| /* | 
 |  * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. | 
 |  * | 
 |  * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of the | 
 |  * License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * | 
 |  * This code is more or less generated from another driver, please | 
 |  * excuse some codingstyle oddities. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/i2c.h> | 
 |  | 
 | #include "dvb_frontend.h" | 
 |  | 
 | #include "dib0090.h" | 
 | #include "dibx000_common.h" | 
 |  | 
 | static int debug; | 
 | module_param(debug, int, 0644); | 
 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); | 
 |  | 
 | #define dprintk(args...) do { \ | 
 | 	if (debug) { \ | 
 | 		printk(KERN_DEBUG "DiB0090: "); \ | 
 | 		printk(args); \ | 
 | 		printk("\n"); \ | 
 | 	} \ | 
 | } while (0) | 
 |  | 
 | #define CONFIG_SYS_DVBT | 
 | #define CONFIG_SYS_ISDBT | 
 | #define CONFIG_BAND_CBAND | 
 | #define CONFIG_BAND_VHF | 
 | #define CONFIG_BAND_UHF | 
 | #define CONFIG_DIB0090_USE_PWM_AGC | 
 |  | 
 | #define EN_LNA0      0x8000 | 
 | #define EN_LNA1      0x4000 | 
 | #define EN_LNA2      0x2000 | 
 | #define EN_LNA3      0x1000 | 
 | #define EN_MIX0      0x0800 | 
 | #define EN_MIX1      0x0400 | 
 | #define EN_MIX2      0x0200 | 
 | #define EN_MIX3      0x0100 | 
 | #define EN_IQADC     0x0040 | 
 | #define EN_PLL       0x0020 | 
 | #define EN_TX        0x0010 | 
 | #define EN_BB        0x0008 | 
 | #define EN_LO        0x0004 | 
 | #define EN_BIAS      0x0001 | 
 |  | 
 | #define EN_IQANA     0x0002 | 
 | #define EN_DIGCLK    0x0080	/* not in the 0x24 reg, only in 0x1b */ | 
 | #define EN_CRYSTAL   0x0002 | 
 |  | 
 | #define EN_UHF		 0x22E9 | 
 | #define EN_VHF		 0x44E9 | 
 | #define EN_LBD		 0x11E9 | 
 | #define EN_SBD		 0x44E9 | 
 | #define EN_CAB		 0x88E9 | 
 |  | 
 | /* Calibration defines */ | 
 | #define      DC_CAL 0x1 | 
 | #define     WBD_CAL 0x2 | 
 | #define    TEMP_CAL 0x4 | 
 | #define CAPTRIM_CAL 0x8 | 
 |  | 
 | #define KROSUS_PLL_LOCKED   0x800 | 
 | #define KROSUS              0x2 | 
 |  | 
 | /* Use those defines to identify SOC version */ | 
 | #define SOC               0x02 | 
 | #define SOC_7090_P1G_11R1 0x82 | 
 | #define SOC_7090_P1G_21R1 0x8a | 
 | #define SOC_8090_P1G_11R1 0x86 | 
 | #define SOC_8090_P1G_21R1 0x8e | 
 |  | 
 | /* else use thos ones to check */ | 
 | #define P1A_B      0x0 | 
 | #define P1C	   0x1 | 
 | #define P1D_E_F    0x3 | 
 | #define P1G	   0x7 | 
 | #define P1G_21R2   0xf | 
 |  | 
 | #define MP001 0x1		/* Single 9090/8096 */ | 
 | #define MP005 0x4		/* Single Sband */ | 
 | #define MP008 0x6		/* Dual diversity VHF-UHF-LBAND */ | 
 | #define MP009 0x7		/* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */ | 
 |  | 
 | #define pgm_read_word(w) (*w) | 
 |  | 
 | struct dc_calibration; | 
 |  | 
 | struct dib0090_tuning { | 
 | 	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */ | 
 | 	u8 switch_trim; | 
 | 	u8 lna_tune; | 
 | 	u16 lna_bias; | 
 | 	u16 v2i; | 
 | 	u16 mix; | 
 | 	u16 load; | 
 | 	u16 tuner_enable; | 
 | }; | 
 |  | 
 | struct dib0090_pll { | 
 | 	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */ | 
 | 	u8 vco_band; | 
 | 	u8 hfdiv_code; | 
 | 	u8 hfdiv; | 
 | 	u8 topresc; | 
 | }; | 
 |  | 
 | struct dib0090_identity { | 
 | 	u8 version; | 
 | 	u8 product; | 
 | 	u8 p1g; | 
 | 	u8 in_soc; | 
 | }; | 
 |  | 
 | struct dib0090_state { | 
 | 	struct i2c_adapter *i2c; | 
 | 	struct dvb_frontend *fe; | 
 | 	const struct dib0090_config *config; | 
 |  | 
 | 	u8 current_band; | 
 | 	enum frontend_tune_state tune_state; | 
 | 	u32 current_rf; | 
 |  | 
 | 	u16 wbd_offset; | 
 | 	s16 wbd_target;		/* in dB */ | 
 |  | 
 | 	s16 rf_gain_limit;	/* take-over-point: where to split between bb and rf gain */ | 
 | 	s16 current_gain;	/* keeps the currently programmed gain */ | 
 | 	u8 agc_step;		/* new binary search */ | 
 |  | 
 | 	u16 gain[2];		/* for channel monitoring */ | 
 |  | 
 | 	const u16 *rf_ramp; | 
 | 	const u16 *bb_ramp; | 
 |  | 
 | 	/* for the software AGC ramps */ | 
 | 	u16 bb_1_def; | 
 | 	u16 rf_lt_def; | 
 | 	u16 gain_reg[4]; | 
 |  | 
 | 	/* for the captrim/dc-offset search */ | 
 | 	s8 step; | 
 | 	s16 adc_diff; | 
 | 	s16 min_adc_diff; | 
 |  | 
 | 	s8 captrim; | 
 | 	s8 fcaptrim; | 
 |  | 
 | 	const struct dc_calibration *dc; | 
 | 	u16 bb6, bb7; | 
 |  | 
 | 	const struct dib0090_tuning *current_tune_table_index; | 
 | 	const struct dib0090_pll *current_pll_table_index; | 
 |  | 
 | 	u8 tuner_is_tuned; | 
 | 	u8 agc_freeze; | 
 |  | 
 | 	struct dib0090_identity identity; | 
 |  | 
 | 	u32 rf_request; | 
 | 	u8 current_standard; | 
 |  | 
 | 	u8 calibrate; | 
 | 	u32 rest; | 
 | 	u16 bias; | 
 | 	s16 temperature; | 
 |  | 
 | 	u8 wbd_calibration_gain; | 
 | 	const struct dib0090_wbd_slope *current_wbd_table; | 
 | 	u16 wbdmux; | 
 | }; | 
 |  | 
 | struct dib0090_fw_state { | 
 | 	struct i2c_adapter *i2c; | 
 | 	struct dvb_frontend *fe; | 
 | 	struct dib0090_identity identity; | 
 | 	const struct dib0090_config *config; | 
 | }; | 
 |  | 
 | static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) | 
 | { | 
 | 	u8 b[2]; | 
 | 	struct i2c_msg msg[2] = { | 
 | 		{.addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1}, | 
 | 		{.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2}, | 
 | 	}; | 
 | 	if (i2c_transfer(state->i2c, msg, 2) != 2) { | 
 | 		printk(KERN_WARNING "DiB0090 I2C read failed\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	return (b[0] << 8) | b[1]; | 
 | } | 
 |  | 
 | static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) | 
 | { | 
 | 	u8 b[3] = { reg & 0xff, val >> 8, val & 0xff }; | 
 | 	struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 }; | 
 | 	if (i2c_transfer(state->i2c, &msg, 1) != 1) { | 
 | 		printk(KERN_WARNING "DiB0090 I2C write failed\n"); | 
 | 		return -EREMOTEIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg) | 
 | { | 
 | 	u8 b[2]; | 
 | 	struct i2c_msg msg = {.addr = reg, .flags = I2C_M_RD, .buf = b, .len = 2 }; | 
 | 	if (i2c_transfer(state->i2c, &msg, 1) != 1) { | 
 | 		printk(KERN_WARNING "DiB0090 I2C read failed\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	return (b[0] << 8) | b[1]; | 
 | } | 
 |  | 
 | static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val) | 
 | { | 
 | 	u8 b[2] = { val >> 8, val & 0xff }; | 
 | 	struct i2c_msg msg = {.addr = reg, .flags = 0, .buf = b, .len = 2 }; | 
 | 	if (i2c_transfer(state->i2c, &msg, 1) != 1) { | 
 | 		printk(KERN_WARNING "DiB0090 I2C write failed\n"); | 
 | 		return -EREMOTEIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0) | 
 | #define ADC_TARGET -220 | 
 | #define GAIN_ALPHA 5 | 
 | #define WBD_ALPHA 6 | 
 | #define LPF	100 | 
 | static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) | 
 | { | 
 | 	do { | 
 | 		dib0090_write_reg(state, r++, *b++); | 
 | 	} while (--c); | 
 | } | 
 |  | 
 | static int dib0090_identify(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	u16 v; | 
 | 	struct dib0090_identity *identity = &state->identity; | 
 |  | 
 | 	v = dib0090_read_reg(state, 0x1a); | 
 |  | 
 | 	identity->p1g = 0; | 
 | 	identity->in_soc = 0; | 
 |  | 
 | 	dprintk("Tuner identification (Version = 0x%04x)", v); | 
 |  | 
 | 	/* without PLL lock info */ | 
 | 	v &= ~KROSUS_PLL_LOCKED; | 
 |  | 
 | 	identity->version = v & 0xff; | 
 | 	identity->product = (v >> 8) & 0xf; | 
 |  | 
 | 	if (identity->product != KROSUS) | 
 | 		goto identification_error; | 
 |  | 
 | 	if ((identity->version & 0x3) == SOC) { | 
 | 		identity->in_soc = 1; | 
 | 		switch (identity->version) { | 
 | 		case SOC_8090_P1G_11R1: | 
 | 			dprintk("SOC 8090 P1-G11R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_8090_P1G_21R1: | 
 | 			dprintk("SOC 8090 P1-G21R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_7090_P1G_11R1: | 
 | 			dprintk("SOC 7090 P1-G11R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_7090_P1G_21R1: | 
 | 			dprintk("SOC 7090 P1-G21R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 | 	} else { | 
 | 		switch ((identity->version >> 5) & 0x7) { | 
 | 		case MP001: | 
 | 			dprintk("MP001 : 9090/8096"); | 
 | 			break; | 
 | 		case MP005: | 
 | 			dprintk("MP005 : Single Sband"); | 
 | 			break; | 
 | 		case MP008: | 
 | 			dprintk("MP008 : diversity VHF-UHF-LBAND"); | 
 | 			break; | 
 | 		case MP009: | 
 | 			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 |  | 
 | 		switch (identity->version & 0x1f) { | 
 | 		case P1G_21R2: | 
 | 			dprintk("P1G_21R2 detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case P1G: | 
 | 			dprintk("P1G detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case P1D_E_F: | 
 | 			dprintk("P1D/E/F detected"); | 
 | 			break; | 
 | 		case P1C: | 
 | 			dprintk("P1C detected"); | 
 | 			break; | 
 | 		case P1A_B: | 
 | 			dprintk("P1-A/B detected: driver is deactivated - not available"); | 
 | 			goto identification_error; | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | identification_error: | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int dib0090_fw_identify(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_fw_state *state = fe->tuner_priv; | 
 | 	struct dib0090_identity *identity = &state->identity; | 
 |  | 
 | 	u16 v = dib0090_fw_read_reg(state, 0x1a); | 
 | 	identity->p1g = 0; | 
