|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright © 2001-2007 Red Hat, Inc. | 
|  | * | 
|  | * Created by David Woodhouse <[email protected]> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/stat.h> | 
|  | #include "nodelist.h" | 
|  | #include "compr.h" | 
|  |  | 
|  | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, | 
|  | struct jffs2_inode_cache *ic, | 
|  | struct jffs2_raw_node_ref *raw); | 
|  | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); | 
|  | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); | 
|  | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); | 
|  | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | uint32_t start, uint32_t end); | 
|  | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | uint32_t start, uint32_t end); | 
|  | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); | 
|  |  | 
|  | /* Called with erase_completion_lock held */ | 
|  | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_eraseblock *ret; | 
|  | struct list_head *nextlist = NULL; | 
|  | int n = jiffies % 128; | 
|  |  | 
|  | /* Pick an eraseblock to garbage collect next. This is where we'll | 
|  | put the clever wear-levelling algorithms. Eventually.  */ | 
|  | /* We possibly want to favour the dirtier blocks more when the | 
|  | number of free blocks is low. */ | 
|  | again: | 
|  | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { | 
|  | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); | 
|  | nextlist = &c->bad_used_list; | 
|  | } else if (n < 50 && !list_empty(&c->erasable_list)) { | 
|  | /* Note that most of them will have gone directly to be erased. | 
|  | So don't favour the erasable_list _too_ much. */ | 
|  | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); | 
|  | nextlist = &c->erasable_list; | 
|  | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { | 
|  | /* Most of the time, pick one off the very_dirty list */ | 
|  | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); | 
|  | nextlist = &c->very_dirty_list; | 
|  | } else if (n < 126 && !list_empty(&c->dirty_list)) { | 
|  | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); | 
|  | nextlist = &c->dirty_list; | 
|  | } else if (!list_empty(&c->clean_list)) { | 
|  | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); | 
|  | nextlist = &c->clean_list; | 
|  | } else if (!list_empty(&c->dirty_list)) { | 
|  | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); | 
|  |  | 
|  | nextlist = &c->dirty_list; | 
|  | } else if (!list_empty(&c->very_dirty_list)) { | 
|  | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); | 
|  | nextlist = &c->very_dirty_list; | 
|  | } else if (!list_empty(&c->erasable_list)) { | 
|  | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); | 
|  |  | 
|  | nextlist = &c->erasable_list; | 
|  | } else if (!list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | /* There are blocks are wating for the wbuf sync */ | 
|  | D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | goto again; | 
|  | } else { | 
|  | /* Eep. All were empty */ | 
|  | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); | 
|  | list_del(&ret->list); | 
|  | c->gcblock = ret; | 
|  | ret->gc_node = ret->first_node; | 
|  | if (!ret->gc_node) { | 
|  | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Have we accidentally picked a clean block with wasted space ? */ | 
|  | if (ret->wasted_size) { | 
|  | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); | 
|  | ret->dirty_size += ret->wasted_size; | 
|  | c->wasted_size -= ret->wasted_size; | 
|  | c->dirty_size += ret->wasted_size; | 
|  | ret->wasted_size = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* jffs2_garbage_collect_pass | 
|  | * Make a single attempt to progress GC. Move one node, and possibly | 
|  | * start erasing one eraseblock. | 
|  | */ | 
|  | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) | 
|  | { | 
|  | struct jffs2_inode_info *f; | 
|  | struct jffs2_inode_cache *ic; | 
|  | struct jffs2_eraseblock *jeb; | 
|  | struct jffs2_raw_node_ref *raw; | 
|  | uint32_t gcblock_dirty; | 
|  | int ret = 0, inum, nlink; | 
|  | int xattr = 0; | 
|  |  | 
|  | if (mutex_lock_interruptible(&c->alloc_sem)) | 
|  | return -EINTR; | 
|  |  | 
|  | for (;;) { | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | if (!c->unchecked_size) | 
|  | break; | 
|  |  | 
|  | /* We can't start doing GC yet. We haven't finished checking | 
|  | the node CRCs etc. Do it now. */ | 
|  |  | 
|  | /* checked_ino is protected by the alloc_sem */ | 
|  | if (c->checked_ino > c->highest_ino && xattr) { | 
|  | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", | 
|  | c->unchecked_size); | 
|  | jffs2_dbg_dump_block_lists_nolock(c); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | if (!xattr) | 
|  | xattr = jffs2_verify_xattr(c); | 
|  |  | 
|  | spin_lock(&c->inocache_lock); | 
|  |  | 
|  | ic = jffs2_get_ino_cache(c, c->checked_ino++); | 
|  |  | 
|  | if (!ic) { | 
|  | spin_unlock(&c->inocache_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!ic->pino_nlink) { | 
|  | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink/pino zero\n", | 
