|  | /* | 
|  | * mm/rmap.c - physical to virtual reverse mappings | 
|  | * | 
|  | * Copyright 2001, Rik van Riel <[email protected]> | 
|  | * Released under the General Public License (GPL). | 
|  | * | 
|  | * Simple, low overhead reverse mapping scheme. | 
|  | * Please try to keep this thing as modular as possible. | 
|  | * | 
|  | * Provides methods for unmapping each kind of mapped page: | 
|  | * the anon methods track anonymous pages, and | 
|  | * the file methods track pages belonging to an inode. | 
|  | * | 
|  | * Original design by Rik van Riel <[email protected]> 2001 | 
|  | * File methods by Dave McCracken <[email protected]> 2003, 2004 | 
|  | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | 
|  | * Contributions by Hugh Dickins 2003, 2004 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering in mm: | 
|  | * | 
|  | * inode->i_mutex	(while writing or truncating, not reading or faulting) | 
|  | *   mm->mmap_sem | 
|  | *     page->flags PG_locked (lock_page) | 
|  | *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | 
|  | *         mapping->i_mmap_rwsem | 
|  | *           anon_vma->rwsem | 
|  | *             mm->page_table_lock or pte_lock | 
|  | *               zone_lru_lock (in mark_page_accessed, isolate_lru_page) | 
|  | *               swap_lock (in swap_duplicate, swap_info_get) | 
|  | *                 mmlist_lock (in mmput, drain_mmlist and others) | 
|  | *                 mapping->private_lock (in __set_page_dirty_buffers) | 
|  | *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | 
|  | *                     mapping->tree_lock (widely used) | 
|  | *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty) | 
|  | *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | 
|  | *                   sb_lock (within inode_lock in fs/fs-writeback.c) | 
|  | *                   mapping->tree_lock (widely used, in set_page_dirty, | 
|  | *                             in arch-dependent flush_dcache_mmap_lock, | 
|  | *                             within bdi.wb->list_lock in __sync_single_inode) | 
|  | * | 
|  | * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon) | 
|  | *   ->tasklist_lock | 
|  | *     pte map lock | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/memremap.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <trace/events/tlb.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static struct kmem_cache *anon_vma_cachep; | 
|  | static struct kmem_cache *anon_vma_chain_cachep; | 
|  |  | 
|  | static inline struct anon_vma *anon_vma_alloc(void) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 
|  | if (anon_vma) { | 
|  | atomic_set(&anon_vma->refcount, 1); | 
|  | anon_vma->degree = 1;	/* Reference for first vma */ | 
|  | anon_vma->parent = anon_vma; | 
|  | /* | 
|  | * Initialise the anon_vma root to point to itself. If called | 
|  | * from fork, the root will be reset to the parents anon_vma. | 
|  | */ | 
|  | anon_vma->root = anon_vma; | 
|  | } | 
|  |  | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | static inline void anon_vma_free(struct anon_vma *anon_vma) | 
|  | { | 
|  | VM_BUG_ON(atomic_read(&anon_vma->refcount)); | 
|  |  | 
|  | /* | 
|  | * Synchronize against page_lock_anon_vma_read() such that | 
|  | * we can safely hold the lock without the anon_vma getting | 
|  | * freed. | 
|  | * | 
|  | * Relies on the full mb implied by the atomic_dec_and_test() from | 
|  | * put_anon_vma() against the acquire barrier implied by | 
|  | * down_read_trylock() from page_lock_anon_vma_read(). This orders: | 
|  | * | 
|  | * page_lock_anon_vma_read()	VS	put_anon_vma() | 
|  | *   down_read_trylock()		  atomic_dec_and_test() | 
|  | *   LOCK				  MB | 
|  | *   atomic_read()			  rwsem_is_locked() | 
|  | * | 
|  | * LOCK should suffice since the actual taking of the lock must | 
|  | * happen _before_ what follows. | 
|  | */ | 
|  | might_sleep(); | 
|  | if (rwsem_is_locked(&anon_vma->root->rwsem)) { | 
|  | anon_vma_lock_write(anon_vma); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  |  | 
|  | kmem_cache_free(anon_vma_cachep, anon_vma); | 
|  | } | 
|  |  | 
|  | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) | 
|  | { | 
|  | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); | 
|  | } | 
|  |  | 
|  | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 
|  | { | 
|  | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 
|  | } | 
|  |  | 
|  | static void anon_vma_chain_link(struct vm_area_struct *vma, | 
|  | struct anon_vma_chain *avc, | 
|  | struct anon_vma *anon_vma) | 
|  | { | 
|  | avc->vma = vma; | 
|  | avc->anon_vma = anon_vma; | 
|  | list_add(&avc->same_vma, &vma->anon_vma_chain); | 
|  | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __anon_vma_prepare - attach an anon_vma to a memory region | 
|  | * @vma: the memory region in question | 
|  | * | 
|  | * This makes sure the memory mapping described by 'vma' has | 
|  | * an 'anon_vma' attached to it, so that we can associate the | 
|  | * anonymous pages mapped into it with that anon_vma. | 
|  | * | 
|  | * The common case will be that we already have one, which | 
|  | * is handled inline by anon_vma_prepare(). But if | 
|  | * not we either need to find an adjacent mapping that we | 
|  | * can re-use the anon_vma from (very common when the only | 
|  | * reason for splitting a vma has been mprotect()), or we | 
|  | * allocate a new one. | 
|  | * | 
|  | * Anon-vma allocations are very subtle, because we may have | 
|  | * optimistically looked up an anon_vma in page_lock_anon_vma_read() | 
|  | * and that may actually touch the spinlock even in the newly | 
|  | * allocated vma (it depends on RCU to make sure that the | 
|  | * anon_vma isn't actually destroyed). | 
|  | * | 
|  | * As a result, we need to do proper anon_vma locking even | 
|  | * for the new allocation. At the same time, we do not want | 
|  | * to do any locking for the common case of already having | 
|  | * an anon_vma. | 
|  | * | 
|  | * This must be called with the mmap_sem held for reading. | 
|  | */ | 
|  | int __anon_vma_prepare(struct vm_area_struct *vma) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct anon_vma *anon_vma, *allocated; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto out_enomem; | 
|  |  | 
|  | anon_vma = find_mergeable_anon_vma(vma); | 
|  | allocated = NULL; | 
|  | if (!anon_vma) { | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (unlikely(!anon_vma)) | 
|  | goto out_enomem_free_avc; | 
|  | allocated = anon_vma; | 
|  | } | 
|  |  | 
|  | anon_vma_lock_write(anon_vma); | 
|  | /* page_table_lock to protect against threads */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (likely(!vma->anon_vma)) { | 
|  | vma->anon_vma = anon_vma; | 
|  | anon_vma_chain_link(vma, avc, anon_vma); | 
|  | /* vma reference or self-parent link for new root */ | 
|  | anon_vma->degree++; | 
|  | allocated = NULL; | 
|  | avc = NULL; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  |  | 
|  | if (unlikely(allocated)) | 
|  | put_anon_vma(allocated); | 
|  | if (unlikely(avc)) | 