 | 	identity->in_soc = 0; | 
 |  | 
 | 	dprintk("FE: Tuner identification (Version = 0x%04x)", v); | 
 |  | 
 | 	/* without PLL lock info */ | 
 | 	v &= ~KROSUS_PLL_LOCKED; | 
 |  | 
 | 	identity->version = v & 0xff; | 
 | 	identity->product = (v >> 8) & 0xf; | 
 |  | 
 | 	if (identity->product != KROSUS) | 
 | 		goto identification_error; | 
 |  | 
 | 	if ((identity->version & 0x3) == SOC) { | 
 | 		identity->in_soc = 1; | 
 | 		switch (identity->version) { | 
 | 		case SOC_8090_P1G_11R1: | 
 | 			dprintk("SOC 8090 P1-G11R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_8090_P1G_21R1: | 
 | 			dprintk("SOC 8090 P1-G21R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_7090_P1G_11R1: | 
 | 			dprintk("SOC 7090 P1-G11R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case SOC_7090_P1G_21R1: | 
 | 			dprintk("SOC 7090 P1-G21R1 Has been detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 | 	} else { | 
 | 		switch ((identity->version >> 5) & 0x7) { | 
 | 		case MP001: | 
 | 			dprintk("MP001 : 9090/8096"); | 
 | 			break; | 
 | 		case MP005: | 
 | 			dprintk("MP005 : Single Sband"); | 
 | 			break; | 
 | 		case MP008: | 
 | 			dprintk("MP008 : diversity VHF-UHF-LBAND"); | 
 | 			break; | 
 | 		case MP009: | 
 | 			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 |  | 
 | 		switch (identity->version & 0x1f) { | 
 | 		case P1G_21R2: | 
 | 			dprintk("P1G_21R2 detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case P1G: | 
 | 			dprintk("P1G detected"); | 
 | 			identity->p1g = 1; | 
 | 			break; | 
 | 		case P1D_E_F: | 
 | 			dprintk("P1D/E/F detected"); | 
 | 			break; | 
 | 		case P1C: | 
 | 			dprintk("P1C detected"); | 
 | 			break; | 
 | 		case P1A_B: | 
 | 			dprintk("P1-A/B detected: driver is deactivated - not available"); | 
 | 			goto identification_error; | 
 | 			break; | 
 | 		default: | 
 | 			goto identification_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | identification_error: | 
 | 	return -EIO;; | 
 | } | 
 |  | 
 | static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	u16 PllCfg, i, v; | 
 |  | 
 | 	HARD_RESET(state); | 
 |  | 
 | 	dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); | 
 | 	dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */ | 
 |  | 
 | 	if (!cfg->in_soc) { | 
 | 		/* adcClkOutRatio=8->7, release reset */ | 
 | 		dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); | 
 | 		if (cfg->clkoutdrive != 0) | 
 | 			dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) | 
 | 					  | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); | 
 | 		else | 
 | 			dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) | 
 | 					  | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); | 
 | 	} | 
 |  | 
 | 	/* Read Pll current config * */ | 
 | 	PllCfg = dib0090_read_reg(state, 0x21); | 
 |  | 
 | 	/** Reconfigure PLL if current setting is different from default setting **/ | 
 | 	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc) | 
 | 			&& !cfg->io.pll_bypass) { | 
 |  | 
 | 		/* Set Bypass mode */ | 
 | 		PllCfg |= (1 << 15); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 		/* Set Reset Pll */ | 
 | 		PllCfg &= ~(1 << 13); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 	/*** Set new Pll configuration in bypass and reset state ***/ | 
 | 		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 		/* Remove Reset Pll */ | 
 | 		PllCfg |= (1 << 13); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 	/*** Wait for PLL lock ***/ | 
 | 		i = 100; | 
 | 		do { | 
 | 			v = !!(dib0090_read_reg(state, 0x1a) & 0x800); | 
 | 			if (v) | 
 | 				break; | 
 | 		} while (--i); | 
 |  | 
 | 		if (i == 0) { | 
 | 			dprintk("Pll: Unable to lock Pll"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Finally Remove Bypass mode */ | 
 | 		PllCfg &= ~(1 << 15); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 | 	} | 
 |  | 
 | 	if (cfg->io.pll_bypass) { | 
 | 		PllCfg |= (cfg->io.pll_bypass << 15); | 
 | 		dib0090_write_reg(state, 0x21, PllCfg); | 
 | 	} | 
 | } | 
 |  | 
 | static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) | 
 | { | 
 | 	struct dib0090_fw_state *state = fe->tuner_priv; | 
 | 	u16 PllCfg; | 
 | 	u16 v; | 
 | 	int i; | 
 |  | 
 | 	dprintk("fw reset digital"); | 
 | 	HARD_RESET(state); | 
 |  | 
 | 	dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); | 
 | 	dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */ | 
 |  | 
 | 	dib0090_fw_write_reg(state, 0x20, | 
 | 			((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv); | 
 |  | 
 | 	v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0); | 
 | 	if (cfg->clkoutdrive != 0) | 
 | 		v |= cfg->clkoutdrive << 5; | 
 | 	else | 
 | 		v |= 7 << 5; | 
 |  | 
 | 	v |= 2 << 10; | 
 | 	dib0090_fw_write_reg(state, 0x23, v); | 
 |  | 
 | 	/* Read Pll current config * */ | 
 | 	PllCfg = dib0090_fw_read_reg(state, 0x21); | 
 |  | 
 | 	/** Reconfigure PLL if current setting is different from default setting **/ | 
 | 	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) { | 
 |  | 
 | 		/* Set Bypass mode */ | 
 | 		PllCfg |= (1 << 15); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 		/* Set Reset Pll */ | 
 | 		PllCfg &= ~(1 << 13); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 	/*** Set new Pll configuration in bypass and reset state ***/ | 
 | 		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 		/* Remove Reset Pll */ | 
 | 		PllCfg |= (1 << 13); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 |  | 
 | 	/*** Wait for PLL lock ***/ | 
 | 		i = 100; | 
 | 		do { | 
 | 			v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800); | 
 | 			if (v) | 
 | 				break; | 
 | 		} while (--i); | 
 |  | 
 | 		if (i == 0) { | 
 | 			dprintk("Pll: Unable to lock Pll"); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		/* Finally Remove Bypass mode */ | 
 | 		PllCfg &= ~(1 << 15); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 | 	} | 
 |  | 
 | 	if (cfg->io.pll_bypass) { | 
 | 		PllCfg |= (cfg->io.pll_bypass << 15); | 
 | 		dib0090_fw_write_reg(state, 0x21, PllCfg); | 
 | 	} | 
 |  | 
 | 	return dib0090_fw_identify(fe); | 
 | } | 
 |  | 
 | static int dib0090_wakeup(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	if (state->config->sleep) | 
 | 		state->config->sleep(fe, 0); | 
 |  | 
 | 	/* enable dataTX in case we have been restarted in the wrong moment */ | 
 | 	dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib0090_sleep(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	if (state->config->sleep) | 
 | 		state->config->sleep(fe, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	if (fast) | 
 | 		dib0090_write_reg(state, 0x04, 0); | 
 | 	else | 
 | 		dib0090_write_reg(state, 0x04, 1); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_dcc_freq); | 
 |  | 
 | static const u16 bb_ramp_pwm_normal_socs[] = { | 
 | 	550,			/* max BB gain in 10th of dB */ | 
 | 	(1 << 9) | 8,		/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ | 
 | 	440, | 
 | 	(4 << 9) | 0,		/* BB_RAMP3 = 26dB */ | 
 | 	(0 << 9) | 208,		/* BB_RAMP4 */ | 
 | 	(4 << 9) | 208,		/* BB_RAMP5 = 29dB */ | 
 | 	(0 << 9) | 440,		/* BB_RAMP6 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_cband_7090[] = { | 
 | 	280,			/* max RF gain in 10th of dB */ | 
 | 	18,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ | 
 | 	504,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(29 << 10) | 364,	/* RF_RAMP5, LNA 1 = 8dB */ | 
 | 	(0 << 10) | 504,	/* RF_RAMP6, LNA 1 */ | 
 | 	(60 << 10) | 228,	/* RF_RAMP7, LNA 2 = 7.7dB */ | 
 | 	(0 << 10) | 364,	/* RF_RAMP8, LNA 2 */ | 
 | 	(34 << 10) | 109,	/* GAIN_4_1, LNA 3 = 6.8dB */ | 
 | 	(0 << 10) | 228,	/* GAIN_4_2, LNA 3 */ | 
 | 	(37 << 10) | 0,		/* RF_RAMP3, LNA 4 = 6.2dB */ | 
 | 	(0 << 10) | 109,	/* RF_RAMP4, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_cband_8090[] = { | 
 | 	345,			/* max RF gain in 10th of dB */ | 
 | 	29,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ | 
 | 	1000,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(35 << 10) | 772,	/* RF_RAMP3, LNA 1 = 8dB */ | 
 | 	(0 << 10) | 1000,	/* RF_RAMP4, LNA 1 */ | 
 | 	(58 << 10) | 496,	/* RF_RAMP5, LNA 2 = 9.5dB */ | 
 | 	(0 << 10) | 772,	/* RF_RAMP6, LNA 2 */ | 
 | 	(27 << 10) | 200,	/* RF_RAMP7, LNA 3 = 10.5dB */ | 
 | 	(0 << 10) | 496,	/* RF_RAMP8, LNA 3 */ | 
 | 	(40 << 10) | 0,		/* GAIN_4_1, LNA 4 = 7dB */ | 
 | 	(0 << 10) | 200,	/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_uhf_7090[] = { | 
 | 	407,			/* max RF gain in 10th of dB */ | 
 | 	13,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ | 
 | 	529,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(23 << 10) | 0,		/* RF_RAMP3, LNA 1 = 14.7dB */ | 
 | 	(0 << 10) | 176,	/* RF_RAMP4, LNA 1 */ | 
 | 	(63 << 10) | 400,	/* RF_RAMP5, LNA 2 = 8dB */ | 
 | 	(0 << 10) | 529,	/* RF_RAMP6, LNA 2 */ | 
 | 	(48 << 10) | 316,	/* RF_RAMP7, LNA 3 = 6.8dB */ | 
 | 	(0 << 10) | 400,	/* RF_RAMP8, LNA 3 */ | 
 | 	(29 << 10) | 176,	/* GAIN_4_1, LNA 4 = 11.5dB */ | 
 | 	(0 << 10) | 316,	/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_uhf_8090[] = { | 
 | 	388,			/* max RF gain in 10th of dB */ | 
 | 	26,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ | 
 | 	1008,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(11 << 10) | 0,		/* RF_RAMP3, LNA 1 = 14.7dB */ | 