|  | ic->ino)); | 
|  | spin_unlock(&c->inocache_lock); | 
|  | jffs2_xattr_delete_inode(c, ic); | 
|  | continue; | 
|  | } | 
|  | switch(ic->state) { | 
|  | case INO_STATE_CHECKEDABSENT: | 
|  | case INO_STATE_PRESENT: | 
|  | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); | 
|  | spin_unlock(&c->inocache_lock); | 
|  | continue; | 
|  |  | 
|  | case INO_STATE_GC: | 
|  | case INO_STATE_CHECKING: | 
|  | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); | 
|  | spin_unlock(&c->inocache_lock); | 
|  | BUG(); | 
|  |  | 
|  | case INO_STATE_READING: | 
|  | /* We need to wait for it to finish, lest we move on | 
|  | and trigger the BUG() above while we haven't yet | 
|  | finished checking all its nodes */ | 
|  | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); | 
|  | /* We need to come back again for the _same_ inode. We've | 
|  | made no progress in this case, but that should be OK */ | 
|  | c->checked_ino--; | 
|  |  | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  |  | 
|  | case INO_STATE_UNCHECKED: | 
|  | ; | 
|  | } | 
|  | ic->state = INO_STATE_CHECKING; | 
|  | spin_unlock(&c->inocache_lock); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); | 
|  |  | 
|  | ret = jffs2_do_crccheck_inode(c, ic); | 
|  | if (ret) | 
|  | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); | 
|  |  | 
|  | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* First, work out which block we're garbage-collecting */ | 
|  | jeb = c->gcblock; | 
|  |  | 
|  | if (!jeb) | 
|  | jeb = jffs2_find_gc_block(c); | 
|  |  | 
|  | if (!jeb) { | 
|  | /* Couldn't find a free block. But maybe we can just erase one and make 'progress'? */ | 
|  | if (!list_empty(&c->erase_pending_list)) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return -EAGAIN; | 
|  | } | 
|  | D1(printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); | 
|  | D1(if (c->nextblock) | 
|  | printk(KERN_DEBUG "Nextblock at  %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); | 
|  |  | 
|  | if (!jeb->used_size) { | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | goto eraseit; | 
|  | } | 
|  |  | 
|  | raw = jeb->gc_node; | 
|  | gcblock_dirty = jeb->dirty_size; | 
|  |  | 
|  | while(ref_obsolete(raw)) { | 
|  | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); | 
|  | raw = ref_next(raw); | 
|  | if (unlikely(!raw)) { | 
|  | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); | 
|  | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); | 
|  | jeb->gc_node = raw; | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | jeb->gc_node = raw; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); | 
|  |  | 
|  | if (!raw->next_in_ino) { | 
|  | /* Inode-less node. Clean marker, snapshot or something like that */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | if (ref_flags(raw) == REF_PRISTINE) { | 
|  | /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */ | 
|  | jffs2_garbage_collect_pristine(c, NULL, raw); | 
|  | } else { | 
|  | /* Just mark it obsolete */ | 
|  | jffs2_mark_node_obsolete(c, raw); | 
|  | } | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | goto eraseit_lock; | 
|  | } | 
|  |  | 
|  | ic = jffs2_raw_ref_to_ic(raw); | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_FS_XATTR | 
|  | /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr. | 
|  | * We can decide whether this node is inode or xattr by ic->class.     */ | 
|  | if (ic->class == RAWNODE_CLASS_XATTR_DATUM | 
|  | || ic->class == RAWNODE_CLASS_XATTR_REF) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | if (ic->class == RAWNODE_CLASS_XATTR_DATUM) { | 
|  | ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw); | 
|  | } else { | 
|  | ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw); | 
|  | } | 
|  | goto test_gcnode; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* We need to hold the inocache. Either the erase_completion_lock or | 
|  | the inocache_lock are sufficient; we trade down since the inocache_lock | 
|  | causes less contention. */ | 
|  | spin_lock(&c->inocache_lock); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); | 
|  |  | 
|  | /* Three possibilities: | 
|  | 1. Inode is already in-core. We must iget it and do proper | 
|  | updating to its fragtree, etc. | 
|  | 2. Inode is not in-core, node is REF_PRISTINE. We lock the | 
|  | inocache to prevent a read_inode(), copy the node intact. | 
|  | 3. Inode is not in-core, node is not pristine. We must iget() | 
|  | and take the slow path. | 
|  | */ | 
|  |  | 
|  | switch(ic->state) { | 
|  | case INO_STATE_CHECKEDABSENT: | 
|  | /* It's been checked, but it's not currently in-core. | 
|  | We can just copy any pristine nodes, but have | 
|  | to prevent anyone else from doing read_inode() while | 
|  | we're at it, so we set the state accordingly */ | 
|  | if (ref_flags(raw) == REF_PRISTINE) | 
|  | ic->state = INO_STATE_GC; | 
|  | else { | 
|  | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", | 
|  | ic->ino)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case INO_STATE_PRESENT: | 
|  | /* It's in-core. GC must iget() it. */ | 
|  | break; | 
|  |  | 
|  | case INO_STATE_UNCHECKED: | 
