|  | & mask; | 
|  | host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \ | 
|  | & mask; | 
|  | ata_qc_complete(qc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) | 
|  | { | 
|  | /* Enable selective interrupts by setting the interrupt maskregister*/ | 
|  | out_le32(&hsdev->sata_dwc_regs->intmr, | 
|  | SATA_DWC_INTMR_ERRM | | 
|  | SATA_DWC_INTMR_NEWFPM | | 
|  | SATA_DWC_INTMR_PMABRTM | | 
|  | SATA_DWC_INTMR_DMATM); | 
|  | /* | 
|  | * Unmask the error bits that should trigger an error interrupt by | 
|  | * setting the error mask register. | 
|  | */ | 
|  | out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); | 
|  |  | 
|  | dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", | 
|  | __func__, in_le32(&hsdev->sata_dwc_regs->intmr), | 
|  | in_le32(&hsdev->sata_dwc_regs->errmr)); | 
|  | } | 
|  |  | 
|  | static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) | 
|  | { | 
|  | port->cmd_addr = (void *)base + 0x00; | 
|  | port->data_addr = (void *)base + 0x00; | 
|  |  | 
|  | port->error_addr = (void *)base + 0x04; | 
|  | port->feature_addr = (void *)base + 0x04; | 
|  |  | 
|  | port->nsect_addr = (void *)base + 0x08; | 
|  |  | 
|  | port->lbal_addr = (void *)base + 0x0c; | 
|  | port->lbam_addr = (void *)base + 0x10; | 
|  | port->lbah_addr = (void *)base + 0x14; | 
|  |  | 
|  | port->device_addr = (void *)base + 0x18; | 
|  | port->command_addr = (void *)base + 0x1c; | 
|  | port->status_addr = (void *)base + 0x1c; | 
|  |  | 
|  | port->altstatus_addr = (void *)base + 0x20; | 
|  | port->ctl_addr = (void *)base + 0x20; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function : sata_dwc_port_start | 
|  | * arguments : struct ata_ioports *port | 
|  | * Return value : returns 0 if success, error code otherwise | 
|  | * This function allocates the scatter gather LLI table for AHB DMA | 
|  | */ | 
|  | static int sata_dwc_port_start(struct ata_port *ap) | 
|  | { | 
|  | int err = 0; | 
|  | struct sata_dwc_device *hsdev; | 
|  | struct sata_dwc_device_port *hsdevp = NULL; | 
|  | struct device *pdev; | 
|  | int i; | 
|  |  | 
|  | hsdev = HSDEV_FROM_AP(ap); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); | 
|  |  | 
|  | hsdev->host = ap->host; | 
|  | pdev = ap->host->dev; | 
|  | if (!pdev) { | 
|  | dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); | 
|  | err = -ENODEV; | 
|  | goto CLEANUP; | 
|  | } | 
|  |  | 
|  | /* Allocate Port Struct */ | 
|  | hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); | 
|  | if (!hsdevp) { | 
|  | dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); | 
|  | err = -ENOMEM; | 
|  | goto CLEANUP; | 
|  | } | 
|  | hsdevp->hsdev = hsdev; | 
|  |  | 
|  | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) | 
|  | hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; | 
|  |  | 
|  | ap->bmdma_prd = 0;	/* set these so libata doesn't use them */ | 
|  | ap->bmdma_prd_dma = 0; | 
|  |  | 
|  | /* | 
|  | * DMA - Assign scatter gather LLI table. We can't use the libata | 
|  | * version since it's PRD is IDE PCI specific. | 
|  | */ | 
|  | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { | 
|  | hsdevp->llit[i] = dma_alloc_coherent(pdev, | 
|  | SATA_DWC_DMAC_LLI_TBL_SZ, | 
|  | &(hsdevp->llit_dma[i]), | 
|  | GFP_ATOMIC); | 
|  | if (!hsdevp->llit[i]) { | 
|  | dev_err(ap->dev, "%s: dma_alloc_coherent failed\n", | 
|  | __func__); | 
|  | err = -ENOMEM; | 
|  | goto CLEANUP_ALLOC; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ap->port_no == 0)  { | 
|  | dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", | 
|  | __func__); | 
|  | out_le32(&hsdev->sata_dwc_regs->dmacr, | 
|  | SATA_DWC_DMACR_TXRXCH_CLEAR); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", | 