 | 	(0 << 10) | 369,	/* RF_RAMP4, LNA 1 */ | 
 | 	(41 << 10) | 809,	/* RF_RAMP5, LNA 2 = 8dB */ | 
 | 	(0 << 10) | 1008,	/* RF_RAMP6, LNA 2 */ | 
 | 	(27 << 10) | 659,	/* RF_RAMP7, LNA 3 = 6dB */ | 
 | 	(0 << 10) | 809,	/* RF_RAMP8, LNA 3 */ | 
 | 	(14 << 10) | 369,	/* GAIN_4_1, LNA 4 = 11.5dB */ | 
 | 	(0 << 10) | 659,	/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_cband[] = { | 
 | 	0,			/* max RF gain in 10th of dB */ | 
 | 	0,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ | 
 | 	0,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(0 << 10) | 0,		/* 0x2c, LNA 1 = 0dB */ | 
 | 	(0 << 10) | 0,		/* 0x2d, LNA 1 */ | 
 | 	(0 << 10) | 0,		/* 0x2e, LNA 2 = 0dB */ | 
 | 	(0 << 10) | 0,		/* 0x2f, LNA 2 */ | 
 | 	(0 << 10) | 0,		/* 0x30, LNA 3 = 0dB */ | 
 | 	(0 << 10) | 0,		/* 0x31, LNA 3 */ | 
 | 	(0 << 10) | 0,		/* GAIN_4_1, LNA 4 = 0dB */ | 
 | 	(0 << 10) | 0,		/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_vhf[] = { | 
 | 	412,			/* max RF gain in 10th of dB */ | 
 | 	132, 307, 127,		/* LNA1,  13.2dB */ | 
 | 	105, 412, 255,		/* LNA2,  10.5dB */ | 
 | 	50, 50, 127,		/* LNA3,  5dB */ | 
 | 	125, 175, 127,		/* LNA4,  12.5dB */ | 
 | 	0, 0, 127,		/* CBAND, 0dB */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_uhf[] = { | 
 | 	412,			/* max RF gain in 10th of dB */ | 
 | 	132, 307, 127,		/* LNA1  : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */ | 
 | 	105, 412, 255,		/* LNA2  : 10.5 dB */ | 
 | 	50, 50, 127,		/* LNA3  :  5.0 dB */ | 
 | 	125, 175, 127,		/* LNA4  : 12.5 dB */ | 
 | 	0, 0, 127,		/* CBAND :  0.0 dB */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_cband_broadmatching[] =	/* for p1G only */ | 
 | { | 
 | 	314,			/* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */ | 
 | 	84, 314, 127,		/* LNA1 */ | 
 | 	80, 230, 255,		/* LNA2 */ | 
 | 	80, 150, 127,		/* LNA3  It was measured 12dB, do not lock if 120 */ | 
 | 	70, 70, 127,		/* LNA4 */ | 
 | 	0, 0, 127,		/* CBAND */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_cband[] = { | 
 | 	332,			/* max RF gain in 10th of dB */ | 
 | 	132, 252, 127,		/* LNA1,  dB */ | 
 | 	80, 332, 255,		/* LNA2,  dB */ | 
 | 	0, 0, 127,		/* LNA3,  dB */ | 
 | 	0, 0, 127,		/* LNA4,  dB */ | 
 | 	120, 120, 127,		/* LT1 CBAND */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_vhf[] = { | 
 | 	404,			/* max RF gain in 10th of dB */ | 
 | 	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ | 
 | 	1011,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */ | 
 | 	(0 << 10) | 756,	/* 0x2d, LNA 1 */ | 
 | 	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */ | 
 | 	(0 << 10) | 1011,	/* 0x2f, LNA 2 */ | 
 | 	(16 << 10) | 290,	/* 0x30, LNA 3 = 5dB */ | 
 | 	(0 << 10) | 417,	/* 0x31, LNA 3 */ | 
 | 	(7 << 10) | 0,		/* GAIN_4_1, LNA 4 = 12.5dB */ | 
 | 	(0 << 10) | 290,	/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 rf_ramp_pwm_uhf[] = { | 
 | 	404,			/* max RF gain in 10th of dB */ | 
 | 	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ | 
 | 	1011,			/* ramp_max = maximum X used on the ramp */ | 
 | 	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */ | 
 | 	(0 << 10) | 756,	/* 0x2d, LNA 1 */ | 
 | 	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */ | 
 | 	(0 << 10) | 1011,	/* 0x2f, LNA 2 */ | 
 | 	(16 << 10) | 0,		/* 0x30, LNA 3 = 5dB */ | 
 | 	(0 << 10) | 127,	/* 0x31, LNA 3 */ | 
 | 	(7 << 10) | 127,	/* GAIN_4_1, LNA 4 = 12.5dB */ | 
 | 	(0 << 10) | 417,	/* GAIN_4_2, LNA 4 */ | 
 | }; | 
 |  | 
 | static const u16 bb_ramp_boost[] = { | 
 | 	550,			/* max BB gain in 10th of dB */ | 
 | 	260, 260, 26,		/* BB1, 26dB */ | 
 | 	290, 550, 29,		/* BB2, 29dB */ | 
 | }; | 
 |  | 
 | static const u16 bb_ramp_pwm_normal[] = { | 
 | 	500,			/* max RF gain in 10th of dB */ | 
 | 	8,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */ | 
 | 	400, | 
 | 	(2 << 9) | 0,		/* 0x35 = 21dB */ | 
 | 	(0 << 9) | 168,		/* 0x36 */ | 
 | 	(2 << 9) | 168,		/* 0x37 = 29dB */ | 
 | 	(0 << 9) | 400,		/* 0x38 */ | 
 | }; | 
 |  | 
 | struct slope { | 
 | 	s16 range; | 
 | 	s16 slope; | 
 | }; | 
 | static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) | 
 | { | 
 | 	u8 i; | 
 | 	u16 rest; | 
 | 	u16 ret = 0; | 
 | 	for (i = 0; i < num; i++) { | 
 | 		if (val > slopes[i].range) | 
 | 			rest = slopes[i].range; | 
 | 		else | 
 | 			rest = val; | 
 | 		ret += (rest * slopes[i].slope) / slopes[i].range; | 
 | 		val -= rest; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct slope dib0090_wbd_slopes[3] = { | 
 | 	{66, 120},		/* -64,-52: offset -   65 */ | 
 | 	{600, 170},		/* -52,-35: 65     -  665 */ | 
 | 	{170, 250},		/* -45,-10: 665    - 835 */ | 
 | }; | 
 |  | 
 | static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) | 
 | { | 
 | 	wbd &= 0x3ff; | 
 | 	if (wbd < state->wbd_offset) | 
 | 		wbd = 0; | 
 | 	else | 
 | 		wbd -= state->wbd_offset; | 
 | 	/* -64dB is the floor */ | 
 | 	return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); | 
 | } | 
 |  | 
 | static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) | 
 | { | 
 | 	u16 offset = 250; | 
 |  | 
 | 	/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ | 
 |  | 
 | 	if (state->current_band == BAND_VHF) | 
 | 		offset = 650; | 
 | #ifndef FIRMWARE_FIREFLY | 
 | 	if (state->current_band == BAND_VHF) | 
 | 		offset = state->config->wbd_vhf_offset; | 
 | 	if (state->current_band == BAND_CBAND) | 
 | 		offset = state->config->wbd_cband_offset; | 
 | #endif | 
 |  | 
 | 	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); | 
 | 	dprintk("wbd-target: %d dB", (u32) state->wbd_target); | 
 | } | 
 |  | 
 | static const int gain_reg_addr[4] = { | 
 | 	0x08, 0x0a, 0x0f, 0x01 | 
 | }; | 
 |  | 
 | static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) | 
 | { | 
 | 	u16 rf, bb, ref; | 
 | 	u16 i, v, gain_reg[4] = { 0 }, gain; | 
 | 	const u16 *g; | 
 |  | 
 | 	if (top_delta < -511) | 
 | 		top_delta = -511; | 
 | 	if (top_delta > 511) | 
 | 		top_delta = 511; | 
 |  | 
 | 	if (force) { | 
 | 		top_delta *= (1 << WBD_ALPHA); | 
 | 		gain_delta *= (1 << GAIN_ALPHA); | 
 | 	} | 
 |  | 
 | 	if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))	/* overflow */ | 
 | 		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; | 
 | 	else | 
 | 		state->rf_gain_limit += top_delta; | 
 |  | 
 | 	if (state->rf_gain_limit < 0)	/*underflow */ | 
 | 		state->rf_gain_limit = 0; | 
 |  | 
 | 	/* use gain as a temporary variable and correct current_gain */ | 
 | 	gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; | 
 | 	if (gain_delta >= ((s16) gain - state->current_gain))	/* overflow */ | 
 | 		state->current_gain = gain; | 
 | 	else | 
 | 		state->current_gain += gain_delta; | 
 | 	/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ | 
 | 	if (state->current_gain < 0) | 
 | 		state->current_gain = 0; | 
 |  | 
 | 	/* now split total gain to rf and bb gain */ | 
 | 	gain = state->current_gain >> GAIN_ALPHA; | 
 |  | 
 | 	/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ | 
 | 	if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { | 
 | 		rf = state->rf_gain_limit >> WBD_ALPHA; | 
 | 		bb = gain - rf; | 
 | 		if (bb > state->bb_ramp[0]) | 
 | 			bb = state->bb_ramp[0]; | 
 | 	} else {		/* high signal level -> all gains put on RF */ | 
 | 		rf = gain; | 
 | 		bb = 0; | 
 | 	} | 
 |  | 
 | 	state->gain[0] = rf; | 
 | 	state->gain[1] = bb; | 
 |  | 
 | 	/* software ramp */ | 
 | 	/* Start with RF gains */ | 
 | 	g = state->rf_ramp + 1;	/* point on RF LNA1 max gain */ | 
 | 	ref = rf; | 
 | 	for (i = 0; i < 7; i++) {	/* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ | 
 | 		if (g[0] == 0 || ref < (g[1] - g[0]))	/* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ | 
 | 			v = 0;	/* force the gain to write for the current amp to be null */ | 
 | 		else if (ref >= g[1])	/* Gain to set is higher than the high working point of this amp */ | 
 | 			v = g[2];	/* force this amp to be full gain */ | 
 | 		else		/* compute the value to set to this amp because we are somewhere in his range */ | 
 | 			v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; | 
 |  | 
 | 		if (i == 0)	/* LNA 1 reg mapping */ | 
 | 			gain_reg[0] = v; | 
 | 		else if (i == 1)	/* LNA 2 reg mapping */ | 
 | 			gain_reg[0] |= v << 7; | 
 | 		else if (i == 2)	/* LNA 3 reg mapping */ | 
 | 			gain_reg[1] = v; | 
 | 		else if (i == 3)	/* LNA 4 reg mapping */ | 
 | 			gain_reg[1] |= v << 7; | 
 | 		else if (i == 4)	/* CBAND LNA reg mapping */ | 
 | 			gain_reg[2] = v | state->rf_lt_def; | 
 | 		else if (i == 5)	/* BB gain 1 reg mapping */ | 
 | 			gain_reg[3] = v << 3; | 
 | 		else if (i == 6)	/* BB gain 2 reg mapping */ | 
 | 			gain_reg[3] |= v << 8; | 
 |  | 
 | 		g += 3;		/* go to next gain bloc */ | 
 |  | 
 | 		/* When RF is finished, start with BB */ | 
 | 		if (i == 4) { | 
 | 			g = state->bb_ramp + 1;	/* point on BB gain 1 max gain */ | 
 | 			ref = bb; | 
 | 		} | 
 | 	} | 
 | 	gain_reg[3] |= state->bb_1_def; | 
 | 	gain_reg[3] |= ((bb % 10) * 100) / 125; | 
 |  | 
 | #ifdef DEBUG_AGC | 
 | 	dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, | 
 | 		gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); | 
 | #endif | 
 |  | 
 | 	/* Write the amplifier regs */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		v = gain_reg[i]; | 