|  | case INO_STATE_CHECKING: | 
|  | case INO_STATE_GC: | 
|  | /* Should never happen. We should have finished checking | 
|  | by the time we actually start doing any GC, and since | 
|  | we're holding the alloc_sem, no other garbage collection | 
|  | can happen. | 
|  | */ | 
|  | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", | 
|  | ic->ino, ic->state); | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | spin_unlock(&c->inocache_lock); | 
|  | BUG(); | 
|  |  | 
|  | case INO_STATE_READING: | 
|  | /* Someone's currently trying to read it. We must wait for | 
|  | them to finish and then go through the full iget() route | 
|  | to do the GC. However, sometimes read_inode() needs to get | 
|  | the alloc_sem() (for marking nodes invalid) so we must | 
|  | drop the alloc_sem before sleeping. */ | 
|  |  | 
|  | mutex_unlock(&c->alloc_sem); | 
|  | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", | 
|  | ic->ino, ic->state)); | 
|  | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
|  | /* And because we dropped the alloc_sem we must start again from the | 
|  | beginning. Ponder chance of livelock here -- we're returning success | 
|  | without actually making any progress. | 
|  |  | 
|  | Q: What are the chances that the inode is back in INO_STATE_READING | 
|  | again by the time we next enter this function? And that this happens | 
|  | enough times to cause a real delay? | 
|  |  | 
|  | A: Small enough that I don't care :) | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the | 
|  | node intact, and we don't have to muck about with the fragtree etc. | 
|  | because we know it's not in-core. If it _was_ in-core, we go through | 
|  | all the iget() crap anyway */ | 
|  |  | 
|  | if (ic->state == INO_STATE_GC) { | 
|  | spin_unlock(&c->inocache_lock); | 
|  |  | 
|  | ret = jffs2_garbage_collect_pristine(c, ic, raw); | 
|  |  | 
|  | spin_lock(&c->inocache_lock); | 
|  | ic->state = INO_STATE_CHECKEDABSENT; | 
|  | wake_up(&c->inocache_wq); | 
|  |  | 
|  | if (ret != -EBADFD) { | 
|  | spin_unlock(&c->inocache_lock); | 
|  | goto test_gcnode; | 
|  | } | 
|  |  | 
|  | /* Fall through if it wanted us to, with inocache_lock held */ | 
|  | } | 
|  |  | 
|  | /* Prevent the fairly unlikely race where the gcblock is | 
|  | entirely obsoleted by the final close of a file which had | 
|  | the only valid nodes in the block, followed by erasure, | 
|  | followed by freeing of the ic because the erased block(s) | 
|  | held _all_ the nodes of that inode.... never been seen but | 
|  | it's vaguely possible. */ | 
|  |  | 
|  | inum = ic->ino; | 
|  | nlink = ic->pino_nlink; | 
|  | spin_unlock(&c->inocache_lock); | 
|  |  | 
|  | f = jffs2_gc_fetch_inode(c, inum, !nlink); | 
|  | if (IS_ERR(f)) { | 
|  | ret = PTR_ERR(f); | 
|  | goto release_sem; | 
|  | } | 
|  | if (!f) { | 
|  | ret = 0; | 
|  | goto release_sem; | 
|  | } | 
|  |  | 
|  | ret = jffs2_garbage_collect_live(c, jeb, raw, f); | 
|  |  | 
|  | jffs2_gc_release_inode(c, f); | 
|  |  | 
|  | test_gcnode: | 
|  | if (jeb->dirty_size == gcblock_dirty && !ref_obsolete(jeb->gc_node)) { | 
|  | /* Eep. This really should never happen. GC is broken */ | 
|  | printk(KERN_ERR "Error garbage collecting node at %08x!\n", ref_offset(jeb->gc_node)); | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | release_sem: | 
|  | mutex_unlock(&c->alloc_sem); | 
|  |  | 
|  | eraseit_lock: | 
|  | /* If we've finished this block, start it erasing */ | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | eraseit: | 
|  | if (c->gcblock && !c->gcblock->used_size) { | 
|  | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); | 
|  | /* We're GC'ing an empty block? */ | 
|  | list_add_tail(&c->gcblock->list, &c->erase_pending_list); | 
|  | c->gcblock = NULL; | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c,  struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) | 
|  | { | 
|  | struct jffs2_node_frag *frag; | 
|  | struct jffs2_full_dnode *fn = NULL; | 
|  | struct jffs2_full_dirent *fd; | 
|  | uint32_t start = 0, end = 0, nrfrags = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&f->sem); | 
|  |  | 
|  | /* Now we have the lock for this inode. Check that it's still the one at the head | 
|  | of the list. */ | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | if (c->gcblock != jeb) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); | 
|  | goto upnout; | 
|  | } | 
|  | if (ref_obsolete(raw)) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); | 
|  | /* They'll call again */ | 
|  | goto upnout; | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ | 
|  | if (f->metadata && f->metadata->raw == raw) { | 
|  | fn = f->metadata; | 
|  | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); | 
|  | goto upnout; | 
|  | } | 
|  |  | 
|  | /* FIXME. Read node and do lookup? */ | 
|  | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { | 
|  | if (frag->node && frag->node->raw == raw) { | 
|  | fn = frag->node; | 
|  | end = frag->ofs + frag->size; | 
|  | if (!nrfrags++) | 
|  | start = frag->ofs; | 
|  | if (nrfrags == frag->node->frags) | 
|  | break; /* We've found them all */ | 