|  | __func__); | 
|  | out_le32(&hsdev->sata_dwc_regs->dbtsr, | 
|  | (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | | 
|  | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); | 
|  | } | 
|  |  | 
|  | /* Clear any error bits before libata starts issuing commands */ | 
|  | clear_serror(); | 
|  | ap->private_data = hsdevp; | 
|  | dev_dbg(ap->dev, "%s: done\n", __func__); | 
|  | return 0; | 
|  |  | 
|  | CLEANUP_ALLOC: | 
|  | kfree(hsdevp); | 
|  | CLEANUP: | 
|  | dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void sata_dwc_port_stop(struct ata_port *ap) | 
|  | { | 
|  | int i; | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); | 
|  |  | 
|  | if (hsdevp && hsdev) { | 
|  | /* deallocate LLI table */ | 
|  | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { | 
|  | dma_free_coherent(ap->host->dev, | 
|  | SATA_DWC_DMAC_LLI_TBL_SZ, | 
|  | hsdevp->llit[i], hsdevp->llit_dma[i]); | 
|  | } | 
|  |  | 
|  | kfree(hsdevp); | 
|  | } | 
|  | ap->private_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function : sata_dwc_exec_command_by_tag | 
|  | * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued | 
|  | * Return value : None | 
|  | * This function keeps track of individual command tag ids and calls | 
|  | * ata_exec_command in libata | 
|  | */ | 
|  | static void sata_dwc_exec_command_by_tag(struct ata_port *ap, | 
|  | struct ata_taskfile *tf, | 
|  | u8 tag, u32 cmd_issued) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, | 
|  | ata_get_cmd_descript(tf->command), tag); | 
|  |  | 
|  | spin_lock_irqsave(&ap->host->lock, flags); | 
|  | hsdevp->cmd_issued[tag] = cmd_issued; | 
|  | spin_unlock_irqrestore(&ap->host->lock, flags); | 
|  | /* | 
|  | * Clear SError before executing a new command. | 
|  | * sata_dwc_scr_write and read can not be used here. Clearing the PM | 
|  | * managed SError register for the disk needs to be done before the | 
|  | * task file is loaded. | 
|  | */ | 
|  | clear_serror(); | 
|  | ata_sff_exec_command(ap, tf); | 
|  | } | 
|  |  | 
|  | static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) | 
|  | { | 
|  | sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, | 
|  | SATA_DWC_CMD_ISSUED_PEND); | 
|  | } | 
|  |  | 
|  | static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) | 
|  | { | 
|  | u8 tag = qc->tag; | 
|  |  | 
|  | if (ata_is_ncq(qc->tf.protocol)) { | 
|  | dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", | 
|  | __func__, qc->ap->link.sactive, tag); | 
|  | } else { | 
|  | tag = 0; | 
|  | } | 
|  | sata_dwc_bmdma_setup_by_tag(qc, tag); | 
|  | } | 
|  |  | 
|  | static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) | 
|  | { | 
|  | int start_dma; | 
|  | u32 reg, dma_chan; | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  | int dir = qc->dma_dir; | 
|  | dma_chan = hsdevp->dma_chan[tag]; | 
|  |  | 
|  | if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { | 
|  | start_dma = 1; | 
|  | if (dir == DMA_TO_DEVICE) | 
|  | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; | 
|  | else | 
|  | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; | 
|  | } else { | 
|  | dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " | 
|  | "(tag=%d) DMA NOT started\n", __func__, | 
|  | hsdevp->cmd_issued[tag], tag); | 
|  | start_dma = 0; | 
|  | } | 
|  |  | 
|  | dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " | 
|  | "start_dma? %x\n", __func__, qc, tag, qc->tf.command, | 
|  | get_dma_dir_descript(qc->dma_dir), start_dma); | 
|  | sata_dwc_tf_dump(&(qc->tf)); | 
|  |  | 
|  | if (start_dma) { | 
|  | reg = core_scr_read(SCR_ERROR); | 