 | 		if (force || state->gain_reg[i] != v) { | 
 | 			state->gain_reg[i] = v; | 
 | 			dib0090_write_reg(state, gain_reg_addr[i], v); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void dib0090_set_boost(struct dib0090_state *state, int onoff) | 
 | { | 
 | 	state->bb_1_def &= 0xdfff; | 
 | 	state->bb_1_def |= onoff << 13; | 
 | } | 
 |  | 
 | static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) | 
 | { | 
 | 	state->rf_ramp = cfg; | 
 | } | 
 |  | 
 | static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) | 
 | { | 
 | 	state->rf_ramp = cfg; | 
 |  | 
 | 	dib0090_write_reg(state, 0x2a, 0xffff); | 
 |  | 
 | 	dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); | 
 |  | 
 | 	dib0090_write_regs(state, 0x2c, cfg + 3, 6); | 
 | 	dib0090_write_regs(state, 0x3e, cfg + 9, 2); | 
 | } | 
 |  | 
 | static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) | 
 | { | 
 | 	state->bb_ramp = cfg; | 
 | 	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */ | 
 | } | 
 |  | 
 | static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) | 
 | { | 
 | 	state->bb_ramp = cfg; | 
 |  | 
 | 	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */ | 
 |  | 
 | 	dib0090_write_reg(state, 0x33, 0xffff); | 
 | 	dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); | 
 | 	dib0090_write_regs(state, 0x35, cfg + 3, 4); | 
 | } | 
 |  | 
 | void dib0090_pwm_gain_reset(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	/* reset the AGC */ | 
 |  | 
 | 	if (state->config->use_pwm_agc) { | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 		if (state->current_band == BAND_SBAND) { | 
 | 			dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband); | 
 | 			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost); | 
 | 		} else | 
 | #endif | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 		if (state->current_band == BAND_CBAND) { | 
 | 			if (state->identity.in_soc) { | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); | 
 | 				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) | 
 | 					dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_8090); | 
 | 				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) | 
 | 					dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_7090); | 
 | 			} else { | 
 | 				dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband); | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); | 
 | 			} | 
 | 		} else | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 		if (state->current_band == BAND_VHF) { | 
 | 			if (state->identity.in_soc) { | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); | 
 | 			} else { | 
 | 				dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf); | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); | 
 | 			} | 
 | 		} else | 
 | #endif | 
 | 		{ | 
 | 			if (state->identity.in_soc) { | 
 | 				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) | 
 | 					dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_8090); | 
 | 				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) | 
 | 					dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_7090); | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); | 
 | 			} else { | 
 | 				dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf); | 
 | 				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (state->rf_ramp[0] != 0) | 
 | 			dib0090_write_reg(state, 0x32, (3 << 11)); | 
 | 		else | 
 | 			dib0090_write_reg(state, 0x32, (0 << 11)); | 
 |  | 
 | 		dib0090_write_reg(state, 0x04, 0x01); | 
 | 		dib0090_write_reg(state, 0x39, (1 << 10)); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_pwm_gain_reset); | 
 |  | 
 | static u32 dib0090_get_slow_adc_val(struct dib0090_state *state) | 
 | { | 
 | 	u16 adc_val = dib0090_read_reg(state, 0x1d); | 
 | 	if (state->identity.in_soc) | 
 | 		adc_val >>= 2; | 
 | 	return adc_val; | 
 | } | 
 |  | 
 | int dib0090_gain_control(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	enum frontend_tune_state *tune_state = &state->tune_state; | 
 | 	int ret = 10; | 
 |  | 
 | 	u16 wbd_val = 0; | 
 | 	u8 apply_gain_immediatly = 1; | 
 | 	s16 wbd_error = 0, adc_error = 0; | 
 |  | 
 | 	if (*tune_state == CT_AGC_START) { | 
 | 		state->agc_freeze = 0; | 
 | 		dib0090_write_reg(state, 0x04, 0x0); | 
 |  | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 		if (state->current_band == BAND_SBAND) { | 
 | 			dib0090_set_rframp(state, rf_ramp_sband); | 
 | 			dib0090_set_bbramp(state, bb_ramp_boost); | 
 | 		} else | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 		if (state->current_band == BAND_VHF && !state->identity.p1g) { | 
 | 			dib0090_set_rframp(state, rf_ramp_vhf); | 
 | 			dib0090_set_bbramp(state, bb_ramp_boost); | 
 | 		} else | 
 | #endif | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 		if (state->current_band == BAND_CBAND && !state->identity.p1g) { | 
 | 			dib0090_set_rframp(state, rf_ramp_cband); | 
 | 			dib0090_set_bbramp(state, bb_ramp_boost); | 
 | 		} else | 
 | #endif | 
 | 		if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) { | 
 | 			dib0090_set_rframp(state, rf_ramp_cband_broadmatching); | 
 | 			dib0090_set_bbramp(state, bb_ramp_boost); | 
 | 		} else { | 
 | 			dib0090_set_rframp(state, rf_ramp_uhf); | 
 | 			dib0090_set_bbramp(state, bb_ramp_boost); | 
 | 		} | 
 |  | 
 | 		dib0090_write_reg(state, 0x32, 0); | 
 | 		dib0090_write_reg(state, 0x39, 0); | 
 |  | 
 | 		dib0090_wbd_target(state, state->current_rf); | 
 |  | 
 | 		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; | 
 | 		state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; | 
 |  | 
 | 		*tune_state = CT_AGC_STEP_0; | 
 | 	} else if (!state->agc_freeze) { | 
 | 		s16 wbd = 0, i, cnt; | 
 |  | 
 | 		int adc; | 
 | 		wbd_val = dib0090_get_slow_adc_val(state); | 
 |  | 
 | 		if (*tune_state == CT_AGC_STEP_0) | 
 | 			cnt = 5; | 
 | 		else | 
 | 			cnt = 1; | 
 |  | 
 | 		for (i = 0; i < cnt; i++) { | 
 | 			wbd_val = dib0090_get_slow_adc_val(state); | 
 | 			wbd += dib0090_wbd_to_db(state, wbd_val); | 
 | 		} | 
 | 		wbd /= cnt; | 
 | 		wbd_error = state->wbd_target - wbd; | 
 |  | 
 | 		if (*tune_state == CT_AGC_STEP_0) { | 
 | 			if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 				/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ | 
 | 				u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; | 
 | 				if (state->current_band == BAND_CBAND && ltg2) { | 
 | 					ltg2 >>= 1; | 
 | 					state->rf_lt_def &= ltg2 << 10;	/* reduce in 3 steps from 7 to 0 */ | 
 | 				} | 
 | #endif | 
 | 			} else { | 
 | 				state->agc_step = 0; | 
 | 				*tune_state = CT_AGC_STEP_1; | 
 | 			} | 
 | 		} else { | 
 | 			/* calc the adc power */ | 
 | 			adc = state->config->get_adc_power(fe); | 
 | 			adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21;	/* included in [0:-700] */ | 
 |  | 
 | 			adc_error = (s16) (((s32) ADC_TARGET) - adc); | 
 | #ifdef CONFIG_STANDARD_DAB | 
 | 			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) | 
 | 				adc_error -= 10; | 
 | #endif | 
 | #ifdef CONFIG_STANDARD_DVBT | 
 | 			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && | 
 | 					(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) | 
 | 				adc_error += 60; | 
 | #endif | 
 | #ifdef CONFIG_SYS_ISDBT | 
 | 			if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > | 
 | 								0) | 
 | 							&& | 
 | 							((state->fe->dtv_property_cache.layer[0].modulation == | 
 | 							  QAM_64) | 
 | 							 || (state->fe->dtv_property_cache. | 
 | 								 layer[0].modulation == QAM_16))) | 
 | 						|| | 
 | 						((state->fe->dtv_property_cache.layer[1].segment_count > | 
 | 						  0) | 
 | 						 && | 
 | 						 ((state->fe->dtv_property_cache.layer[1].modulation == | 
 | 						   QAM_64) | 
 | 						  || (state->fe->dtv_property_cache. | 
 | 							  layer[1].modulation == QAM_16))) | 
 | 						|| | 
 | 						((state->fe->dtv_property_cache.layer[2].segment_count > | 
 | 						  0) | 
 | 						 && | 
 | 						 ((state->fe->dtv_property_cache.layer[2].modulation == | 
 | 						   QAM_64) | 
 | 						  || (state->fe->dtv_property_cache. | 
 | 							  layer[2].modulation == QAM_16))) | 
 | 						) | 
 | 				) | 
 | 				adc_error += 60; | 
 | #endif | 
 |  | 
 | 			if (*tune_state == CT_AGC_STEP_1) {	/* quickly go to the correct range of the ADC power */ | 
 | 				if (ABS(adc_error) < 50 || state->agc_step++ > 5) { | 
 |  | 
 | #ifdef CONFIG_STANDARD_DAB | 
 | 					if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { | 
 | 						dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));	/* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ | 
 | 						dib0090_write_reg(state, 0x04, 0x0); | 
 | 					} else | 
 | #endif | 
 | 					{ | 
 | 						dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); | 
 | 						dib0090_write_reg(state, 0x04, 0x01);	/*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ | 
 | 					} | 
 |  | 
 | 					*tune_state = CT_AGC_STOP; | 
 | 				} | 
 | 			} else { | 
 | 				/* everything higher than or equal to CT_AGC_STOP means tracking */ | 
 | 				ret = 100;	/* 10ms interval */ | 
 | 				apply_gain_immediatly = 0; | 
 | 			} | 
 | 		} | 
 | #ifdef DEBUG_AGC | 
 | 		dprintk | 