|  | } | 
|  | } | 
|  | if (fn) { | 
|  | if (ref_flags(raw) == REF_PRISTINE) { | 
|  | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); | 
|  | if (!ret) { | 
|  | /* Urgh. Return it sensibly. */ | 
|  | frag->node->raw = f->inocache->nodes; | 
|  | } | 
|  | if (ret != -EBADFD) | 
|  | goto upnout; | 
|  | } | 
|  | /* We found a datanode. Do the GC */ | 
|  | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { | 
|  | /* It crosses a page boundary. Therefore, it must be a hole. */ | 
|  | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); | 
|  | } else { | 
|  | /* It could still be a hole. But we GC the page this way anyway */ | 
|  | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); | 
|  | } | 
|  | goto upnout; | 
|  | } | 
|  |  | 
|  | /* Wasn't a dnode. Try dirent */ | 
|  | for (fd = f->dents; fd; fd=fd->next) { | 
|  | if (fd->raw == raw) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (fd && fd->ino) { | 
|  | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); | 
|  | } else if (fd) { | 
|  | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); | 
|  | } else { | 
|  | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", | 
|  | ref_offset(raw), f->inocache->ino); | 
|  | if (ref_obsolete(raw)) { | 
|  | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); | 
|  | } else { | 
|  | jffs2_dbg_dump_node(c, ref_offset(raw)); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | upnout: | 
|  | mutex_unlock(&f->sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, | 
|  | struct jffs2_inode_cache *ic, | 
|  | struct jffs2_raw_node_ref *raw) | 
|  | { | 
|  | union jffs2_node_union *node; | 
|  | size_t retlen; | 
|  | int ret; | 
|  | uint32_t phys_ofs, alloclen; | 
|  | uint32_t crc, rawlen; | 
|  | int retried = 0; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); | 
|  |  | 
|  | alloclen = rawlen = ref_totlen(c, c->gcblock, raw); | 
|  |  | 
|  | /* Ask for a small amount of space (or the totlen if smaller) because we | 
|  | don't want to force wastage of the end of a block if splitting would | 
|  | work. */ | 
|  | if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) | 
|  | alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN; | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen); | 
|  | /* 'rawlen' is not the exact summary size; it is only an upper estimation */ | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (alloclen < rawlen) { | 
|  | /* Doesn't fit untouched. We'll go the old route and split it */ | 
|  | return -EBADFD; | 
|  | } | 
|  |  | 
|  | node = kmalloc(rawlen, GFP_KERNEL); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); | 
|  | if (!ret && retlen != rawlen) | 
|  | ret = -EIO; | 
|  | if (ret) | 
|  | goto out_node; | 
|  |  | 
|  | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); | 
|  | if (je32_to_cpu(node->u.hdr_crc) != crc) { | 
|  | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | switch(je16_to_cpu(node->u.nodetype)) { | 
|  | case JFFS2_NODETYPE_INODE: | 
|  | crc = crc32(0, node, sizeof(node->i)-8); | 
|  | if (je32_to_cpu(node->i.node_crc) != crc) { | 
|  | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (je32_to_cpu(node->i.dsize)) { | 
|  | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); | 
|  | if (je32_to_cpu(node->i.data_crc) != crc) { | 
|  | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case JFFS2_NODETYPE_DIRENT: | 
|  | crc = crc32(0, node, sizeof(node->d)-8); | 
|  | if (je32_to_cpu(node->d.node_crc) != crc) { | 
|  | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (strnlen(node->d.name, node->d.nsize) != node->d.nsize) { | 
|  | printk(KERN_WARNING "Name in dirent node at 0x%08x contains zeroes\n", ref_offset(raw)); | 
|  | goto bail; | 
|  | } | 
|  |  | 
|  | if (node->d.nsize) { | 
|  | crc = crc32(0, node->d.name, node->d.nsize); | 
|  | if (je32_to_cpu(node->d.name_crc) != crc) { | 
|  | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | 
|  | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ | 
|  | if (ic) { | 
|  | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", | 
|  | ref_offset(raw), je16_to_cpu(node->u.nodetype)); | 
|  | goto bail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, all the CRCs are good; this node can just be copied as-is. */ | 
|  | retry: | 
|  | phys_ofs = write_ofs(c); | 
|  |  | 
|  | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); | 
|  |  | 
|  | if (ret || (retlen != rawlen)) { | 
|  | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", | 
|  | rawlen, phys_ofs, ret, retlen); | 
|  | if (retlen) { | 
|  | jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL); | 
|  | } else { | 
|  | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs); | 
|  | } | 
|  | if (!retried) { | 
|  | /* Try to reallocate space and retry */ | 
|  | uint32_t dummy; | 
|  | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; | 
|  |  | 
|  | retried = 1; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check(c,jeb); | 
|  | jffs2_dbg_acct_paranoia_check(c, jeb); | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen); | 
|  | /* this is not the exact summary size of it, | 