|  | anon_vma_chain_free(avc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_enomem_free_avc: | 
|  | anon_vma_chain_free(avc); | 
|  | out_enomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a useful helper function for locking the anon_vma root as | 
|  | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | 
|  | * have the same vma. | 
|  | * | 
|  | * Such anon_vma's should have the same root, so you'd expect to see | 
|  | * just a single mutex_lock for the whole traversal. | 
|  | */ | 
|  | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | 
|  | { | 
|  | struct anon_vma *new_root = anon_vma->root; | 
|  | if (new_root != root) { | 
|  | if (WARN_ON_ONCE(root)) | 
|  | up_write(&root->rwsem); | 
|  | root = new_root; | 
|  | down_write(&root->rwsem); | 
|  | } | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static inline void unlock_anon_vma_root(struct anon_vma *root) | 
|  | { | 
|  | if (root) | 
|  | up_write(&root->rwsem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the anon_vmas from src to dst. | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | * | 
|  | * If dst->anon_vma is NULL this function tries to find and reuse existing | 
|  | * anon_vma which has no vmas and only one child anon_vma. This prevents | 
|  | * degradation of anon_vma hierarchy to endless linear chain in case of | 
|  | * constantly forking task. On the other hand, an anon_vma with more than one | 
|  | * child isn't reused even if there was no alive vma, thus rmap walker has a | 
|  | * good chance of avoiding scanning the whole hierarchy when it searches where | 
|  | * page is mapped. | 
|  | */ | 
|  | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 
|  | { | 
|  | struct anon_vma_chain *avc, *pavc; | 
|  | struct anon_vma *root = NULL; | 
|  |  | 
|  | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); | 
|  | if (unlikely(!avc)) { | 
|  | unlock_anon_vma_root(root); | 
|  | root = NULL; | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto enomem_failure; | 
|  | } | 
|  | anon_vma = pavc->anon_vma; | 
|  | root = lock_anon_vma_root(root, anon_vma); | 
|  | anon_vma_chain_link(dst, avc, anon_vma); | 
|  |  | 
|  | /* | 
|  | * Reuse existing anon_vma if its degree lower than two, | 
|  | * that means it has no vma and only one anon_vma child. | 
|  | * | 
|  | * Do not chose parent anon_vma, otherwise first child | 
|  | * will always reuse it. Root anon_vma is never reused: | 
|  | * it has self-parent reference and at least one child. | 
|  | */ | 
|  | if (!dst->anon_vma && anon_vma != src->anon_vma && | 
|  | anon_vma->degree < 2) | 
|  | dst->anon_vma = anon_vma; | 
|  | } | 
|  | if (dst->anon_vma) | 
|  | dst->anon_vma->degree++; | 
|  | unlock_anon_vma_root(root); | 
|  | return 0; | 
|  |  | 
|  | enomem_failure: | 
|  | /* | 
|  | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | 
|  | * decremented in unlink_anon_vmas(). | 
|  | * We can safely do this because callers of anon_vma_clone() don't care | 
|  | * about dst->anon_vma if anon_vma_clone() failed. | 
|  | */ | 
|  | dst->anon_vma = NULL; | 
|  | unlink_anon_vmas(dst); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach vma to its own anon_vma, as well as to the anon_vmas that | 
|  | * the corresponding VMA in the parent process is attached to. | 
|  | * Returns 0 on success, non-zero on failure. | 
|  | */ | 
|  | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  | struct anon_vma *anon_vma; | 
|  | int error; | 
|  |  | 
|  | /* Don't bother if the parent process has no anon_vma here. */ | 
|  | if (!pvma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ | 
|  | vma->anon_vma = NULL; | 
|  |  | 
|  | /* | 
|  | * First, attach the new VMA to the parent VMA's anon_vmas, | 
|  | * so rmap can find non-COWed pages in child processes. | 
|  | */ | 
|  | error = anon_vma_clone(vma, pvma); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* An existing anon_vma has been reused, all done then. */ | 
|  | if (vma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | /* Then add our own anon_vma. */ | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (!anon_vma) | 
|  | goto out_error; | 
|  | avc = anon_vma_chain_alloc(GFP_KERNEL); | 
|  | if (!avc) | 
|  | goto out_error_free_anon_vma; | 
|  |  | 
|  | /* | 
|  | * The root anon_vma's spinlock is the lock actually used when we | 
|  | * lock any of the anon_vmas in this anon_vma tree. | 
|  | */ | 
|  | anon_vma->root = pvma->anon_vma->root; | 
|  | anon_vma->parent = pvma->anon_vma; | 
|  | /* | 
|  | * With refcounts, an anon_vma can stay around longer than the | 
|  | * process it belongs to. The root anon_vma needs to be pinned until | 
|  | * this anon_vma is freed, because the lock lives in the root. | 
|  | */ | 
|  | get_anon_vma(anon_vma->root); | 
|  | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 
|  | vma->anon_vma = anon_vma; | 
|  | anon_vma_lock_write(anon_vma); | 
|  | anon_vma_chain_link(vma, avc, anon_vma); | 
|  | anon_vma->parent->degree++; | 
|  | anon_vma_unlock_write(anon_vma); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_error_free_anon_vma: | 
|  | put_anon_vma(anon_vma); | 
|  | out_error: | 
|  | unlink_anon_vmas(vma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void unlink_anon_vmas(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc, *next; | 
|  | struct anon_vma *root = NULL; | 
|  |  | 
|  | /* | 
|  | * Unlink each anon_vma chained to the VMA.  This list is ordered | 
|  | * from newest to oldest, ensuring the root anon_vma gets freed last. | 
|  | */ | 
|  | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma = avc->anon_vma; | 
|  |  | 
|  | root = lock_anon_vma_root(root, anon_vma); | 
|  | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); | 
|  |  | 
|  | /* | 
|  | * Leave empty anon_vmas on the list - we'll need | 
|  | * to free them outside the lock. | 
|  | */ | 
|  | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { | 
|  | anon_vma->parent->degree--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_del(&avc->same_vma); | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | if (vma->anon_vma) | 
|  | vma->anon_vma->degree--; | 
|  | unlock_anon_vma_root(root); | 
|  |  | 
|  | /* | 
|  | * Iterate the list once more, it now only contains empty and unlinked | 
|  | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | 
|  | * needing to write-acquire the anon_vma->root->rwsem. | 
|  | */ | 
|  | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
|  | struct anon_vma *anon_vma = avc->anon_vma; | 
|  |  | 
|  | VM_WARN_ON(anon_vma->degree); | 
|  | put_anon_vma(anon_vma); | 
|  |  | 
|  | list_del(&avc->same_vma); | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void anon_vma_ctor(void *data) | 
|  | { | 
|  | struct anon_vma *anon_vma = data; | 
|  |  | 
|  | init_rwsem(&anon_vma->rwsem); | 
|  | atomic_set(&anon_vma->refcount, 0); | 
|  | anon_vma->rb_root = RB_ROOT_CACHED; | 
|  | } | 
|  |  | 
|  | void __init anon_vma_init(void) | 
|  | { | 
|  | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
|  | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, | 