 | 			("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", | 
 | 			 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, | 
 | 			 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* apply gain */ | 
 | 	if (!state->agc_freeze) | 
 | 		dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); | 
 | 	return ret; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_gain_control); | 
 |  | 
 | void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	if (rf) | 
 | 		*rf = state->gain[0]; | 
 | 	if (bb) | 
 | 		*bb = state->gain[1]; | 
 | 	if (rf_gain_limit) | 
 | 		*rf_gain_limit = state->rf_gain_limit; | 
 | 	if (rflt) | 
 | 		*rflt = (state->rf_lt_def >> 10) & 0x7; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_get_current_gain); | 
 |  | 
 | u16 dib0090_get_wbd_offset(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000; | 
 | 	s32 current_temp = state->temperature; | 
 | 	s32 wbd_thot, wbd_tcold; | 
 | 	const struct dib0090_wbd_slope *wbd = state->current_wbd_table; | 
 |  | 
 | 	while (f_MHz > wbd->max_freq) | 
 | 		wbd++; | 
 |  | 
 | 	dprintk("using wbd-table-entry with max freq %d", wbd->max_freq); | 
 |  | 
 | 	if (current_temp < 0) | 
 | 		current_temp = 0; | 
 | 	if (current_temp > 128) | 
 | 		current_temp = 128; | 
 |  | 
 | 	state->wbdmux &= ~(7 << 13); | 
 | 	if (wbd->wbd_gain != 0) | 
 | 		state->wbdmux |= (wbd->wbd_gain << 13); | 
 | 	else | 
 | 		state->wbdmux |= (4 << 13); | 
 |  | 
 | 	dib0090_write_reg(state, 0x10, state->wbdmux); | 
 |  | 
 | 	wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6); | 
 | 	wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6); | 
 |  | 
 | 	wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7; | 
 |  | 
 | 	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); | 
 | 	dprintk("wbd-target: %d dB", (u32) state->wbd_target); | 
 | 	dprintk("wbd offset applied is %d", wbd_tcold); | 
 |  | 
 | 	return state->wbd_offset + wbd_tcold; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_get_wbd_offset); | 
 |  | 
 | static const u16 dib0090_defaults[] = { | 
 |  | 
 | 	25, 0x01, | 
 | 	0x0000, | 
 | 	0x99a0, | 
 | 	0x6008, | 
 | 	0x0000, | 
 | 	0x8bcb, | 
 | 	0x0000, | 
 | 	0x0405, | 
 | 	0x0000, | 
 | 	0x0000, | 
 | 	0x0000, | 
 | 	0xb802, | 
 | 	0x0300, | 
 | 	0x2d12, | 
 | 	0xbac0, | 
 | 	0x7c00, | 
 | 	0xdbb9, | 
 | 	0x0954, | 
 | 	0x0743, | 
 | 	0x8000, | 
 | 	0x0001, | 
 | 	0x0040, | 
 | 	0x0100, | 
 | 	0x0000, | 
 | 	0xe910, | 
 | 	0x149e, | 
 |  | 
 | 	1, 0x1c, | 
 | 	0xff2d, | 
 |  | 
 | 	1, 0x39, | 
 | 	0x0000, | 
 |  | 
 | 	2, 0x1e, | 
 | 	0x07FF, | 
 | 	0x0007, | 
 |  | 
 | 	1, 0x24, | 
 | 	EN_UHF | EN_CRYSTAL, | 
 |  | 
 | 	2, 0x3c, | 
 | 	0x3ff, | 
 | 	0x111, | 
 | 	0 | 
 | }; | 
 |  | 
 | static const u16 dib0090_p1g_additionnal_defaults[] = { | 
 | 	1, 0x05, | 
 | 	0xabcd, | 
 |  | 
 | 	1, 0x11, | 
 | 	0x00b4, | 
 |  | 
 | 	1, 0x1c, | 
 | 	0xfffd, | 
 |  | 
 | 	1, 0x40, | 
 | 	0x108, | 
 | 	0 | 
 | }; | 
 |  | 
 | static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n) | 
 | { | 
 | 	u16 l, r; | 
 |  | 
 | 	l = pgm_read_word(n++); | 
 | 	while (l) { | 
 | 		r = pgm_read_word(n++); | 
 | 		do { | 
 | 			dib0090_write_reg(state, r, pgm_read_word(n++)); | 
 | 			r++; | 
 | 		} while (--l); | 
 | 		l = pgm_read_word(n++); | 
 | 	} | 
 | } | 
 |  | 
 | #define CAP_VALUE_MIN (u8)  9 | 
 | #define CAP_VALUE_MAX (u8) 40 | 
 | #define HR_MIN	      (u8) 25 | 
 | #define HR_MAX	      (u8) 40 | 
 | #define POLY_MIN      (u8)  0 | 
 | #define POLY_MAX      (u8)  8 | 
 |  | 
 | void dib0090_set_EFUSE(struct dib0090_state *state) | 
 | { | 
 | 	u8 c, h, n; | 
 | 	u16 e2, e4; | 
 | 	u16 cal; | 
 |  | 
 | 	e2 = dib0090_read_reg(state, 0x26); | 
 | 	e4 = dib0090_read_reg(state, 0x28); | 
 |  | 
 | 	if ((state->identity.version == P1D_E_F) || | 
 | 			(state->identity.version == P1G) || (e2 == 0xffff)) { | 
 |  | 
 | 		dib0090_write_reg(state, 0x22, 0x10); | 
 | 		cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff; | 
 |  | 
 | 		if ((cal < 670) || (cal == 1023)) | 
 | 			cal = 850; | 
 | 		n = 165 - ((cal * 10)>>6) ; | 
 | 		e2 = e4 = (3<<12) | (34<<6) | (n); | 
 | 	} | 
 |  | 
 | 	if (e2 != e4) | 
 | 		e2 &= e4; /* Remove the redundancy  */ | 
 |  | 
 | 	if (e2 != 0xffff) { | 
 | 		c = e2 & 0x3f; | 
 | 		n = (e2 >> 12) & 0xf; | 
 | 		h = (e2 >> 6) & 0x3f; | 
 |  | 
 | 		if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN)) | 
 | 			c = 32; | 
 | 		if ((h >= HR_MAX) || (h <= HR_MIN)) | 
 | 			h = 34; | 
 | 		if ((n >= POLY_MAX) || (n <= POLY_MIN)) | 
 | 			n = 3; | 
 |  | 
 | 		dib0090_write_reg(state, 0x13, (h << 10)) ; | 
 | 		e2 = (n<<11) | ((h>>2)<<6) | (c); | 
 | 		dib0090_write_reg(state, 0x2, e2) ; /* Load the BB_2 */ | 
 | 	} | 
 | } | 
 |  | 
 | static int dib0090_reset(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 |  | 
 | 	dib0090_reset_digital(fe, state->config); | 
 | 	if (dib0090_identify(fe) < 0) | 
 | 		return -EIO; | 
 |  | 
 | #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT | 
 | 	if (!(state->identity.version & 0x1))	/* it is P1B - reset is already done */ | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	if (!state->identity.in_soc) { | 
 | 		if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2) | 
 | 			dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL)); | 
 | 		else | 
 | 			dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL)); | 
 | 	} | 
 |  | 
 | 	dib0090_set_default_config(state, dib0090_defaults); | 
 |  | 
 | 	if (state->identity.in_soc) | 
 | 		dib0090_write_reg(state, 0x18, 0x2910);  /* charge pump current = 0 */ | 
 |  | 
 | 	if (state->identity.p1g) | 
 | 		dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults); | 
 |  | 
 | 	/* Update the efuse : Only available for KROSUS > P1C  and SOC as well*/ | 
 | 	if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) | 
 | 		dib0090_set_EFUSE(state); | 
 |  | 
 | 	/* Congigure in function of the crystal */ | 
 | 	if (state->config->io.clock_khz >= 24000) | 
 | 		dib0090_write_reg(state, 0x14, 1); | 
 | 	else | 
 | 		dib0090_write_reg(state, 0x14, 2); | 
 | 	dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); | 
 |  | 
 | 	state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL;	/* enable iq-offset-calibration and wbd-calibration when tuning next time */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define steps(u) (((u) > 15) ? ((u)-16) : (u)) | 
 | #define INTERN_WAIT 10 | 
 | static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) | 
 | { | 
 | 	int ret = INTERN_WAIT * 10; | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_TUNER_STEP_2: | 
 | 		/* Turns to positive */ | 
 | 		dib0090_write_reg(state, 0x1f, 0x7); | 
 | 		*tune_state = CT_TUNER_STEP_3; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_3: | 
 | 		state->adc_diff = dib0090_read_reg(state, 0x1d); | 
 |  | 
 | 		/* Turns to negative */ | 
 | 		dib0090_write_reg(state, 0x1f, 0x4); | 
 | 		*tune_state = CT_TUNER_STEP_4; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_4: | 
 | 		state->adc_diff -= dib0090_read_reg(state, 0x1d); | 
 | 		*tune_state = CT_TUNER_STEP_5; | 
 | 		ret = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct dc_calibration { | 
 | 	u8 addr; | 
 | 	u8 offset; | 
 | 	u8 pga:1; | 
 | 	u16 bb1; | 
 | 	u8 i:1; | 
 | }; | 
 |  | 
 | static const struct dc_calibration dc_table[] = { | 
 | 	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ | 
 | 	{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, | 
 | 	{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, | 
 | 	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ | 
 | 	{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, | 
 | 	{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, | 
 | 	{0}, | 
 | }; | 
 |  | 
 | static const struct dc_calibration dc_p1g_table[] = { | 
 | 	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ | 
 | 	/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */ | 
 | 	{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, | 
 | 	{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, | 
 | 	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ | 
 | 	{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, | 
 | 	{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, | 
 | 	{0}, | 
 | }; | 
 |  | 
 | static void dib0090_set_trim(struct dib0090_state *state) | 
 | { | 
 | 	u16 *val; | 
 |  | 
 | 	if (state->dc->addr == 0x07) | 
 | 		val = &state->bb7; | 
 | 	else | 
 | 		val = &state->bb6; | 
 |  | 
 | 	*val &= ~(0x1f << state->dc->offset); | 
 | 	*val |= state->step << state->dc->offset; | 
 |  | 
 | 	dib0090_write_reg(state, state->dc->addr, *val); | 
 | } | 
 |  | 
 | static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) | 
 | { | 
 | 	int ret = 0; | 
 | 	u16 reg; | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_TUNER_START: | 
 | 		dprintk("Start DC offset calibration"); | 
 |  | 
 | 		/* force vcm2 = 0.8V */ | 
 | 		state->bb6 = 0; | 
 | 		state->bb7 = 0x040d; | 
 |  | 
 | 		/* the LNA AND LO are off */ | 
 | 		reg = dib0090_read_reg(state, 0x24) & 0x0ffb;	/* shutdown lna and lo */ | 
 | 		dib0090_write_reg(state, 0x24, reg); | 
 |  | 
 | 		state->wbdmux = dib0090_read_reg(state, 0x10); | 
 | 		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); | 