|  | it is only an upper estimation */ | 
|  |  | 
|  | if (!ret) { | 
|  | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); | 
|  |  | 
|  | jffs2_dbg_acct_sanity_check(c,jeb); | 
|  | jffs2_dbg_acct_paranoia_check(c, jeb); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | goto out_node; | 
|  | } | 
|  | jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic); | 
|  |  | 
|  | jffs2_mark_node_obsolete(c, raw); | 
|  | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); | 
|  |  | 
|  | out_node: | 
|  | kfree(node); | 
|  | return ret; | 
|  | bail: | 
|  | ret = -EBADFD; | 
|  | goto out_node; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) | 
|  | { | 
|  | struct jffs2_full_dnode *new_fn; | 
|  | struct jffs2_raw_inode ri; | 
|  | struct jffs2_node_frag *last_frag; | 
|  | union jffs2_device_node dev; | 
|  | char *mdata = NULL, mdatalen = 0; | 
|  | uint32_t alloclen, ilen; | 
|  | int ret; | 
|  |  | 
|  | if (S_ISBLK(JFFS2_F_I_MODE(f)) || | 
|  | S_ISCHR(JFFS2_F_I_MODE(f)) ) { | 
|  | /* For these, we don't actually need to read the old node */ | 
|  | mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); | 
|  | mdata = (char *)&dev; | 
|  | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); | 
|  | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { | 
|  | mdatalen = fn->size; | 
|  | mdata = kmalloc(fn->size, GFP_KERNEL); | 
|  | if (!mdata) { | 
|  | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); | 
|  | kfree(mdata); | 
|  | return ret; | 
|  | } | 
|  | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); | 
|  |  | 
|  | } | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen, | 
|  | JFFS2_SUMMARY_INODE_SIZE); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", | 
|  | sizeof(ri)+ mdatalen, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | last_frag = frag_last(&f->fragtree); | 
|  | if (last_frag) | 
|  | /* Fetch the inode length from the fragtree rather then | 
|  | * from i_size since i_size may have not been updated yet */ | 
|  | ilen = last_frag->ofs + last_frag->size; | 
|  | else | 
|  | ilen = JFFS2_F_I_SIZE(f); | 
|  |  | 
|  | memset(&ri, 0, sizeof(ri)); | 
|  | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); | 
|  | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  |  | 
|  | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | ri.version = cpu_to_je32(++f->highest_version); | 
|  | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | ri.isize = cpu_to_je32(ilen); | 
|  | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | ri.offset = cpu_to_je32(0); | 
|  | ri.csize = cpu_to_je32(mdatalen); | 
|  | ri.dsize = cpu_to_je32(mdatalen); | 
|  | ri.compr = JFFS2_COMPR_NONE; | 
|  | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); | 
|  |  | 
|  | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC); | 
|  |  | 
|  | if (IS_ERR(new_fn)) { | 
|  | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | 
|  | ret = PTR_ERR(new_fn); | 
|  | goto out; | 
|  | } | 
|  | jffs2_mark_node_obsolete(c, fn->raw); | 
|  | jffs2_free_full_dnode(fn); | 
|  | f->metadata = new_fn; | 
|  | out: | 
|  | if (S_ISLNK(JFFS2_F_I_MODE(f))) | 
|  | kfree(mdata); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) | 
|  | { | 
|  | struct jffs2_full_dirent *new_fd; | 
|  | struct jffs2_raw_dirent rd; | 
|  | uint32_t alloclen; | 
|  | int ret; | 
|  |  | 
|  | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); | 
|  | rd.nsize = strlen(fd->name); | 
|  | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); | 
|  | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); | 
|  |  | 
|  | rd.pino = cpu_to_je32(f->inocache->ino); | 
|  | rd.version = cpu_to_je32(++f->highest_version); | 
|  | rd.ino = cpu_to_je32(fd->ino); | 
|  | /* If the times on this inode were set by explicit utime() they can be different, | 
|  | so refrain from splatting them. */ | 
|  | if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f)) | 
|  | rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | else | 
|  | rd.mctime = cpu_to_je32(0); | 
|  | rd.type = fd->type; | 
|  | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); | 
|  | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen, | 
|  | JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", | 
|  | sizeof(rd)+rd.nsize, ret); | 
|  | return ret; | 
|  | } | 
|  | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC); | 
|  |  | 
|  | if (IS_ERR(new_fd)) { | 
|  | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); | 
|  | return PTR_ERR(new_fd); | 
|  | } | 
|  | jffs2_add_fd_to_list(c, new_fd, &f->dents); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) | 
|  | { | 
|  | struct jffs2_full_dirent **fdp = &f->dents; | 
|  | int found = 0; | 
|  |  | 
|  | /* On a medium where we can't actually mark nodes obsolete | 
|  | pernamently, such as NAND flash, we need to work out | 
|  | whether this deletion dirent is still needed to actively | 
|  | delete a 'real' dirent with the same name that's still | 
|  | somewhere else on the flash. */ | 
|  | if (!jffs2_can_mark_obsolete(c)) { | 
|  | struct jffs2_raw_dirent *rd; | 
|  | struct jffs2_raw_node_ref *raw; | 
|  | int ret; | 