|  | anon_vma_ctor); | 
|  | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | 
|  | SLAB_PANIC|SLAB_ACCOUNT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! | 
|  | * | 
|  | * Since there is no serialization what so ever against page_remove_rmap() | 
|  | * the best this function can do is return a locked anon_vma that might | 
|  | * have been relevant to this page. | 
|  | * | 
|  | * The page might have been remapped to a different anon_vma or the anon_vma | 
|  | * returned may already be freed (and even reused). | 
|  | * | 
|  | * In case it was remapped to a different anon_vma, the new anon_vma will be a | 
|  | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | 
|  | * ensure that any anon_vma obtained from the page will still be valid for as | 
|  | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | 
|  | * | 
|  | * All users of this function must be very careful when walking the anon_vma | 
|  | * chain and verify that the page in question is indeed mapped in it | 
|  | * [ something equivalent to page_mapped_in_vma() ]. | 
|  | * | 
|  | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | 
|  | * that the anon_vma pointer from page->mapping is valid if there is a | 
|  | * mapcount, we can dereference the anon_vma after observing those. | 
|  | */ | 
|  | struct anon_vma *page_get_anon_vma(struct page *page) | 
|  | { | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | unsigned long anon_mapping; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | anon_mapping = (unsigned long)READ_ONCE(page->mapping); | 
|  | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | goto out; | 
|  | if (!page_mapped(page)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
|  | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
|  | anon_vma = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this page is still mapped, then its anon_vma cannot have been | 
|  | * freed.  But if it has been unmapped, we have no security against the | 
|  | * anon_vma structure being freed and reused (for another anon_vma: | 
|  | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() | 
|  | * above cannot corrupt). | 
|  | */ | 
|  | if (!page_mapped(page)) { | 
|  | rcu_read_unlock(); | 
|  | put_anon_vma(anon_vma); | 
|  | return NULL; | 
|  | } | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to page_get_anon_vma() except it locks the anon_vma. | 
|  | * | 
|  | * Its a little more complex as it tries to keep the fast path to a single | 
|  | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | 
|  | * reference like with page_get_anon_vma() and then block on the mutex. | 
|  | */ | 
|  | struct anon_vma *page_lock_anon_vma_read(struct page *page) | 
|  | { | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct anon_vma *root_anon_vma; | 
|  | unsigned long anon_mapping; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | anon_mapping = (unsigned long)READ_ONCE(page->mapping); | 
|  | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | goto out; | 
|  | if (!page_mapped(page)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
|  | root_anon_vma = READ_ONCE(anon_vma->root); | 
|  | if (down_read_trylock(&root_anon_vma->rwsem)) { | 
|  | /* | 
|  | * If the page is still mapped, then this anon_vma is still | 
|  | * its anon_vma, and holding the mutex ensures that it will | 
|  | * not go away, see anon_vma_free(). | 
|  | */ | 
|  | if (!page_mapped(page)) { | 
|  | up_read(&root_anon_vma->rwsem); | 
|  | anon_vma = NULL; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* trylock failed, we got to sleep */ | 
|  | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
|  | anon_vma = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!page_mapped(page)) { | 
|  | rcu_read_unlock(); | 
|  | put_anon_vma(anon_vma); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* we pinned the anon_vma, its safe to sleep */ | 
|  | rcu_read_unlock(); | 
|  | anon_vma_lock_read(anon_vma); | 
|  |  | 
|  | if (atomic_dec_and_test(&anon_vma->refcount)) { | 
|  | /* | 
|  | * Oops, we held the last refcount, release the lock | 
|  | * and bail -- can't simply use put_anon_vma() because | 
|  | * we'll deadlock on the anon_vma_lock_write() recursion. | 
|  | */ | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | __put_anon_vma(anon_vma); | 
|  | anon_vma = NULL; | 
|  | } | 
|  |  | 
|  | return anon_vma; | 
|  |  | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) | 
|  | { | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
|  | /* | 
|  | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | 
|  | * important if a PTE was dirty when it was unmapped that it's flushed | 
|  | * before any IO is initiated on the page to prevent lost writes. Similarly, | 
|  | * it must be flushed before freeing to prevent data leakage. | 
|  | */ | 
|  | void try_to_unmap_flush(void) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  |  | 
|  | if (!tlb_ubc->flush_required) | 
|  | return; | 
|  |  | 
|  | arch_tlbbatch_flush(&tlb_ubc->arch); | 
|  | tlb_ubc->flush_required = false; | 
|  | tlb_ubc->writable = false; | 
|  | } | 
|  |  | 
|  | /* Flush iff there are potentially writable TLB entries that can race with IO */ | 
|  | void try_to_unmap_flush_dirty(void) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  |  | 
|  | if (tlb_ubc->writable) | 
|  | try_to_unmap_flush(); | 
|  | } | 
|  |  | 
|  | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
|  | { | 
|  | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
|  |  | 
|  | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); | 
|  | tlb_ubc->flush_required = true; | 
|  |  | 
|  | /* | 
|  | * Ensure compiler does not re-order the setting of tlb_flush_batched | 
|  | * before the PTE is cleared. | 
|  | */ | 
|  | barrier(); | 
|  | mm->tlb_flush_batched = true; | 
|  |  | 
|  | /* | 
|  | * If the PTE was dirty then it's best to assume it's writable. The | 
|  | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | 
|  | * before the page is queued for IO. | 
|  | */ | 
|  | if (writable) | 
|  | tlb_ubc->writable = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the TLB flush should be deferred to the end of a batch of | 
|  | * unmap operations to reduce IPIs. | 
|  | */ | 
|  | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
|  | { | 
|  | bool should_defer = false; | 
|  |  | 
|  | if (!(flags & TTU_BATCH_FLUSH)) | 
|  | return false; | 
|  |  | 
|  | /* If remote CPUs need to be flushed then defer batch the flush */ | 
|  | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | 
|  | should_defer = true; | 
|  | put_cpu(); | 
|  |  | 
|  | return should_defer; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | 
|  | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | 
|  | * operation such as mprotect or munmap to race between reclaim unmapping | 
|  | * the page and flushing the page. If this race occurs, it potentially allows | 
|  | * access to data via a stale TLB entry. Tracking all mm's that have TLB | 
|  | * batching in flight would be expensive during reclaim so instead track | 