|  | if (reg & SATA_DWC_SERROR_ERR_BITS) { | 
|  | dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", | 
|  | __func__, reg); | 
|  | } | 
|  |  | 
|  | if (dir == DMA_TO_DEVICE) | 
|  | out_le32(&hsdev->sata_dwc_regs->dmacr, | 
|  | SATA_DWC_DMACR_TXCHEN); | 
|  | else | 
|  | out_le32(&hsdev->sata_dwc_regs->dmacr, | 
|  | SATA_DWC_DMACR_RXCHEN); | 
|  |  | 
|  | /* Enable AHB DMA transfer on the specified channel */ | 
|  | dma_dwc_xfer_start(dma_chan); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) | 
|  | { | 
|  | u8 tag = qc->tag; | 
|  |  | 
|  | if (ata_is_ncq(qc->tf.protocol)) { | 
|  | dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", | 
|  | __func__, qc->ap->link.sactive, tag); | 
|  | } else { | 
|  | tag = 0; | 
|  | } | 
|  | dev_dbg(qc->ap->dev, "%s\n", __func__); | 
|  | sata_dwc_bmdma_start_by_tag(qc, tag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function : sata_dwc_qc_prep_by_tag | 
|  | * arguments : ata_queued_cmd *qc, u8 tag | 
|  | * Return value : None | 
|  | * qc_prep for a particular queued command based on tag | 
|  | */ | 
|  | static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) | 
|  | { | 
|  | struct scatterlist *sg = qc->sg; | 
|  | struct ata_port *ap = qc->ap; | 
|  | int dma_chan; | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); | 
|  | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); | 
|  |  | 
|  | dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", | 
|  | __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir), | 
|  | qc->n_elem); | 
|  |  | 
|  | dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag], | 
|  | hsdevp->llit_dma[tag], | 
|  | (void *__iomem)(&hsdev->sata_dwc_regs->\ | 
|  | dmadr), qc->dma_dir); | 
|  | if (dma_chan < 0) { | 
|  | dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", | 
|  | __func__, dma_chan); | 
|  | return; | 
|  | } | 
|  | hsdevp->dma_chan[tag] = dma_chan; | 
|  | } | 
|  |  | 
|  | static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) | 
|  | { | 
|  | u32 sactive; | 
|  | u8 tag = qc->tag; | 
|  | struct ata_port *ap = qc->ap; | 
|  |  | 
|  | #ifdef DEBUG_NCQ | 
|  | if (qc->tag > 0 || ap->link.sactive > 1) | 
|  | dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d " | 
|  | "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", | 
|  | __func__, ap->print_id, qc->tf.command, | 
|  | ata_get_cmd_descript(qc->tf.command), | 
|  | qc->tag, get_prot_descript(qc->tf.protocol), | 
|  | ap->link.active_tag, ap->link.sactive); | 
|  | #endif | 
|  |  | 
|  | if (!ata_is_ncq(qc->tf.protocol)) | 
|  | tag = 0; | 
|  | sata_dwc_qc_prep_by_tag(qc, tag); | 
|  |  | 
|  | if (ata_is_ncq(qc->tf.protocol)) { | 
|  | sactive = core_scr_read(SCR_ACTIVE); | 
|  | sactive |= (0x00000001 << tag); | 
|  | core_scr_write(SCR_ACTIVE, sactive); | 
|  |  | 
|  | dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " | 
|  | "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, | 
|  | sactive); | 
|  |  | 
|  | ap->ops->sff_tf_load(ap, &qc->tf); | 
|  | sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, | 
|  | SATA_DWC_CMD_ISSUED_PEND); | 
|  | } else { | 
|  | ata_sff_qc_issue(qc); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function : sata_dwc_qc_prep | 
|  | * arguments : ata_queued_cmd *qc | 
|  | * Return value : None | 
|  | * qc_prep for a particular queued command | 
|  | */ | 
|  |  | 
|  | static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) | 
|  | { | 
|  | if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) | 
|  | return; | 
|  |  | 
|  | #ifdef DEBUG_NCQ | 
|  | if (qc->tag > 0) | 
|  | dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", | 
|  | __func__, qc->tag, qc->ap->link.active_tag); | 