|  | size_t retlen; | 
|  | int name_len = strlen(fd->name); | 
|  | uint32_t name_crc = crc32(0, fd->name, name_len); | 
|  | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); | 
|  |  | 
|  | rd = kmalloc(rawlen, GFP_KERNEL); | 
|  | if (!rd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Prevent the erase code from nicking the obsolete node refs while | 
|  | we're looking at them. I really don't like this extra lock but | 
|  | can't see any alternative. Suggestions on a postcard to... */ | 
|  | mutex_lock(&c->erase_free_sem); | 
|  |  | 
|  | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* We only care about obsolete ones */ | 
|  | if (!(ref_obsolete(raw))) | 
|  | continue; | 
|  |  | 
|  | /* Any dirent with the same name is going to have the same length... */ | 
|  | if (ref_totlen(c, NULL, raw) != rawlen) | 
|  | continue; | 
|  |  | 
|  | /* Doesn't matter if there's one in the same erase block. We're going to | 
|  | delete it too at the same time. */ | 
|  | if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) | 
|  | continue; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); | 
|  |  | 
|  | /* This is an obsolete node belonging to the same directory, and it's of the right | 
|  | length. We need to take a closer look...*/ | 
|  | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); | 
|  | /* If we can't read it, we don't need to continue to obsolete it. Continue */ | 
|  | continue; | 
|  | } | 
|  | if (retlen != rawlen) { | 
|  | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", | 
|  | retlen, rawlen, ref_offset(raw)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) | 
|  | continue; | 
|  |  | 
|  | /* If the name CRC doesn't match, skip */ | 
|  | if (je32_to_cpu(rd->name_crc) != name_crc) | 
|  | continue; | 
|  |  | 
|  | /* If the name length doesn't match, or it's another deletion dirent, skip */ | 
|  | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) | 
|  | continue; | 
|  |  | 
|  | /* OK, check the actual name now */ | 
|  | if (memcmp(rd->name, fd->name, name_len)) | 
|  | continue; | 
|  |  | 
|  | /* OK. The name really does match. There really is still an older node on | 
|  | the flash which our deletion dirent obsoletes. So we have to write out | 
|  | a new deletion dirent to replace it */ | 
|  | mutex_unlock(&c->erase_free_sem); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", | 
|  | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); | 
|  | kfree(rd); | 
|  |  | 
|  | return jffs2_garbage_collect_dirent(c, jeb, f, fd); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&c->erase_free_sem); | 
|  | kfree(rd); | 
|  | } | 
|  |  | 
|  | /* FIXME: If we're deleting a dirent which contains the current mtime and ctime, | 
|  | we should update the metadata node with those times accordingly */ | 
|  |  | 
|  | /* No need for it any more. Just mark it obsolete and remove it from the list */ | 
|  | while (*fdp) { | 
|  | if ((*fdp) == fd) { | 
|  | found = 1; | 
|  | *fdp = fd->next; | 
|  | break; | 
|  | } | 
|  | fdp = &(*fdp)->next; | 
|  | } | 
|  | if (!found) { | 
|  | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); | 
|  | } | 
|  | jffs2_mark_node_obsolete(c, fd->raw); | 
|  | jffs2_free_full_dirent(fd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | uint32_t start, uint32_t end) | 
|  | { | 
|  | struct jffs2_raw_inode ri; | 
|  | struct jffs2_node_frag *frag; | 
|  | struct jffs2_full_dnode *new_fn; | 
|  | uint32_t alloclen, ilen; | 
|  | int ret; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", | 
|  | f->inocache->ino, start, end)); | 
|  |  | 
|  | memset(&ri, 0, sizeof(ri)); | 
|  |  | 
|  | if(fn->frags > 1) { | 
|  | size_t readlen; | 
|  | uint32_t crc; | 
|  | /* It's partially obsoleted by a later write. So we have to | 
|  | write it out again with the _same_ version as before */ | 
|  | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); | 
|  | if (readlen != sizeof(ri) || ret) { | 
|  | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); | 
|  | goto fill; | 
|  | } | 
|  | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", | 
|  | ref_offset(fn->raw), | 
|  | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); | 
|  | return -EIO; | 
|  | } | 
|  | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", | 
|  | ref_offset(fn->raw), | 
|  | je32_to_cpu(ri.totlen), sizeof(ri)); | 
|  | return -EIO; | 
|  | } | 
|  | crc = crc32(0, &ri, sizeof(ri)-8); | 
|  | if (crc != je32_to_cpu(ri.node_crc)) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", | 
|  | ref_offset(fn->raw), | 
|  | je32_to_cpu(ri.node_crc), crc); | 
|  | /* FIXME: We could possibly deal with this by writing new holes for each frag */ | 
|  | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", | 
|  | start, end, f->inocache->ino); | 
|  | goto fill; | 
|  | } | 
|  | if (ri.compr != JFFS2_COMPR_ZERO) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); | 
|  | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", | 
|  | start, end, f->inocache->ino); | 
|  | goto fill; | 
|  | } | 
|  | } else { | 
|  | fill: | 
|  | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | ri.totlen = cpu_to_je32(sizeof(ri)); | 