|  | * whether TLB batching occurred in the past and if so then do a flush here | 
|  | * if required. This will cost one additional flush per reclaim cycle paid | 
|  | * by the first operation at risk such as mprotect and mumap. | 
|  | * | 
|  | * This must be called under the PTL so that an access to tlb_flush_batched | 
|  | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | 
|  | * via the PTL. | 
|  | */ | 
|  | void flush_tlb_batched_pending(struct mm_struct *mm) | 
|  | { | 
|  | if (mm->tlb_flush_batched) { | 
|  | flush_tlb_mm(mm); | 
|  |  | 
|  | /* | 
|  | * Do not allow the compiler to re-order the clearing of | 
|  | * tlb_flush_batched before the tlb is flushed. | 
|  | */ | 
|  | barrier(); | 
|  | mm->tlb_flush_batched = false; | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
|  | { | 
|  | } | 
|  |  | 
|  | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | 
|  |  | 
|  | /* | 
|  | * At what user virtual address is page expected in vma? | 
|  | * Caller should check the page is actually part of the vma. | 
|  | */ | 
|  | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long address; | 
|  | if (PageAnon(page)) { | 
|  | struct anon_vma *page__anon_vma = page_anon_vma(page); | 
|  | /* | 
|  | * Note: swapoff's unuse_vma() is more efficient with this | 
|  | * check, and needs it to match anon_vma when KSM is active. | 
|  | */ | 
|  | if (!vma->anon_vma || !page__anon_vma || | 
|  | vma->anon_vma->root != page__anon_vma->root) | 
|  | return -EFAULT; | 
|  | } else if (page->mapping) { | 
|  | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | 
|  | return -EFAULT; | 
|  | } else | 
|  | return -EFAULT; | 
|  | address = __vma_address(page, vma); | 
|  | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | 
|  | return -EFAULT; | 
|  | return address; | 
|  | } | 
|  |  | 
|  | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd = NULL; | 
|  | pmd_t pmde; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | /* | 
|  | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() | 
|  | * without holding anon_vma lock for write.  So when looking for a | 
|  | * genuine pmde (in which to find pte), test present and !THP together. | 
|  | */ | 
|  | pmde = *pmd; | 
|  | barrier(); | 
|  | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) | 
|  | pmd = NULL; | 
|  | out: | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | struct page_referenced_arg { | 
|  | int mapcount; | 
|  | int referenced; | 
|  | unsigned long vm_flags; | 
|  | struct mem_cgroup *memcg; | 
|  | }; | 
|  | /* | 
|  | * arg: page_referenced_arg will be passed | 
|  | */ | 
|  | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | struct page_referenced_arg *pra = arg; | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .page = page, | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | }; | 
|  | int referenced = 0; | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | address = pvmw.address; | 
|  |  | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | pra->vm_flags |= VM_LOCKED; | 
|  | return false; /* To break the loop */ | 
|  | } | 
|  |  | 
|  | if (pvmw.pte) { | 
|  | if (ptep_clear_flush_young_notify(vma, address, | 
|  | pvmw.pte)) { | 
|  | /* | 
|  | * Don't treat a reference through | 
|  | * a sequentially read mapping as such. | 
|  | * If the page has been used in another mapping, | 
|  | * we will catch it; if this other mapping is | 
|  | * already gone, the unmap path will have set | 
|  | * PG_referenced or activated the page. | 
|  | */ | 
|  | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | 
|  | referenced++; | 
|  | } | 
|  | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
|  | if (pmdp_clear_flush_young_notify(vma, address, | 
|  | pvmw.pmd)) | 
|  | referenced++; | 
|  | } else { | 
|  | /* unexpected pmd-mapped page? */ | 
|  | WARN_ON_ONCE(1); | 
|  | } | 
|  |  | 
|  | pra->mapcount--; | 
|  | } | 
|  |  | 
|  | if (referenced) | 
|  | clear_page_idle(page); | 
|  | if (test_and_clear_page_young(page)) | 
|  | referenced++; | 
|  |  | 
|  | if (referenced) { | 
|  | pra->referenced++; | 
|  | pra->vm_flags |= vma->vm_flags; | 
|  | } | 
|  |  | 
|  | if (!pra->mapcount) | 
|  | return false; /* To break the loop */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | struct page_referenced_arg *pra = arg; | 
|  | struct mem_cgroup *memcg = pra->memcg; | 
|  |  | 
|  | if (!mm_match_cgroup(vma->vm_mm, memcg)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_referenced - test if the page was referenced | 
|  | * @page: the page to test | 
|  | * @is_locked: caller holds lock on the page | 
|  | * @memcg: target memory cgroup | 
|  | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 
|  | * | 
|  | * Quick test_and_clear_referenced for all mappings to a page, | 
|  | * returns the number of ptes which referenced the page. | 
|  | */ | 
|  | int page_referenced(struct page *page, | 
|  | int is_locked, | 
|  | struct mem_cgroup *memcg, | 
|  | unsigned long *vm_flags) | 
|  | { | 
|  | int we_locked = 0; | 
|  | struct page_referenced_arg pra = { | 
|  | .mapcount = total_mapcount(page), | 
|  | .memcg = memcg, | 
|  | }; | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = page_referenced_one, | 
|  | .arg = (void *)&pra, | 
|  | .anon_lock = page_lock_anon_vma_read, | 
|  | }; | 
|  |  | 
|  | *vm_flags = 0; | 
|  | if (!page_mapped(page)) | 
|  | return 0; | 
|  |  | 
|  | if (!page_rmapping(page)) | 
|  | return 0; | 
|  |  | 
|  | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | 
|  | we_locked = trylock_page(page); | 
|  | if (!we_locked) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are reclaiming on behalf of a cgroup, skip | 
|  | * counting on behalf of references from different | 
|  | * cgroups | 
|  | */ | 
|  | if (memcg) { | 
|  | rwc.invalid_vma = invalid_page_referenced_vma; | 
|  | } | 
|  |  | 
|  | rmap_walk(page, &rwc); | 
|  | *vm_flags = pra.vm_flags; | 
|  |  | 
|  | if (we_locked) | 
|  | unlock_page(page); | 
|  |  | 
|  | return pra.referenced; | 
|  | } | 
|  |  | 
|  | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .page = page, | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | .flags = PVMW_SYNC, | 
|  | }; | 
|  | unsigned long start = address, end; | 
|  | int *cleaned = arg; | 
|  |  | 
|  | /* | 
|  | * We have to assume the worse case ie pmd for invalidation. Note that | 
|  | * the page can not be free from this function. | 
|  | */ | 
|  | end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | 
|  | mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | unsigned long cstart, cend; | 
|  | int ret = 0; | 
|  |  | 
|  | cstart = address = pvmw.address; | 
|  | if (pvmw.pte) { | 
|  | pte_t entry; | 
|  | pte_t *pte = pvmw.pte; | 
|  |  | 
|  | if (!pte_dirty(*pte) && !pte_write(*pte)) | 
|  | continue; | 
|  |  | 
|  | flush_cache_page(vma, address, pte_pfn(*pte)); | 
|  | entry = ptep_clear_flush(vma, address, pte); | 
|  | entry = pte_wrprotect(entry); | 
|  | entry = pte_mkclean(entry); | 
|  | set_pte_at(vma->vm_mm, address, pte, entry); | 
|  | cend = cstart + PAGE_SIZE; | 
