|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  |  | 
|  | #include "mtd_test.h" | 
|  |  | 
|  | /* | 
|  | * Test the implementation for software ECC | 
|  | * | 
|  | * No actual MTD device is needed, So we don't need to warry about losing | 
|  | * important data by human error. | 
|  | * | 
|  | * This covers possible patterns of corruption which can be reliably corrected | 
|  | * or detected. | 
|  | */ | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_MTD_RAW_NAND) | 
|  |  | 
|  | struct nand_ecc_test { | 
|  | const char *name; | 
|  | void (*prepare)(void *, void *, void *, void *, const size_t); | 
|  | int (*verify)(void *, void *, void *, const size_t); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The reason for this __change_bit_le() instead of __change_bit() is to inject | 
|  | * bit error properly within the region which is not a multiple of | 
|  | * sizeof(unsigned long) on big-endian systems | 
|  | */ | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | #define __change_bit_le(nr, addr) __change_bit(nr, addr) | 
|  | #elif defined(__BIG_ENDIAN) | 
|  | #define __change_bit_le(nr, addr) \ | 
|  | __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr) | 
|  | #else | 
|  | #error "Unknown byte order" | 
|  | #endif | 
|  |  | 
|  | static void single_bit_error_data(void *error_data, void *correct_data, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE); | 
|  |  | 
|  | memcpy(error_data, correct_data, size); | 
|  | __change_bit_le(offset, error_data); | 
|  | } | 
|  |  | 
|  | static void double_bit_error_data(void *error_data, void *correct_data, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int offset[2]; | 
|  |  | 
|  | offset[0] = prandom_u32() % (size * BITS_PER_BYTE); | 
|  | do { | 
|  | offset[1] = prandom_u32() % (size * BITS_PER_BYTE); | 
|  | } while (offset[0] == offset[1]); | 
|  |  | 
|  | memcpy(error_data, correct_data, size); | 
|  |  | 
|  | __change_bit_le(offset[0], error_data); | 
|  | __change_bit_le(offset[1], error_data); | 
|  | } | 
|  |  | 
|  | static unsigned int random_ecc_bit(size_t size) | 
|  | { | 
|  | unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE); | 
|  |  | 
|  | if (size == 256) { | 
|  | /* | 
|  | * Don't inject a bit error into the insignificant bits (16th | 
|  | * and 17th bit) in ECC code for 256 byte data block | 
|  | */ | 
|  | while (offset == 16 || offset == 17) | 
|  | offset = prandom_u32() % (3 * BITS_PER_BYTE); | 
|  | } | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static void single_bit_error_ecc(void *error_ecc, void *correct_ecc, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int offset = random_ecc_bit(size); | 
|  |  | 
|  | memcpy(error_ecc, correct_ecc, 3); | 
|  | __change_bit_le(offset, error_ecc); | 
|  | } | 
|  |  | 
|  | static void double_bit_error_ecc(void *error_ecc, void *correct_ecc, | 
|  | size_t size) | 
|  | { | 
|  | unsigned int offset[2]; | 
|  |  | 
|  | offset[0] = random_ecc_bit(size); | 
|  | do { | 
|  | offset[1] = random_ecc_bit(size); | 
|  | } while (offset[0] == offset[1]); | 
|  |  | 
|  | memcpy(error_ecc, correct_ecc, 3); | 
|  | __change_bit_le(offset[0], error_ecc); | 
|  | __change_bit_le(offset[1], error_ecc); | 
|  | } | 
|  |  | 
|  | static void no_bit_error(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | memcpy(error_data, correct_data, size); | 
|  | memcpy(error_ecc, correct_ecc, 3); | 
|  | } | 
|  |  | 
|  | static int no_bit_error_verify(void *error_data, void *error_ecc, | 
|  | void *correct_data, const size_t size) | 
|  | { | 
|  | unsigned char calc_ecc[3]; | 
|  | int ret; | 
|  |  | 
|  | __nand_calculate_ecc(error_data, size, calc_ecc, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  | if (ret == 0 && !memcmp(correct_data, error_data, size)) | 
|  | return 0; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void single_bit_error_in_data(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | single_bit_error_data(error_data, correct_data, size); | 
|  | memcpy(error_ecc, correct_ecc, 3); | 
|  | } | 
|  |  | 
|  | static void single_bit_error_in_ecc(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | memcpy(error_data, correct_data, size); | 
|  | single_bit_error_ecc(error_ecc, correct_ecc, size); | 
|  | } | 
|  |  | 
|  | static int single_bit_error_correct(void *error_data, void *error_ecc, | 
|  | void *correct_data, const size_t size) | 
|  | { | 
|  | unsigned char calc_ecc[3]; | 
|  | int ret; | 
|  |  | 
|  | __nand_calculate_ecc(error_data, size, calc_ecc, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  | if (ret == 1 && !memcmp(correct_data, error_data, size)) | 
|  | return 0; | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void double_bit_error_in_data(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | double_bit_error_data(error_data, correct_data, size); | 