|  | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  |  | 
|  | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | ri.version = cpu_to_je32(++f->highest_version); | 
|  | ri.offset = cpu_to_je32(start); | 
|  | ri.dsize = cpu_to_je32(end - start); | 
|  | ri.csize = cpu_to_je32(0); | 
|  | ri.compr = JFFS2_COMPR_ZERO; | 
|  | } | 
|  |  | 
|  | frag = frag_last(&f->fragtree); | 
|  | if (frag) | 
|  | /* Fetch the inode length from the fragtree rather then | 
|  | * from i_size since i_size may have not been updated yet */ | 
|  | ilen = frag->ofs + frag->size; | 
|  | else | 
|  | ilen = JFFS2_F_I_SIZE(f); | 
|  |  | 
|  | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | ri.isize = cpu_to_je32(ilen); | 
|  | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | ri.data_crc = cpu_to_je32(0); | 
|  | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen, | 
|  | JFFS2_SUMMARY_INODE_SIZE); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", | 
|  | sizeof(ri), ret); | 
|  | return ret; | 
|  | } | 
|  | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC); | 
|  |  | 
|  | if (IS_ERR(new_fn)) { | 
|  | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); | 
|  | return PTR_ERR(new_fn); | 
|  | } | 
|  | if (je32_to_cpu(ri.version) == f->highest_version) { | 
|  | jffs2_add_full_dnode_to_inode(c, f, new_fn); | 
|  | if (f->metadata) { | 
|  | jffs2_mark_node_obsolete(c, f->metadata->raw); | 
|  | jffs2_free_full_dnode(f->metadata); | 
|  | f->metadata = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We should only get here in the case where the node we are | 
|  | * replacing had more than one frag, so we kept the same version | 
|  | * number as before. (Except in case of error -- see 'goto fill;' | 
|  | * above.) | 
|  | */ | 
|  | D1(if(unlikely(fn->frags <= 1)) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", | 
|  | fn->frags, je32_to_cpu(ri.version), f->highest_version, | 
|  | je32_to_cpu(ri.ino)); | 
|  | }); | 
|  |  | 
|  | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ | 
|  | mark_ref_normal(new_fn->raw); | 
|  |  | 
|  | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); | 
|  | frag; frag = frag_next(frag)) { | 
|  | if (frag->ofs > fn->size + fn->ofs) | 
|  | break; | 
|  | if (frag->node == fn) { | 
|  | frag->node = new_fn; | 
|  | new_fn->frags++; | 
|  | fn->frags--; | 
|  | } | 
|  | } | 
|  | if (fn->frags) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); | 
|  | BUG(); | 
|  | } | 
|  | if (!new_fn->frags) { | 
|  | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | jffs2_mark_node_obsolete(c, fn->raw); | 
|  | jffs2_free_full_dnode(fn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *orig_jeb, | 
|  | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | 
|  | uint32_t start, uint32_t end) | 
|  | { | 
|  | struct jffs2_full_dnode *new_fn; | 
|  | struct jffs2_raw_inode ri; | 
|  | uint32_t alloclen, offset, orig_end, orig_start; | 
|  | int ret = 0; | 
|  | unsigned char *comprbuf = NULL, *writebuf; | 
|  | unsigned long pg; | 
|  | unsigned char *pg_ptr; | 
|  |  | 
|  | memset(&ri, 0, sizeof(ri)); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", | 
|  | f->inocache->ino, start, end)); | 
|  |  | 
|  | orig_end = end; | 
|  | orig_start = start; | 
|  |  | 
|  | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { | 
|  | /* Attempt to do some merging. But only expand to cover logically | 
|  | adjacent frags if the block containing them is already considered | 
|  | to be dirty. Otherwise we end up with GC just going round in | 
|  | circles dirtying the nodes it already wrote out, especially | 
|  | on NAND where we have small eraseblocks and hence a much higher | 
|  | chance of nodes having to be split to cross boundaries. */ | 
|  |  | 
|  | struct jffs2_node_frag *frag; | 
|  | uint32_t min, max; | 
|  |  | 
|  | min = start & ~(PAGE_CACHE_SIZE-1); | 
|  | max = min + PAGE_CACHE_SIZE; | 
|  |  | 
|  | frag = jffs2_lookup_node_frag(&f->fragtree, start); | 
|  |  | 
|  | /* BUG_ON(!frag) but that'll happen anyway... */ | 
|  |  | 
|  | BUG_ON(frag->ofs != start); | 
|  |  | 
|  | /* First grow down... */ | 
|  | while((frag = frag_prev(frag)) && frag->ofs >= min) { | 
|  |  | 
|  | /* If the previous frag doesn't even reach the beginning, there's | 
|  | excessive fragmentation. Just merge. */ | 
|  | if (frag->ofs > min) { | 
|  | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", | 
|  | frag->ofs, frag->ofs+frag->size)); | 
|  | start = frag->ofs; | 
|  | continue; | 
|  | } | 
|  | /* OK. This frag holds the first byte of the page. */ | 
|  | if (!frag->node || !frag->node->raw) { | 
|  | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", | 
|  | frag->ofs, frag->ofs+frag->size)); | 
|  | break; | 
|  | } else { | 
|  |  | 
|  | /* OK, it's a frag which extends to the beginning of the page. Does it live | 
|  | in a block which is still considered clean? If so, don't obsolete it. | 
|  | If not, cover it anyway. */ | 
|  |  | 
|  | struct jffs2_raw_node_ref *raw = frag->node->raw; | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | 
|  |  | 