|  | ret = 1; | 
|  | } else { | 
|  | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
|  | pmd_t *pmd = pvmw.pmd; | 
|  | pmd_t entry; | 
|  |  | 
|  | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | 
|  | continue; | 
|  |  | 
|  | flush_cache_page(vma, address, page_to_pfn(page)); | 
|  | entry = pmdp_huge_clear_flush(vma, address, pmd); | 
|  | entry = pmd_wrprotect(entry); | 
|  | entry = pmd_mkclean(entry); | 
|  | set_pmd_at(vma->vm_mm, address, pmd, entry); | 
|  | cstart &= PMD_MASK; | 
|  | cend = cstart + PMD_SIZE; | 
|  | ret = 1; | 
|  | #else | 
|  | /* unexpected pmd-mapped page? */ | 
|  | WARN_ON_ONCE(1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend); | 
|  | (*cleaned)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int page_mkclean(struct page *page) | 
|  | { | 
|  | int cleaned = 0; | 
|  | struct address_space *mapping; | 
|  | struct rmap_walk_control rwc = { | 
|  | .arg = (void *)&cleaned, | 
|  | .rmap_one = page_mkclean_one, | 
|  | .invalid_vma = invalid_mkclean_vma, | 
|  | }; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | if (!page_mapped(page)) | 
|  | return 0; | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | if (!mapping) | 
|  | return 0; | 
|  |  | 
|  | rmap_walk(page, &rwc); | 
|  |  | 
|  | return cleaned; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(page_mkclean); | 
|  |  | 
|  | /** | 
|  | * page_move_anon_rmap - move a page to our anon_vma | 
|  | * @page:	the page to move to our anon_vma | 
|  | * @vma:	the vma the page belongs to | 
|  | * | 
|  | * When a page belongs exclusively to one process after a COW event, | 
|  | * that page can be moved into the anon_vma that belongs to just that | 
|  | * process, so the rmap code will not search the parent or sibling | 
|  | * processes. | 
|  | */ | 
|  | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | page = compound_head(page); | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_VMA(!anon_vma, vma); | 
|  |  | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | /* | 
|  | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | 
|  | * simultaneously, so a concurrent reader (eg page_referenced()'s | 
|  | * PageAnon()) will not see one without the other. | 
|  | */ | 
|  | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_set_anon_rmap - set up new anonymous rmap | 
|  | * @page:	Page to add to rmap | 
|  | * @vma:	VM area to add page to. | 
|  | * @address:	User virtual address of the mapping | 
|  | * @exclusive:	the page is exclusively owned by the current process | 
|  | */ | 
|  | static void __page_set_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, int exclusive) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | BUG_ON(!anon_vma); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the page isn't exclusively mapped into this vma, | 
|  | * we must use the _oldest_ possible anon_vma for the | 
|  | * page mapping! | 
|  | */ | 
|  | if (!exclusive) | 
|  | anon_vma = anon_vma->root; | 
|  |  | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | page->mapping = (struct address_space *) anon_vma; | 
|  | page->index = linear_page_index(vma, address); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_check_anon_rmap - sanity check anonymous rmap addition | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | */ | 
|  | static void __page_check_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* | 
|  | * The page's anon-rmap details (mapping and index) are guaranteed to | 
|  | * be set up correctly at this point. | 
|  | * | 
|  | * We have exclusion against page_add_anon_rmap because the caller | 
|  | * always holds the page locked, except if called from page_dup_rmap, | 
|  | * in which case the page is already known to be setup. | 
|  | * | 
|  | * We have exclusion against page_add_new_anon_rmap because those pages | 
|  | * are initially only visible via the pagetables, and the pte is locked | 
|  | * over the call to page_add_new_anon_rmap. | 
|  | */ | 
|  | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); | 
|  | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_anon_rmap - add pte mapping to an anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * @compound:	charge the page as compound or small page | 
|  | * | 
|  | * The caller needs to hold the pte lock, and the page must be locked in | 
|  | * the anon_vma case: to serialize mapping,index checking after setting, | 
|  | * and to ensure that PageAnon is not being upgraded racily to PageKsm | 
|  | * (but PageKsm is never downgraded to PageAnon). | 
|  | */ | 
|  | void page_add_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, bool compound) | 
|  | { | 
|  | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special version of the above for do_swap_page, which often runs | 
|  | * into pages that are exclusively owned by the current process. | 
|  | * Everybody else should continue to use page_add_anon_rmap above. | 
|  | */ | 
|  | void do_page_add_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, int flags) | 
|  | { | 
|  | bool compound = flags & RMAP_COMPOUND; | 
|  | bool first; | 
|  |  | 
|  | if (compound) { | 
|  | atomic_t *mapcount; | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | mapcount = compound_mapcount_ptr(page); | 
|  | first = atomic_inc_and_test(mapcount); | 
|  | } else { | 
|  | first = atomic_inc_and_test(&page->_mapcount); | 
|  | } | 
|  |  | 
|  | if (first) { | 
|  | int nr = compound ? hpage_nr_pages(page) : 1; | 
|  | /* | 
|  | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
|  | * these counters are not modified in interrupt context, and | 
|  | * pte lock(a spinlock) is held, which implies preemption | 
|  | * disabled. | 
|  | */ | 
|  | if (compound) | 
|  | __inc_node_page_state(page, NR_ANON_THPS); | 
|  | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); | 
|  | } | 
|  | if (unlikely(PageKsm(page))) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | /* address might be in next vma when migration races vma_adjust */ | 
|  | if (first) | 
|  | __page_set_anon_rmap(page, vma, address, | 
|  | flags & RMAP_EXCLUSIVE); | 
|  | else | 
|  | __page_check_anon_rmap(page, vma, address); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_new_anon_rmap - add pte mapping to a new anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * @compound:	charge the page as compound or small page | 
|  | * | 
|  | * Same as page_add_anon_rmap but must only be called on *new* pages. | 
|  | * This means the inc-and-test can be bypassed. | 
|  | * Page does not have to be locked. | 
|  | */ | 
|  | void page_add_new_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, bool compound) | 
|  | { | 
|  | int nr = compound ? hpage_nr_pages(page) : 1; | 
|  |  | 
|  | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | 
|  | __SetPageSwapBacked(page); | 
|  | if (compound) { | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | /* increment count (starts at -1) */ | 
|  | atomic_set(compound_mapcount_ptr(page), 0); | 
|  | __inc_node_page_state(page, NR_ANON_THPS); | 
|  | } else { | 