|  |  | 
|  | return ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void sata_dwc_error_handler(struct ata_port *ap) | 
|  | { | 
|  | ata_sff_error_handler(ap); | 
|  | } | 
|  |  | 
|  | int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); | 
|  | int ret; | 
|  |  | 
|  | ret = sata_sff_hardreset(link, class, deadline); | 
|  |  | 
|  | sata_dwc_enable_interrupts(hsdev); | 
|  |  | 
|  | /* Reconfigure the DMA control register */ | 
|  | out_le32(&hsdev->sata_dwc_regs->dmacr, | 
|  | SATA_DWC_DMACR_TXRXCH_CLEAR); | 
|  |  | 
|  | /* Reconfigure the DMA Burst Transaction Size register */ | 
|  | out_le32(&hsdev->sata_dwc_regs->dbtsr, | 
|  | SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | | 
|  | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scsi mid-layer and libata interface structures | 
|  | */ | 
|  | static struct scsi_host_template sata_dwc_sht = { | 
|  | ATA_NCQ_SHT(DRV_NAME), | 
|  | /* | 
|  | * test-only: Currently this driver doesn't handle NCQ | 
|  | * correctly. We enable NCQ but set the queue depth to a | 
|  | * max of 1. This will get fixed in in a future release. | 
|  | */ | 
|  | .sg_tablesize		= LIBATA_MAX_PRD, | 
|  | .can_queue		= ATA_DEF_QUEUE,	/* ATA_MAX_QUEUE */ | 
|  | .dma_boundary		= ATA_DMA_BOUNDARY, | 
|  | }; | 
|  |  | 
|  | static struct ata_port_operations sata_dwc_ops = { | 
|  | .inherits		= &ata_sff_port_ops, | 
|  |  | 
|  | .error_handler		= sata_dwc_error_handler, | 
|  | .hardreset		= sata_dwc_hardreset, | 
|  |  | 
|  | .qc_prep		= sata_dwc_qc_prep, | 
|  | .qc_issue		= sata_dwc_qc_issue, | 
|  |  | 
|  | .scr_read		= sata_dwc_scr_read, | 
|  | .scr_write		= sata_dwc_scr_write, | 
|  |  | 
|  | .port_start		= sata_dwc_port_start, | 
|  | .port_stop		= sata_dwc_port_stop, | 
|  |  | 
|  | .bmdma_setup		= sata_dwc_bmdma_setup, | 
|  | .bmdma_start		= sata_dwc_bmdma_start, | 
|  | }; | 
|  |  | 
|  | static const struct ata_port_info sata_dwc_port_info[] = { | 
|  | { | 
|  | .flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &sata_dwc_ops, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int sata_dwc_probe(struct platform_device *ofdev) | 
|  | { | 
|  | struct sata_dwc_device *hsdev; | 
|  | u32 idr, versionr; | 
|  | char *ver = (char *)&versionr; | 
|  | u8 *base = NULL; | 
|  | int err = 0; | 
|  | int irq, rc; | 
|  | struct ata_host *host; | 
|  | struct ata_port_info pi = sata_dwc_port_info[0]; | 
|  | const struct ata_port_info *ppi[] = { &pi, NULL }; | 
|  | struct device_node *np = ofdev->dev.of_node; | 
|  | u32 dma_chan; | 
|  |  | 
|  | /* Allocate DWC SATA device */ | 
|  | hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL); | 
|  | if (hsdev == NULL) { | 
|  | dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); | 
|  | err = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (of_property_read_u32(np, "dma-channel", &dma_chan)) { | 
|  | dev_warn(&ofdev->dev, "no dma-channel property set." | 
|  | " Use channel 0\n"); | 
|  | dma_chan = 0; | 
|  | } | 
|  | host_pvt.dma_channel = dma_chan; | 
|  |  | 
|  | /* Ioremap SATA registers */ | 
|  | base = of_iomap(ofdev->dev.of_node, 0); | 
|  | if (!base) { | 
|  | dev_err(&ofdev->dev, "ioremap failed for SATA register" | 
|  | " address\n"); | 
|  | err = -ENODEV; | 
|  | goto error_kmalloc; | 
|  | } | 
|  | hsdev->reg_base = base; | 
|  | dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); | 
|  |  | 
|  | /* Synopsys DWC SATA specific Registers */ | 
|  | hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); | 
|  |  | 
|  | /* Allocate and fill host */ | 
|  | host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); | 
|  | if (!host) { | 
|  | dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); | 
|  | err = -ENOMEM; | 
|  | goto error_iomap; | 
|  | } | 
|  |  | 
|  | host->private_data = hsdev; | 
|  |  | 
|  | /* Setup port */ | 
|  | host->ports[0]->ioaddr.cmd_addr = base; | 
|  | host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; | 
|  | host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; | 
|  | sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); | 
|  |  | 
|  | /* Read the ID and Version Registers */ | 
|  | idr = in_le32(&hsdev->sata_dwc_regs->idr); | 
|  | versionr = in_le32(&hsdev->sata_dwc_regs->versionr); | 
|  | dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", | 
|  | idr, ver[0], ver[1], ver[2]); | 
|  |  | 
|  | /* Get SATA DMA interrupt number */ | 
|  | irq = irq_of_parse_and_map(ofdev->dev.of_node, 1); | 
|  | if (irq == NO_IRQ) { | 
|  | dev_err(&ofdev->dev, "no SATA DMA irq\n"); | 
|  | err = -ENODEV; | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | /* Get physical SATA DMA register base address */ | 
|  | host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1); | 
|  | if (!(host_pvt.sata_dma_regs)) { | 
|  | dev_err(&ofdev->dev, "ioremap failed for AHBDMA register" | 
|  | " address\n"); | 
|  | err = -ENODEV; | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | /* Save dev for later use in dev_xxx() routines */ | 
|  | host_pvt.dwc_dev = &ofdev->dev; | 
|  |  | 
|  | /* Initialize AHB DMAC */ | 
|  | dma_dwc_init(hsdev, irq); | 
|  |  | 
|  | /* Enable SATA Interrupts */ | 
|  | sata_dwc_enable_interrupts(hsdev); | 
|  |  | 
|  | /* Get SATA interrupt number */ | 
|  | irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); | 
|  | if (irq == NO_IRQ) { | 
|  | dev_err(&ofdev->dev, "no SATA DMA irq\n"); | 
|  | err = -ENODEV; | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now, register with libATA core, this will also initiate the | 
|  | * device discovery process, invoking our port_start() handler & | 
|  | * error_handler() to execute a dummy Softreset EH session | 
|  | */ | 
|  | rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); | 
|  |  | 
|  | if (rc != 0) | 
|  | dev_err(&ofdev->dev, "failed to activate host"); | 
|  |  | 
|  | dev_set_drvdata(&ofdev->dev, host); | 
|  | return 0; | 
|  |  | 
|  | error_out: | 
|  | /* Free SATA DMA resources */ | 
|  | dma_dwc_exit(hsdev); | 
|  |  | 
|  | error_iomap: | 
|  | iounmap(base); | 
|  | error_kmalloc: | 
|  | kfree(hsdev); | 
|  | error: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int sata_dwc_remove(struct platform_device *ofdev) | 
|  | { | 
|  | struct device *dev = &ofdev->dev; | 
|  | struct ata_host *host = dev_get_drvdata(dev); | 
|  | struct sata_dwc_device *hsdev = host->private_data; | 
|  |  | 
|  | ata_host_detach(host); | 
|  | dev_set_drvdata(dev, NULL); | 
|  |  | 
|  | /* Free SATA DMA resources */ | 
|  | dma_dwc_exit(hsdev); | 
|  |  | 
|  | iounmap(hsdev->reg_base); | 
|  | kfree(hsdev); | 
|  | kfree(host); | 
|  | dev_dbg(&ofdev->dev, "done\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id sata_dwc_match[] = { | 
|  | { .compatible = "amcc,sata-460ex", }, | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, sata_dwc_match); | 
|  |  | 
|  | static struct platform_driver sata_dwc_driver = { | 
|  | .driver = { | 
|  | .name = DRV_NAME, | 
|  | .owner = THIS_MODULE, | 
|  | .of_match_table = sata_dwc_match, | 
|  | }, | 
|  | .probe = sata_dwc_probe, | 
|  | .remove = sata_dwc_remove, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(sata_dwc_driver); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mark Miesfeld <[email protected]>"); | 
|  | MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver"); | 
|  | MODULE_VERSION(DRV_VERSION); |