|  | if (jeb == c->gcblock) { | 
|  | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | 
|  | start = frag->ofs; | 
|  | break; | 
|  | } | 
|  | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | 
|  | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | start = frag->ofs; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ... then up */ | 
|  |  | 
|  | /* Find last frag which is actually part of the node we're to GC. */ | 
|  | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); | 
|  |  | 
|  | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { | 
|  |  | 
|  | /* If the previous frag doesn't even reach the beginning, there's lots | 
|  | of fragmentation. Just merge. */ | 
|  | if (frag->ofs+frag->size < max) { | 
|  | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", | 
|  | frag->ofs, frag->ofs+frag->size)); | 
|  | end = frag->ofs + frag->size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!frag->node || !frag->node->raw) { | 
|  | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", | 
|  | frag->ofs, frag->ofs+frag->size)); | 
|  | break; | 
|  | } else { | 
|  |  | 
|  | /* OK, it's a frag which extends to the beginning of the page. Does it live | 
|  | in a block which is still considered clean? If so, don't obsolete it. | 
|  | If not, cover it anyway. */ | 
|  |  | 
|  | struct jffs2_raw_node_ref *raw = frag->node->raw; | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | 
|  |  | 
|  | if (jeb == c->gcblock) { | 
|  | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | 
|  | end = frag->ofs + frag->size; | 
|  | break; | 
|  | } | 
|  | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | 
|  | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", | 
|  | frag->ofs, frag->ofs+frag->size, jeb->offset)); | 
|  | end = frag->ofs + frag->size; | 
|  | break; | 
|  | } | 
|  | } | 
|  | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", | 
|  | orig_start, orig_end, start, end)); | 
|  |  | 
|  | D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); | 
|  | BUG_ON(end < orig_end); | 
|  | BUG_ON(start > orig_start); | 
|  | } | 
|  |  | 
|  | /* First, use readpage() to read the appropriate page into the page cache */ | 
|  | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() | 
|  | *    triggered garbage collection in the first place? | 
|  | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the | 
|  | *    page OK. We'll actually write it out again in commit_write, which is a little | 
|  | *    suboptimal, but at least we're correct. | 
|  | */ | 
|  | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); | 
|  |  | 
|  | if (IS_ERR(pg_ptr)) { | 
|  | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); | 
|  | return PTR_ERR(pg_ptr); | 
|  | } | 
|  |  | 
|  | offset = start; | 
|  | while(offset < orig_end) { | 
|  | uint32_t datalen; | 
|  | uint32_t cdatalen; | 
|  | uint16_t comprtype = JFFS2_COMPR_NONE; | 
|  |  | 
|  | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, | 
|  | &alloclen, JFFS2_SUMMARY_INODE_SIZE); | 
|  |  | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", | 
|  | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); | 
|  | break; | 
|  | } | 
|  | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); | 
|  | datalen = end - offset; | 
|  |  | 
|  | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); | 
|  |  | 
|  | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); | 
|  |  | 
|  | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | 
|  | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | 
|  | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); | 
|  | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | 
|  |  | 
|  | ri.ino = cpu_to_je32(f->inocache->ino); | 
|  | ri.version = cpu_to_je32(++f->highest_version); | 
|  | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | 
|  | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | 
|  | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | 
|  | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | 
|  | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | 
|  | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | 
|  | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | 
|  | ri.offset = cpu_to_je32(offset); | 
|  | ri.csize = cpu_to_je32(cdatalen); | 
|  | ri.dsize = cpu_to_je32(datalen); | 
|  | ri.compr = comprtype & 0xff; | 
|  | ri.usercompr = (comprtype >> 8) & 0xff; | 
|  | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | 
|  | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); | 
|  |  | 
|  | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC); | 
|  |  | 
|  | jffs2_free_comprbuf(comprbuf, writebuf); | 
|  |  | 
|  | if (IS_ERR(new_fn)) { | 
|  | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | 
|  | ret = PTR_ERR(new_fn); | 
|  | break; | 
|  | } | 
|  | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); | 
|  | offset += datalen; | 
|  | if (f->metadata) { | 
|  | jffs2_mark_node_obsolete(c, f->metadata->raw); | 
|  | jffs2_free_full_dnode(f->metadata); | 
|  | f->metadata = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | jffs2_gc_release_page(c, pg_ptr, &pg); | 
|  | return ret; | 
|  | } |