|  | /* Anon THP always mapped first with PMD */ | 
|  | VM_BUG_ON_PAGE(PageTransCompound(page), page); | 
|  | /* increment count (starts at -1) */ | 
|  | atomic_set(&page->_mapcount, 0); | 
|  | } | 
|  | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); | 
|  | __page_set_anon_rmap(page, vma, address, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_file_rmap - add pte mapping to a file page | 
|  | * @page: the page to add the mapping to | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_add_file_rmap(struct page *page, bool compound) | 
|  | { | 
|  | int i, nr = 1; | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | 
|  | lock_page_memcg(page); | 
|  | if (compound && PageTransHuge(page)) { | 
|  | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
|  | if (atomic_inc_and_test(&page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | 
|  | goto out; | 
|  | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); | 
|  | } else { | 
|  | if (PageTransCompound(page) && page_mapping(page)) { | 
|  | VM_WARN_ON_ONCE(!PageLocked(page)); | 
|  |  | 
|  | SetPageDoubleMap(compound_head(page)); | 
|  | if (PageMlocked(page)) | 
|  | clear_page_mlock(compound_head(page)); | 
|  | } | 
|  | if (!atomic_inc_and_test(&page->_mapcount)) | 
|  | goto out; | 
|  | } | 
|  | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | 
|  | out: | 
|  | unlock_page_memcg(page); | 
|  | } | 
|  |  | 
|  | static void page_remove_file_rmap(struct page *page, bool compound) | 
|  | { | 
|  | int i, nr = 1; | 
|  |  | 
|  | VM_BUG_ON_PAGE(compound && !PageHead(page), page); | 
|  | lock_page_memcg(page); | 
|  |  | 
|  | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ | 
|  | if (unlikely(PageHuge(page))) { | 
|  | /* hugetlb pages are always mapped with pmds */ | 
|  | atomic_dec(compound_mapcount_ptr(page)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* page still mapped by someone else? */ | 
|  | if (compound && PageTransHuge(page)) { | 
|  | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
|  | if (atomic_add_negative(-1, &page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
|  | goto out; | 
|  | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); | 
|  | } else { | 
|  | if (!atomic_add_negative(-1, &page->_mapcount)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because | 
|  | * these counters are not modified in interrupt context, and | 
|  | * pte lock(a spinlock) is held, which implies preemption disabled. | 
|  | */ | 
|  | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | 
|  |  | 
|  | if (unlikely(PageMlocked(page))) | 
|  | clear_page_mlock(page); | 
|  | out: | 
|  | unlock_page_memcg(page); | 
|  | } | 
|  |  | 
|  | static void page_remove_anon_compound_rmap(struct page *page) | 
|  | { | 
|  | int i, nr; | 
|  |  | 
|  | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
|  | return; | 
|  |  | 
|  | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | 
|  | if (unlikely(PageHuge(page))) | 
|  | return; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
|  | return; | 
|  |  | 
|  | __dec_node_page_state(page, NR_ANON_THPS); | 
|  |  | 
|  | if (TestClearPageDoubleMap(page)) { | 
|  | /* | 
|  | * Subpages can be mapped with PTEs too. Check how many of | 
|  | * themi are still mapped. | 
|  | */ | 
|  | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
|  | if (atomic_add_negative(-1, &page[i]._mapcount)) | 
|  | nr++; | 
|  | } | 
|  | } else { | 
|  | nr = HPAGE_PMD_NR; | 
|  | } | 
|  |  | 
|  | if (unlikely(PageMlocked(page))) | 
|  | clear_page_mlock(page); | 
|  |  | 
|  | if (nr) { | 
|  | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); | 
|  | deferred_split_huge_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_remove_rmap - take down pte mapping from a page | 
|  | * @page:	page to remove mapping from | 
|  | * @compound:	uncharge the page as compound or small page | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_remove_rmap(struct page *page, bool compound) | 
|  | { | 
|  | if (!PageAnon(page)) | 
|  | return page_remove_file_rmap(page, compound); | 
|  |  | 
|  | if (compound) | 
|  | return page_remove_anon_compound_rmap(page); | 
|  |  | 
|  | /* page still mapped by someone else? */ | 
|  | if (!atomic_add_negative(-1, &page->_mapcount)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
|  | * these counters are not modified in interrupt context, and | 
|  | * pte lock(a spinlock) is held, which implies preemption disabled. | 
|  | */ | 
|  | __dec_node_page_state(page, NR_ANON_MAPPED); | 
|  |  | 
|  | if (unlikely(PageMlocked(page))) | 
|  | clear_page_mlock(page); | 
|  |  | 
|  | if (PageTransCompound(page)) | 
|  | deferred_split_huge_page(compound_head(page)); | 
|  |  | 
|  | /* | 
|  | * It would be tidy to reset the PageAnon mapping here, | 
|  | * but that might overwrite a racing page_add_anon_rmap | 
|  | * which increments mapcount after us but sets mapping | 
|  | * before us: so leave the reset to free_hot_cold_page, | 
|  | * and remember that it's only reliable while mapped. | 
|  | * Leaving it set also helps swapoff to reinstate ptes | 
|  | * faster for those pages still in swapcache. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @arg: enum ttu_flags will be passed to this argument | 
|  | */ | 
|  | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, void *arg) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page_vma_mapped_walk pvmw = { | 
|  | .page = page, | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | }; | 
|  | pte_t pteval; | 
|  | struct page *subpage; | 
|  | bool ret = true; | 
|  | unsigned long start = address, end; | 
|  | enum ttu_flags flags = (enum ttu_flags)arg; | 
|  |  | 
|  | /* munlock has nothing to gain from examining un-locked vmas */ | 
|  | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | 
|  | return true; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && | 
|  | is_zone_device_page(page) && !is_device_private_page(page)) | 
|  | return true; | 
|  |  | 
|  | if (flags & TTU_SPLIT_HUGE_PMD) { | 
|  | split_huge_pmd_address(vma, address, | 
|  | flags & TTU_SPLIT_FREEZE, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to assume the worse case ie pmd for invalidation. Note that | 
|  | * the page can not be free in this function as call of try_to_unmap() | 
|  | * must hold a reference on the page. | 
|  | */ | 
|  | end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | 
|  | mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | 
|  |  | 
|  | while (page_vma_mapped_walk(&pvmw)) { | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | /* PMD-mapped THP migration entry */ | 
|  | if (!pvmw.pte && (flags & TTU_MIGRATION)) { | 
|  | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | 
|  |  | 
|  | if (!PageAnon(page)) | 
|  | continue; | 
|  |  | 
|  | set_pmd_migration_entry(&pvmw, page); | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If the page is mlock()d, we cannot swap it out. | 
|  | * If it's recently referenced (perhaps page_referenced | 
|  | * skipped over this mm) then we should reactivate it. | 
|  | */ | 