 | 		dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); | 
 |  | 
 | 		state->dc = dc_table; | 
 |  | 
 | 		if (state->identity.p1g) | 
 | 			state->dc = dc_p1g_table; | 
 | 		*tune_state = CT_TUNER_STEP_0; | 
 |  | 
 | 		/* fall through */ | 
 |  | 
 | 	case CT_TUNER_STEP_0: | 
 | 		dprintk("Sart/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q"); | 
 | 		dib0090_write_reg(state, 0x01, state->dc->bb1); | 
 | 		dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); | 
 |  | 
 | 		state->step = 0; | 
 | 		state->min_adc_diff = 1023; | 
 | 		*tune_state = CT_TUNER_STEP_1; | 
 | 		ret = 50; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_1: | 
 | 		dib0090_set_trim(state); | 
 | 		*tune_state = CT_TUNER_STEP_2; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_2: | 
 | 	case CT_TUNER_STEP_3: | 
 | 	case CT_TUNER_STEP_4: | 
 | 		ret = dib0090_get_offset(state, tune_state); | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_5:	/* found an offset */ | 
 | 		dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step); | 
 | 		if (state->step == 0 && state->adc_diff < 0) { | 
 | 			state->min_adc_diff = -1023; | 
 | 			dprintk("Change of sign of the minimum adc diff"); | 
 | 		} | 
 |  | 
 | 		dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step); | 
 |  | 
 | 		/* first turn for this frequency */ | 
 | 		if (state->step == 0) { | 
 | 			if (state->dc->pga && state->adc_diff < 0) | 
 | 				state->step = 0x10; | 
 | 			if (state->dc->pga == 0 && state->adc_diff > 0) | 
 | 				state->step = 0x10; | 
 | 		} | 
 |  | 
 | 		/* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */ | 
 | 		if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) { | 
 | 			/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */ | 
 | 			state->step++; | 
 | 			state->min_adc_diff = state->adc_diff; | 
 | 			*tune_state = CT_TUNER_STEP_1; | 
 | 		} else { | 
 | 			/* the minimum was what we have seen in the step before */ | 
 | 			if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) { | 
 | 				dprintk("Since adc_diff N = %d  > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff); | 
 | 				state->step--; | 
 | 			} | 
 |  | 
 | 			dib0090_set_trim(state); | 
 | 			dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step); | 
 |  | 
 | 			state->dc++; | 
 | 			if (state->dc->addr == 0)	/* done */ | 
 | 				*tune_state = CT_TUNER_STEP_6; | 
 | 			else | 
 | 				*tune_state = CT_TUNER_STEP_0; | 
 |  | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_6: | 
 | 		dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); | 
 | 		dib0090_write_reg(state, 0x1f, 0x7); | 
 | 		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */ | 
 | 		state->calibrate &= ~DC_CAL; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) | 
 | { | 
 | 	u8 wbd_gain; | 
 | 	const struct dib0090_wbd_slope *wbd = state->current_wbd_table; | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_TUNER_START: | 
 | 		while (state->current_rf / 1000 > wbd->max_freq) | 
 | 			wbd++; | 
 | 		if (wbd->wbd_gain != 0) | 
 | 			wbd_gain = wbd->wbd_gain; | 
 | 		else { | 
 | 			wbd_gain = 4; | 
 | #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) | 
 | 			if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) | 
 | 				wbd_gain = 2; | 
 | #endif | 
 | 		} | 
 |  | 
 | 		if (wbd_gain == state->wbd_calibration_gain) {	/* the WBD calibration has already been done */ | 
 | 			*tune_state = CT_TUNER_START; | 
 | 			state->calibrate &= ~WBD_CAL; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); | 
 |  | 
 | 		dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); | 
 | 		*tune_state = CT_TUNER_STEP_0; | 
 | 		state->wbd_calibration_gain = wbd_gain; | 
 | 		return 90;	/* wait for the WBDMUX to switch and for the ADC to sample */ | 
 |  | 
 | 	case CT_TUNER_STEP_0: | 
 | 		state->wbd_offset = dib0090_get_slow_adc_val(state); | 
 | 		dprintk("WBD calibration offset = %d", state->wbd_offset); | 
 | 		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */ | 
 | 		state->calibrate &= ~WBD_CAL; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void dib0090_set_bandwidth(struct dib0090_state *state) | 
 | { | 
 | 	u16 tmp; | 
 |  | 
 | 	if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) | 
 | 		tmp = (3 << 14); | 
 | 	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) | 
 | 		tmp = (2 << 14); | 
 | 	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) | 
 | 		tmp = (1 << 14); | 
 | 	else | 
 | 		tmp = (0 << 14); | 
 |  | 
 | 	state->bb_1_def &= 0x3fff; | 
 | 	state->bb_1_def |= tmp; | 
 |  | 
 | 	dib0090_write_reg(state, 0x01, state->bb_1_def);	/* be sure that we have the right bb-filter */ | 
 |  | 
 | 	dib0090_write_reg(state, 0x03, 0x6008);	/* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */ | 
 | 	dib0090_write_reg(state, 0x04, 0x1);	/* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */ | 
 | 	if (state->identity.in_soc) { | 
 | 		dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */ | 
 | 	} else { | 
 | 		dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f));	/* 22 = cap_value */ | 
 | 		dib0090_write_reg(state, 0x05, 0xabcd);	/* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */ | 
 | 	} | 
 | } | 
 |  | 
 | static const struct dib0090_pll dib0090_pll_table[] = { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{56000, 0, 9, 48, 6}, | 
 | 	{70000, 1, 9, 48, 6}, | 
 | 	{87000, 0, 8, 32, 4}, | 
 | 	{105000, 1, 8, 32, 4}, | 
 | 	{115000, 0, 7, 24, 6}, | 
 | 	{140000, 1, 7, 24, 6}, | 
 | 	{170000, 0, 6, 16, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 	{200000, 1, 6, 16, 4}, | 
 | 	{230000, 0, 5, 12, 6}, | 
 | 	{280000, 1, 5, 12, 6}, | 
 | 	{340000, 0, 4, 8, 4}, | 
 | 	{380000, 1, 4, 8, 4}, | 
 | 	{450000, 0, 3, 6, 6}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{580000, 1, 3, 6, 6}, | 
 | 	{700000, 0, 2, 4, 4}, | 
 | 	{860000, 1, 2, 4, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1800000, 1, 0, 2, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2900000, 0, 14, 1, 4}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { | 
 |  | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, | 
 | 	{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, | 
 | 	{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, | 
 | 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_tuning dib0090_tuning_table[] = { | 
 |  | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | 	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | 	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, | 
 | 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_tuning dib0090_p1g_tuning_table[] = { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | 	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | 	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, | 
 | 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_pll dib0090_p1g_pll_table[] = { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{57000, 0, 11, 48, 6}, | 
 | 	{70000, 1, 11, 48, 6}, | 
 | 	{86000, 0, 10, 32, 4}, | 
 | 	{105000, 1, 10, 32, 4}, | 
 | 	{115000, 0, 9, 24, 6}, | 
 | 	{140000, 1, 9, 24, 6}, | 
 | 	{170000, 0, 8, 16, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_VHF | 
 | 	{200000, 1, 8, 16, 4}, | 
 | 	{230000, 0, 7, 12, 6}, | 
 | 	{280000, 1, 7, 12, 6}, | 
 | 	{340000, 0, 6, 8, 4}, | 
 | 	{380000, 1, 6, 8, 4}, | 
 | 	{455000, 0, 5, 6, 6}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{580000, 1, 5, 6, 6}, | 
 | 	{680000, 0, 4, 4, 4}, | 
 | 	{860000, 1, 4, 4, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1800000, 1, 2, 2, 4}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2900000, 0, 1, 1, 6}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, | 
 | 	{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, | 
 | 	{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_UHF | 
 | 	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | 	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_LBAND | 
 | 	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | 	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, | 
 | #endif | 
 | #ifdef CONFIG_BAND_SBAND | 
 | 	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, | 
 | 	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, | 
 | #endif | 
 | }; | 
 |  | 
 | static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = { | 
 | #ifdef CONFIG_BAND_CBAND | 
 | 	{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, | 
 | 	{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, | 
 | 	{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, | 
 | 	{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, | 
 | #endif | 
 | }; | 
 |  | 
 | static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state) | 
 | { | 
 | 	int ret = 0; | 
 | 	u16 lo4 = 0xe900; | 
 |  | 
 | 	s16 adc_target; | 
 | 	u16 adc; | 
 | 	s8 step_sign; | 
 | 	u8 force_soft_search = 0; | 
 |  | 
 | 	if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) | 
 | 		force_soft_search = 1; | 
 |  | 
 | 	if (*tune_state == CT_TUNER_START) { | 
 | 		dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO"); | 
 | 		dib0090_write_reg(state, 0x10, 0x2B1); | 
 | 		dib0090_write_reg(state, 0x1e, 0x0032); | 
 |  | 
 | 		if (!state->tuner_is_tuned) { | 
 | 			/* prepare a complete captrim */ | 