|  | memcpy(error_ecc, correct_ecc, 3); | 
|  | } | 
|  |  | 
|  | static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | single_bit_error_data(error_data, correct_data, size); | 
|  | single_bit_error_ecc(error_ecc, correct_ecc, size); | 
|  | } | 
|  |  | 
|  | static void double_bit_error_in_ecc(void *error_data, void *error_ecc, | 
|  | void *correct_data, void *correct_ecc, const size_t size) | 
|  | { | 
|  | memcpy(error_data, correct_data, size); | 
|  | double_bit_error_ecc(error_ecc, correct_ecc, size); | 
|  | } | 
|  |  | 
|  | static int double_bit_error_detect(void *error_data, void *error_ecc, | 
|  | void *correct_data, const size_t size) | 
|  | { | 
|  | unsigned char calc_ecc[3]; | 
|  | int ret; | 
|  |  | 
|  | __nand_calculate_ecc(error_data, size, calc_ecc, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  | ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  |  | 
|  | return (ret == -EBADMSG) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | static const struct nand_ecc_test nand_ecc_test[] = { | 
|  | { | 
|  | .name = "no-bit-error", | 
|  | .prepare = no_bit_error, | 
|  | .verify = no_bit_error_verify, | 
|  | }, | 
|  | { | 
|  | .name = "single-bit-error-in-data-correct", | 
|  | .prepare = single_bit_error_in_data, | 
|  | .verify = single_bit_error_correct, | 
|  | }, | 
|  | { | 
|  | .name = "single-bit-error-in-ecc-correct", | 
|  | .prepare = single_bit_error_in_ecc, | 
|  | .verify = single_bit_error_correct, | 
|  | }, | 
|  | { | 
|  | .name = "double-bit-error-in-data-detect", | 
|  | .prepare = double_bit_error_in_data, | 
|  | .verify = double_bit_error_detect, | 
|  | }, | 
|  | { | 
|  | .name = "single-bit-error-in-data-and-ecc-detect", | 
|  | .prepare = single_bit_error_in_data_and_ecc, | 
|  | .verify = double_bit_error_detect, | 
|  | }, | 
|  | { | 
|  | .name = "double-bit-error-in-ecc-detect", | 
|  | .prepare = double_bit_error_in_ecc, | 
|  | .verify = double_bit_error_detect, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data, | 
|  | void *correct_ecc, const size_t size) | 
|  | { | 
|  | pr_info("hexdump of error data:\n"); | 
|  | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, | 
|  | error_data, size, false); | 
|  | print_hex_dump(KERN_INFO, "hexdump of error ecc: ", | 
|  | DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false); | 
|  |  | 
|  | pr_info("hexdump of correct data:\n"); | 
|  | print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, | 
|  | correct_data, size, false); | 
|  | print_hex_dump(KERN_INFO, "hexdump of correct ecc: ", | 
|  | DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false); | 
|  | } | 
|  |  | 
|  | static int nand_ecc_test_run(const size_t size) | 
|  | { | 
|  | int i; | 
|  | int err = 0; | 
|  | void *error_data; | 
|  | void *error_ecc; | 
|  | void *correct_data; | 
|  | void *correct_ecc; | 
|  |  | 
|  | error_data = kmalloc(size, GFP_KERNEL); | 
|  | error_ecc = kmalloc(3, GFP_KERNEL); | 
|  | correct_data = kmalloc(size, GFP_KERNEL); | 
|  | correct_ecc = kmalloc(3, GFP_KERNEL); | 
|  |  | 
|  | if (!error_data || !error_ecc || !correct_data || !correct_ecc) { | 
|  | err = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | prandom_bytes(correct_data, size); | 
|  | __nand_calculate_ecc(correct_data, size, correct_ecc, | 
|  | IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) { | 
|  | nand_ecc_test[i].prepare(error_data, error_ecc, | 
|  | correct_data, correct_ecc, size); | 
|  | err = nand_ecc_test[i].verify(error_data, error_ecc, | 
|  | correct_data, size); | 
|  |  | 
|  | if (err) { | 
|  | pr_err("not ok - %s-%zd\n", | 
|  | nand_ecc_test[i].name, size); | 
|  | dump_data_ecc(error_data, error_ecc, | 
|  | correct_data, correct_ecc, size); | 
|  | break; | 
|  | } | 
|  | pr_info("ok - %s-%zd\n", | 
|  | nand_ecc_test[i].name, size); | 
|  |  | 
|  | err = mtdtest_relax(); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | error: | 
|  | kfree(error_data); | 
|  | kfree(error_ecc); | 
|  | kfree(correct_data); | 
|  | kfree(correct_ecc); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int nand_ecc_test_run(const size_t size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int __init ecc_test_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = nand_ecc_test_run(256); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return nand_ecc_test_run(512); | 
|  | } | 
|  |  | 
|  | static void __exit ecc_test_exit(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | module_init(ecc_test_init); | 
|  | module_exit(ecc_test_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("NAND ECC function test module"); | 
|  | MODULE_AUTHOR("Akinobu Mita"); | 
|  | MODULE_LICENSE("GPL"); |