|  | if (!(flags & TTU_IGNORE_MLOCK)) { | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | /* PTE-mapped THP are never mlocked */ | 
|  | if (!PageTransCompound(page)) { | 
|  | /* | 
|  | * Holding pte lock, we do *not* need | 
|  | * mmap_sem here | 
|  | */ | 
|  | mlock_vma_page(page); | 
|  | } | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | if (flags & TTU_MUNLOCK) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Unexpected PMD-mapped THP? */ | 
|  | VM_BUG_ON_PAGE(!pvmw.pte, page); | 
|  |  | 
|  | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | 
|  | address = pvmw.address; | 
|  |  | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_MIGRATION) && | 
|  | (flags & TTU_MIGRATION) && | 
|  | is_zone_device_page(page)) { | 
|  | swp_entry_t entry; | 
|  | pte_t swp_pte; | 
|  |  | 
|  | pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); | 
|  |  | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | entry = make_migration_entry(page, 0); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | if (!(flags & TTU_IGNORE_ACCESS)) { | 
|  | if (ptep_clear_flush_young_notify(vma, address, | 
|  | pvmw.pte)) { | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Nuke the page table entry. */ | 
|  | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | 
|  | if (should_defer_flush(mm, flags)) { | 
|  | /* | 
|  | * We clear the PTE but do not flush so potentially | 
|  | * a remote CPU could still be writing to the page. | 
|  | * If the entry was previously clean then the | 
|  | * architecture must guarantee that a clear->dirty | 
|  | * transition on a cached TLB entry is written through | 
|  | * and traps if the PTE is unmapped. | 
|  | */ | 
|  | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | 
|  |  | 
|  | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | 
|  | } else { | 
|  | pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
|  | } | 
|  |  | 
|  | /* Move the dirty bit to the page. Now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | set_page_dirty(page); | 
|  |  | 
|  | /* Update high watermark before we lower rss */ | 
|  | update_hiwater_rss(mm); | 
|  |  | 
|  | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { | 
|  | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
|  | if (PageHuge(page)) { | 
|  | int nr = 1 << compound_order(page); | 
|  | hugetlb_count_sub(nr, mm); | 
|  | set_huge_swap_pte_at(mm, address, | 
|  | pvmw.pte, pteval, | 
|  | vma_mmu_pagesize(vma)); | 
|  | } else { | 
|  | dec_mm_counter(mm, mm_counter(page)); | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | } | 
|  |  | 
|  | } else if (pte_unused(pteval)) { | 
|  | /* | 
|  | * The guest indicated that the page content is of no | 
|  | * interest anymore. Simply discard the pte, vmscan | 
|  | * will take care of the rest. | 
|  | */ | 
|  | dec_mm_counter(mm, mm_counter(page)); | 
|  | } else if (IS_ENABLED(CONFIG_MIGRATION) && | 
|  | (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { | 
|  | swp_entry_t entry; | 
|  | pte_t swp_pte; | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | entry = make_migration_entry(subpage, | 
|  | pte_write(pteval)); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | set_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  | } else if (PageAnon(page)) { | 
|  | swp_entry_t entry = { .val = page_private(subpage) }; | 
|  | pte_t swp_pte; | 
|  | /* | 
|  | * Store the swap location in the pte. | 
|  | * See handle_pte_fault() ... | 
|  | */ | 
|  | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { | 
|  | WARN_ON_ONCE(1); | 
|  | ret = false; | 
|  | /* We have to invalidate as we cleared the pte */ | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* MADV_FREE page check */ | 
|  | if (!PageSwapBacked(page)) { | 
|  | if (!PageDirty(page)) { | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page was redirtied, it cannot be | 
|  | * discarded. Remap the page to page table. | 
|  | */ | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | SetPageSwapBacked(page); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (swap_duplicate(entry) < 0) { | 
|  | set_pte_at(mm, address, pvmw.pte, pteval); | 
|  | ret = false; | 
|  | page_vma_mapped_walk_done(&pvmw); | 
|  | break; | 
|  | } | 
|  | if (list_empty(&mm->mmlist)) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&mm->mmlist)) | 
|  | list_add(&mm->mmlist, &init_mm.mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | inc_mm_counter(mm, MM_SWAPENTS); | 
|  | swp_pte = swp_entry_to_pte(entry); | 
|  | if (pte_soft_dirty(pteval)) | 
|  | swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
|  | set_pte_at(mm, address, pvmw.pte, swp_pte); | 
|  | } else | 
|  | dec_mm_counter(mm, mm_counter_file(page)); | 
|  | discard: | 
|  | page_remove_rmap(subpage, PageHuge(page)); | 
|  | put_page(page); | 
|  | mmu_notifier_invalidate_range(mm, address, | 
|  | address + PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool is_vma_temporary_stack(struct vm_area_struct *vma) | 
|  | { | 
|  | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | 
|  |  | 
|  | if (!maybe_stack) | 
|  | return false; | 
|  |  | 
|  | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | 
|  | VM_STACK_INCOMPLETE_SETUP) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) | 
|  | { | 
|  | return is_vma_temporary_stack(vma); | 
|  | } | 
|  |  | 
|  | static int page_mapcount_is_zero(struct page *page) | 
|  | { | 
|  | return !total_mapcount(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_unmap - try to remove all page table mappings to a page | 
|  | * @page: the page to get unmapped | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Tries to remove all the page table entries which are mapping this | 
|  | * page, used in the pageout path.  Caller must hold the page lock. | 
|  | * | 
|  | * If unmap is successful, return true. Otherwise, false. | 
|  | */ | 
|  | bool try_to_unmap(struct page *page, enum ttu_flags flags) | 
|  | { | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = try_to_unmap_one, | 
|  | .arg = (void *)flags, | 
|  | .done = page_mapcount_is_zero, | 
|  | .anon_lock = page_lock_anon_vma_read, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * During exec, a temporary VMA is setup and later moved. | 
|  | * The VMA is moved under the anon_vma lock but not the | 
|  | * page tables leading to a race where migration cannot | 
|  | * find the migration ptes. Rather than increasing the | 
|  | * locking requirements of exec(), migration skips | 
|  | * temporary VMAs until after exec() completes. | 
|  | */ | 
|  | if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) | 
|  | && !PageKsm(page) && PageAnon(page)) | 
|  | rwc.invalid_vma = invalid_migration_vma; | 
|  |  | 
|  | if (flags & TTU_RMAP_LOCKED) | 
|  | rmap_walk_locked(page, &rwc); | 
|  | else | 
|  | rmap_walk(page, &rwc); | 
|  |  | 
|  | return !page_mapcount(page) ? true : false; | 
|  | } | 
|  |  | 
|  | static int page_not_mapped(struct page *page) | 
|  | { | 
|  | return !page_mapped(page); | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * try_to_munlock - try to munlock a page | 