 | 			if (!state->identity.p1g || force_soft_search) | 
 | 				state->step = state->captrim = state->fcaptrim = 64; | 
 |  | 
 | 			state->current_rf = state->rf_request; | 
 | 		} else {	/* we are already tuned to this frequency - the configuration is correct  */ | 
 | 			if (!state->identity.p1g || force_soft_search) { | 
 | 				/* do a minimal captrim even if the frequency has not changed */ | 
 | 				state->step = 4; | 
 | 				state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; | 
 | 			} | 
 | 		} | 
 | 		state->adc_diff = 3000; | 
 | 		*tune_state = CT_TUNER_STEP_0; | 
 |  | 
 | 	} else if (*tune_state == CT_TUNER_STEP_0) { | 
 | 		if (state->identity.p1g && !force_soft_search) { | 
 | 			u8 ratio = 31; | 
 |  | 
 | 			dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1); | 
 | 			dib0090_read_reg(state, 0x40); | 
 | 			ret = 50; | 
 | 		} else { | 
 | 			state->step /= 2; | 
 | 			dib0090_write_reg(state, 0x18, lo4 | state->captrim); | 
 |  | 
 | 			if (state->identity.in_soc) | 
 | 				ret = 25; | 
 | 		} | 
 | 		*tune_state = CT_TUNER_STEP_1; | 
 |  | 
 | 	} else if (*tune_state == CT_TUNER_STEP_1) { | 
 | 		if (state->identity.p1g && !force_soft_search) { | 
 | 			dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0); | 
 | 			dib0090_read_reg(state, 0x40); | 
 |  | 
 | 			state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F; | 
 | 			dprintk("***Final Captrim= 0x%x", state->fcaptrim); | 
 | 			*tune_state = CT_TUNER_STEP_3; | 
 |  | 
 | 		} else { | 
 | 			/* MERGE for all krosus before P1G */ | 
 | 			adc = dib0090_get_slow_adc_val(state); | 
 | 			dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024); | 
 |  | 
 | 			if (state->rest == 0 || state->identity.in_soc) {	/* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */ | 
 | 				adc_target = 200; | 
 | 			} else | 
 | 				adc_target = 400; | 
 |  | 
 | 			if (adc >= adc_target) { | 
 | 				adc -= adc_target; | 
 | 				step_sign = -1; | 
 | 			} else { | 
 | 				adc = adc_target - adc; | 
 | 				step_sign = 1; | 
 | 			} | 
 |  | 
 | 			if (adc < state->adc_diff) { | 
 | 				dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff); | 
 | 				state->adc_diff = adc; | 
 | 				state->fcaptrim = state->captrim; | 
 | 			} | 
 |  | 
 | 			state->captrim += step_sign * state->step; | 
 | 			if (state->step >= 1) | 
 | 				*tune_state = CT_TUNER_STEP_0; | 
 | 			else | 
 | 				*tune_state = CT_TUNER_STEP_2; | 
 |  | 
 | 			ret = 25; | 
 | 		} | 
 | 	} else if (*tune_state == CT_TUNER_STEP_2) {	/* this step is only used by krosus < P1G */ | 
 | 		/*write the final cptrim config */ | 
 | 		dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); | 
 |  | 
 | 		*tune_state = CT_TUNER_STEP_3; | 
 |  | 
 | 	} else if (*tune_state == CT_TUNER_STEP_3) { | 
 | 		state->calibrate &= ~CAPTRIM_CAL; | 
 | 		*tune_state = CT_TUNER_STEP_0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state) | 
 | { | 
 | 	int ret = 15; | 
 | 	s16 val; | 
 |  | 
 | 	switch (*tune_state) { | 
 | 	case CT_TUNER_START: | 
 | 		state->wbdmux = dib0090_read_reg(state, 0x10); | 
 | 		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); | 
 |  | 
 | 		state->bias = dib0090_read_reg(state, 0x13); | 
 | 		dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); | 
 |  | 
 | 		*tune_state = CT_TUNER_STEP_0; | 
 | 		/* wait for the WBDMUX to switch and for the ADC to sample */ | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_0: | 
 | 		state->adc_diff = dib0090_get_slow_adc_val(state); | 
 | 		dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); | 
 | 		*tune_state = CT_TUNER_STEP_1; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_1: | 
 | 		val = dib0090_get_slow_adc_val(state); | 
 | 		state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; | 
 |  | 
 | 		dprintk("temperature: %d C", state->temperature - 30); | 
 |  | 
 | 		*tune_state = CT_TUNER_STEP_2; | 
 | 		break; | 
 |  | 
 | 	case CT_TUNER_STEP_2: | 
 | 		dib0090_write_reg(state, 0x13, state->bias); | 
 | 		dib0090_write_reg(state, 0x10, state->wbdmux);	/* write back original WBDMUX */ | 
 |  | 
 | 		*tune_state = CT_TUNER_START; | 
 | 		state->calibrate &= ~TEMP_CAL; | 
 | 		if (state->config->analog_output == 0) | 
 | 			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); | 
 |  | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */ | 
 | static int dib0090_tune(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	const struct dib0090_tuning *tune = state->current_tune_table_index; | 
 | 	const struct dib0090_pll *pll = state->current_pll_table_index; | 
 | 	enum frontend_tune_state *tune_state = &state->tune_state; | 
 |  | 
 | 	u16 lo5, lo6, Den, tmp; | 
 | 	u32 FBDiv, Rest, FREF, VCOF_kHz = 0; | 
 | 	int ret = 10;		/* 1ms is the default delay most of the time */ | 
 | 	u8 c, i; | 
 |  | 
 | 	/************************* VCO ***************************/ | 
 | 	/* Default values for FG                                 */ | 
 | 	/* from these are needed :                               */ | 
 | 	/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */ | 
 |  | 
 | 	/* in any case we first need to do a calibration if needed */ | 
 | 	if (*tune_state == CT_TUNER_START) { | 
 | 		/* deactivate DataTX before some calibrations */ | 
 | 		if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL)) | 
 | 			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); | 
 | 		else | 
 | 			/* Activate DataTX in case a calibration has been done before */ | 
 | 			if (state->config->analog_output == 0) | 
 | 				dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); | 
 | 	} | 
 |  | 
 | 	if (state->calibrate & DC_CAL) | 
 | 		return dib0090_dc_offset_calibration(state, tune_state); | 
 | 	else if (state->calibrate & WBD_CAL) { | 
 | 		if (state->current_rf == 0) | 
 | 			state->current_rf = state->fe->dtv_property_cache.frequency / 1000; | 
 | 		return dib0090_wbd_calibration(state, tune_state); | 
 | 	} else if (state->calibrate & TEMP_CAL) | 
 | 		return dib0090_get_temperature(state, tune_state); | 
 | 	else if (state->calibrate & CAPTRIM_CAL) | 
 | 		return dib0090_captrim_search(state, tune_state); | 
 |  | 
 | 	if (*tune_state == CT_TUNER_START) { | 
 | 		/* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */ | 
 | 		if (state->config->use_pwm_agc && state->identity.in_soc) { | 
 | 			tmp = dib0090_read_reg(state, 0x39); | 
 | 			if ((tmp >> 10) & 0x1) | 
 | 				dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); | 
 | 		} | 
 |  | 
 | 		state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000); | 
 | 		state->rf_request = | 
 | 			state->fe->dtv_property_cache.frequency / 1000 + (state->current_band == | 
 | 					BAND_UHF ? state->config->freq_offset_khz_uhf : state->config-> | 
 | 					freq_offset_khz_vhf); | 
 |  | 
 | 		/* in ISDB-T 1seg we shift tuning frequency */ | 
 | 		if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1 | 
 | 					&& state->fe->dtv_property_cache.isdbt_partial_reception == 0)) { | 
 | 			const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if; | 
 | 			u8 found_offset = 0; | 
 | 			u32 margin_khz = 100; | 
 |  | 
 | 			if (LUT_offset != NULL) { | 
 | 				while (LUT_offset->RF_freq != 0xffff) { | 
 | 					if (((state->rf_request > (LUT_offset->RF_freq - margin_khz)) | 
 | 								&& (state->rf_request < (LUT_offset->RF_freq + margin_khz))) | 
 | 							&& LUT_offset->std == state->fe->dtv_property_cache.delivery_system) { | 
 | 						state->rf_request += LUT_offset->offset_khz; | 
 | 						found_offset = 1; | 
 | 						break; | 
 | 					} | 
 | 					LUT_offset++; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (found_offset == 0) | 
 | 				state->rf_request += 400; | 
 | 		} | 
 | 		if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) { | 
 | 			state->tuner_is_tuned = 0; | 
 | 			state->current_rf = 0; | 
 | 			state->current_standard = 0; | 
 |  | 
 | 			tune = dib0090_tuning_table; | 
 | 			if (state->identity.p1g) | 
 | 				tune = dib0090_p1g_tuning_table; | 
 |  | 
 | 			tmp = (state->identity.version >> 5) & 0x7; | 
 |  | 
 | 			if (state->identity.in_soc) { | 
 | 				if (state->config->force_cband_input) {	/* Use the CBAND input for all band */ | 
 | 					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF | 
 | 							|| state->current_band & BAND_UHF) { | 
 | 						state->current_band = BAND_CBAND; | 
 | 						tune = dib0090_tuning_table_cband_7090; | 
 | 					} | 
 | 				} else {	/* Use the CBAND input for all band under UHF */ | 
 | 					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) { | 
 | 						state->current_band = BAND_CBAND; | 
 | 						tune = dib0090_tuning_table_cband_7090; | 
 | 					} | 
 | 				} | 
 | 			} else | 
 | 			 if (tmp == 0x4 || tmp == 0x7) { | 
 | 				/* CBAND tuner version for VHF */ | 
 | 				if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) { | 
 | 					state->current_band = BAND_CBAND;	/* Force CBAND */ | 
 |  | 
 | 					tune = dib0090_tuning_table_fm_vhf_on_cband; | 
 | 					if (state->identity.p1g) | 
 | 						tune = dib0090_p1g_tuning_table_fm_vhf_on_cband; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			pll = dib0090_pll_table; | 
 | 			if (state->identity.p1g) | 
 | 				pll = dib0090_p1g_pll_table; | 
 |  | 
 | 			/* Look for the interval */ | 
 | 			while (state->rf_request > tune->max_freq) | 
 | 				tune++; | 
 | 			while (state->rf_request > pll->max_freq) | 
 | 				pll++; | 
 |  | 
 | 			state->current_tune_table_index = tune; | 
 | 			state->current_pll_table_index = pll; | 
 |  | 
 | 			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); | 
 |  | 
 | 			VCOF_kHz = (pll->hfdiv * state->rf_request) * 2; | 
 |  | 
 | 			FREF = state->config->io.clock_khz; | 
 | 			if (state->config->fref_clock_ratio != 0) | 
 | 				FREF /= state->config->fref_clock_ratio; | 
 |  | 
 | 			FBDiv = (VCOF_kHz / pll->topresc / FREF); | 
 | 			Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; | 
 |  | 
 | 			if (Rest < LPF) | 
 | 				Rest = 0; | 
 | 			else if (Rest < 2 * LPF) | 
 | 				Rest = 2 * LPF; | 
 | 			else if (Rest > (FREF - LPF)) { | 
 | 				Rest = 0; | 
 | 				FBDiv += 1; | 
 | 			} else if (Rest > (FREF - 2 * LPF)) | 
 | 				Rest = FREF - 2 * LPF; | 
 | 			Rest = (Rest * 6528) / (FREF / 10); | 
 | 			state->rest = Rest; | 
 |  | 
 | 			/* external loop filter, otherwise: | 
 | 			 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; | 
 | 			 * lo6 = 0x0e34 */ | 
 |  | 
 | 			if (Rest == 0) { | 
 | 				if (pll->vco_band) | 
 | 					lo5 = 0x049f; | 
 | 				else | 
 | 					lo5 = 0x041f; | 
 | 			} else { | 
 | 				if (pll->vco_band) | 
 | 					lo5 = 0x049e; | 
 | 				else if (state->config->analog_output) | 
 | 					lo5 = 0x041d; | 
 | 				else | 
 | 					lo5 = 0x041c; | 
 | 			} | 
 |  | 
 | 			if (state->identity.p1g) {	/* Bias is done automatically in P1G */ | 
 | 				if (state->identity.in_soc) { | 
 | 					if (state->identity.version == SOC_8090_P1G_11R1) | 
 | 						lo5 = 0x46f; | 
 | 					else | 
 | 						lo5 = 0x42f; | 
 | 				} else | 
 | 					lo5 = 0x42c; | 
 | 			} | 
 |  | 
 | 			lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);	/* bit 15 is the split to the slave, we do not do it here */ | 
 |  | 
 | 			if (!state->config->io.pll_int_loop_filt) { | 
 | 				if (state->identity.in_soc) | 
 | 					lo6 = 0xff98; | 
 | 				else if (state->identity.p1g || (Rest == 0)) | 
 | 					lo6 = 0xfff8; | 
 | 				else | 
 | 					lo6 = 0xff28; | 
 | 			} else | 
 | 				lo6 = (state->config->io.pll_int_loop_filt << 3); | 
 |  | 
 | 			Den = 1; | 
 |  | 
 | 			if (Rest > 0) { | 
 | 				if (state->config->analog_output) | 
 | 					lo6 |= (1 << 2) | 2; | 
 | 				else { | 
 | 					if (state->identity.in_soc) | 
 | 						lo6 |= (1 << 2) | 2; | 
 | 					else | 
 | 						lo6 |= (1 << 2) | 2; | 
 | 				} | 
 | 				Den = 255; | 
 | 			} | 
 | 			dib0090_write_reg(state, 0x15, (u16) FBDiv); | 
 | 			if (state->config->fref_clock_ratio != 0) | 
 | 				dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio); | 
 | 			else | 
 | 				dib0090_write_reg(state, 0x16, (Den << 8) | 1); | 
 | 			dib0090_write_reg(state, 0x17, (u16) Rest); | 
 | 			dib0090_write_reg(state, 0x19, lo5); | 
 | 			dib0090_write_reg(state, 0x1c, lo6); | 
 |  | 
 | 			lo6 = tune->tuner_enable; | 
 | 			if (state->config->analog_output) | 
 | 				lo6 = (lo6 & 0xff9f) | 0x2; | 
 |  | 
 | 			dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL); | 
 |  | 
 | 		} | 
 |  | 
 | 		state->current_rf = state->rf_request; | 
 | 		state->current_standard = state->fe->dtv_property_cache.delivery_system; | 
 |  | 
 | 		ret = 20; | 
 | 		state->calibrate = CAPTRIM_CAL;	/* captrim serach now */ | 
 | 	} | 
 |  | 
 | 	else if (*tune_state == CT_TUNER_STEP_0) {	/* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */ | 
 | 		const struct dib0090_wbd_slope *wbd = state->current_wbd_table; | 
 |  | 
 | 		while (state->current_rf / 1000 > wbd->max_freq) | 
 | 			wbd++; | 
 |  | 
 | 		dib0090_write_reg(state, 0x1e, 0x07ff); | 
 | 		dprintk("Final Captrim: %d", (u32) state->fcaptrim); | 
 | 		dprintk("HFDIV code: %d", (u32) pll->hfdiv_code); | 
 | 		dprintk("VCO = %d", (u32) pll->vco_band); | 
 | 		dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request); | 
 | 		dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz); | 
 | 		dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); | 
 | 		dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8), | 
 | 			(u32) dib0090_read_reg(state, 0x1c) & 0x3); | 
 |  | 
 | #define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */ | 
 | 		c = 4; | 
 | 		i = 3; | 
 |  | 
 | 		if (wbd->wbd_gain != 0) | 
 | 			c = wbd->wbd_gain; | 
 |  | 
 | 		state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1)); | 
 | 		dib0090_write_reg(state, 0x10, state->wbdmux); | 
 |  | 
 | 		if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) { | 
 | 			dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune); | 
 | 			dib0090_write_reg(state, 0x09, tune->lna_bias); | 
 | 			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim)); | 
 | 		} else | 
 | 			dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias); | 
 |  | 
 | 		dib0090_write_reg(state, 0x0c, tune->v2i); | 
 | 		dib0090_write_reg(state, 0x0d, tune->mix); | 
 | 		dib0090_write_reg(state, 0x0e, tune->load); | 
 | 		*tune_state = CT_TUNER_STEP_1; | 
 |  | 
 | 	} else if (*tune_state == CT_TUNER_STEP_1) { | 
 | 		/* initialize the lt gain register */ | 
 | 		state->rf_lt_def = 0x7c00; | 
 |  | 
 | 		dib0090_set_bandwidth(state); | 
 | 		state->tuner_is_tuned = 1; | 
 |  | 
 | 		state->calibrate |= WBD_CAL; | 
 | 		state->calibrate |= TEMP_CAL; | 
 | 		*tune_state = CT_TUNER_STOP; | 
 | 	} else | 
 | 		ret = FE_CALLBACK_TIME_NEVER; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dib0090_release(struct dvb_frontend *fe) | 
 | { | 
 | 	kfree(fe->tuner_priv); | 
 | 	fe->tuner_priv = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 |  | 
 | 	return state->tune_state; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_get_tune_state); | 
 |  | 
 | int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 |  | 
 | 	state->tune_state = tune_state; | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_set_tune_state); | 
 |  | 
 | static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 |  | 
 | 	*frequency = 1000 * state->current_rf; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) | 
 | { | 
 | 	struct dib0090_state *state = fe->tuner_priv; | 
 | 	u32 ret; | 
 |  | 
 | 	state->tune_state = CT_TUNER_START; | 
 |  | 
 | 	do { | 
 | 		ret = dib0090_tune(fe); | 
 | 		if (ret != FE_CALLBACK_TIME_NEVER) | 
 | 			msleep(ret / 10); | 
 | 		else | 
 | 			break; | 
 | 	} while (state->tune_state != CT_TUNER_STOP); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct dvb_tuner_ops dib0090_ops = { | 
 | 	.info = { | 
 | 		 .name = "DiBcom DiB0090", | 
 | 		 .frequency_min = 45000000, | 
 | 		 .frequency_max = 860000000, | 
 | 		 .frequency_step = 1000, | 
 | 		 }, | 
 | 	.release = dib0090_release, | 
 |  | 
 | 	.init = dib0090_wakeup, | 
 | 	.sleep = dib0090_sleep, | 
 | 	.set_params = dib0090_set_params, | 
 | 	.get_frequency = dib0090_get_frequency, | 
 | }; | 
 |  | 
 | static const struct dvb_tuner_ops dib0090_fw_ops = { | 
 | 	.info = { | 
 | 		 .name = "DiBcom DiB0090", | 
 | 		 .frequency_min = 45000000, | 
 | 		 .frequency_max = 860000000, | 
 | 		 .frequency_step = 1000, | 
 | 		 }, | 
 | 	.release = dib0090_release, | 
 |  | 
 | 	.init = NULL, | 
 | 	.sleep = NULL, | 
 | 	.set_params = NULL, | 
 | 	.get_frequency = NULL, | 
 | }; | 
 |  | 
 | static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = { | 
 | 	{470, 0, 250, 0, 100, 4}, | 
 | 	{860, 51, 866, 21, 375, 4}, | 
 | 	{1700, 0, 800, 0, 850, 4}, | 
 | 	{2900, 0, 250, 0, 100, 6}, | 
 | 	{0xFFFF, 0, 0, 0, 0, 0}, | 
 | }; | 
 |  | 
 | struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) | 
 | { | 
 | 	struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); | 
 | 	if (st == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	st->config = config; | 
 | 	st->i2c = i2c; | 
 | 	st->fe = fe; | 
 | 	fe->tuner_priv = st; | 
 |  | 
 | 	if (config->wbd == NULL) | 
 | 		st->current_wbd_table = dib0090_wbd_table_default; | 
 | 	else | 
 | 		st->current_wbd_table = config->wbd; | 
 |  | 
 | 	if (dib0090_reset(fe) != 0) | 
 | 		goto free_mem; | 
 |  | 
 | 	printk(KERN_INFO "DiB0090: successfully identified\n"); | 
 | 	memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); | 
 |  | 
 | 	return fe; | 
 |  free_mem: | 
 | 	kfree(st); | 
 | 	fe->tuner_priv = NULL; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(dib0090_register); | 
 |  | 
 | struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) | 
 | { | 
 | 	struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL); | 
 | 	if (st == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	st->config = config; | 
 | 	st->i2c = i2c; | 
 | 	st->fe = fe; | 
 | 	fe->tuner_priv = st; | 
 |  | 
 | 	if (dib0090_fw_reset_digital(fe, st->config) != 0) | 
 | 		goto free_mem; | 
 |  | 
 | 	dprintk("DiB0090 FW: successfully identified"); | 
 | 	memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops)); | 
 |  | 
 | 	return fe; | 
 | free_mem: | 
 | 	kfree(st); | 
 | 	fe->tuner_priv = NULL; | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dib0090_fw_register); | 
 |  | 
 | MODULE_AUTHOR("Patrick Boettcher <[email protected]>"); | 
 | MODULE_AUTHOR("Olivier Grenie <[email protected]>"); | 
 | MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); | 
 | MODULE_LICENSE("GPL"); |