|  | * @page: the page to be munlocked | 
|  | * | 
|  | * Called from munlock code.  Checks all of the VMAs mapping the page | 
|  | * to make sure nobody else has this page mlocked. The page will be | 
|  | * returned with PG_mlocked cleared if no other vmas have it mlocked. | 
|  | */ | 
|  |  | 
|  | void try_to_munlock(struct page *page) | 
|  | { | 
|  | struct rmap_walk_control rwc = { | 
|  | .rmap_one = try_to_unmap_one, | 
|  | .arg = (void *)TTU_MUNLOCK, | 
|  | .done = page_not_mapped, | 
|  | .anon_lock = page_lock_anon_vma_read, | 
|  |  | 
|  | }; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | 
|  |  | 
|  | rmap_walk(page, &rwc); | 
|  | } | 
|  |  | 
|  | void __put_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | struct anon_vma *root = anon_vma->root; | 
|  |  | 
|  | anon_vma_free(anon_vma); | 
|  | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) | 
|  | anon_vma_free(root); | 
|  | } | 
|  |  | 
|  | static struct anon_vma *rmap_walk_anon_lock(struct page *page, | 
|  | struct rmap_walk_control *rwc) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | if (rwc->anon_lock) | 
|  | return rwc->anon_lock(page); | 
|  |  | 
|  | /* | 
|  | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | 
|  | * because that depends on page_mapped(); but not all its usages | 
|  | * are holding mmap_sem. Users without mmap_sem are required to | 
|  | * take a reference count to prevent the anon_vma disappearing | 
|  | */ | 
|  | anon_vma = page_anon_vma(page); | 
|  | if (!anon_vma) | 
|  | return NULL; | 
|  |  | 
|  | anon_vma_lock_read(anon_vma); | 
|  | return anon_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rmap_walk_anon - do something to anonymous page using the object-based | 
|  | * rmap method | 
|  | * @page: the page to be handled | 
|  | * @rwc: control variable according to each walk type | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the anon_vma struct it points to. | 
|  | * | 
|  | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
|  | * where the page was found will be held for write.  So, we won't recheck | 
|  | * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
|  | * LOCKED. | 
|  | */ | 
|  | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, | 
|  | bool locked) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | pgoff_t pgoff_start, pgoff_end; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | if (locked) { | 
|  | anon_vma = page_anon_vma(page); | 
|  | /* anon_vma disappear under us? */ | 
|  | VM_BUG_ON_PAGE(!anon_vma, page); | 
|  | } else { | 
|  | anon_vma = rmap_walk_anon_lock(page, rwc); | 
|  | } | 
|  | if (!anon_vma) | 
|  | return; | 
|  |  | 
|  | pgoff_start = page_to_pgoff(page); | 
|  | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | 
|  | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | 
|  | pgoff_start, pgoff_end) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long address = vma_address(page, vma); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
|  | continue; | 
|  |  | 
|  | if (!rwc->rmap_one(page, vma, address, rwc->arg)) | 
|  | break; | 
|  | if (rwc->done && rwc->done(page)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!locked) | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rmap_walk_file - do something to file page using the object-based rmap method | 
|  | * @page: the page to be handled | 
|  | * @rwc: control variable according to each walk type | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the address_space struct it points to. | 
|  | * | 
|  | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
|  | * where the page was found will be held for write.  So, we won't recheck | 
|  | * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
|  | * LOCKED. | 
|  | */ | 
|  | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, | 
|  | bool locked) | 
|  | { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  | pgoff_t pgoff_start, pgoff_end; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * The page lock not only makes sure that page->mapping cannot | 
|  | * suddenly be NULLified by truncation, it makes sure that the | 
|  | * structure at mapping cannot be freed and reused yet, | 
|  | * so we can safely take mapping->i_mmap_rwsem. | 
|  | */ | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (!mapping) | 
|  | return; | 
|  |  | 
|  | pgoff_start = page_to_pgoff(page); | 
|  | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | 
|  | if (!locked) | 
|  | i_mmap_lock_read(mapping); | 
|  | vma_interval_tree_foreach(vma, &mapping->i_mmap, | 
|  | pgoff_start, pgoff_end) { | 
|  | unsigned long address = vma_address(page, vma); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
|  | continue; | 
|  |  | 
|  | if (!rwc->rmap_one(page, vma, address, rwc->arg)) | 
|  | goto done; | 
|  | if (rwc->done && rwc->done(page)) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (!locked) | 
|  | i_mmap_unlock_read(mapping); | 
|  | } | 
|  |  | 
|  | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) | 
|  | { | 
|  | if (unlikely(PageKsm(page))) | 
|  | rmap_walk_ksm(page, rwc); | 
|  | else if (PageAnon(page)) | 
|  | rmap_walk_anon(page, rwc, false); | 
|  | else | 
|  | rmap_walk_file(page, rwc, false); | 
|  | } | 
|  |  | 
|  | /* Like rmap_walk, but caller holds relevant rmap lock */ | 
|  | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) | 
|  | { | 
|  | /* no ksm support for now */ | 
|  | VM_BUG_ON_PAGE(PageKsm(page), page); | 
|  | if (PageAnon(page)) | 
|  | rmap_walk_anon(page, rwc, true); | 
|  | else | 
|  | rmap_walk_file(page, rwc, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* | 
|  | * The following three functions are for anonymous (private mapped) hugepages. | 
|  | * Unlike common anonymous pages, anonymous hugepages have no accounting code | 
|  | * and no lru code, because we handle hugepages differently from common pages. | 
|  | */ | 
|  | static void __hugepage_set_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, int exclusive) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | BUG_ON(!anon_vma); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | return; | 
|  | if (!exclusive) | 
|  | anon_vma = anon_vma->root; | 
|  |  | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | page->mapping = (struct address_space *) anon_vma; | 
|  | page->index = linear_page_index(vma, address); | 
|  | } | 
|  |  | 
|  | void hugepage_add_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | int first; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | BUG_ON(!anon_vma); | 
|  | /* address might be in next vma when migration races vma_adjust */ | 
|  | first = atomic_inc_and_test(compound_mapcount_ptr(page)); | 
|  | if (first) | 
|  | __hugepage_set_anon_rmap(page, vma, address, 0); | 
|  | } | 
|  |  | 
|  | void hugepage_add_new_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
|  | atomic_set(compound_mapcount_ptr(page), 0); | 
|  | __hugepage_set_anon_rmap(page, vma, address, 1); | 
|  | } | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ |