| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * key management facility for FS encryption support. | 
 |  * | 
 |  * Copyright (C) 2015, Google, Inc. | 
 |  * | 
 |  * This contains encryption key functions. | 
 |  * | 
 |  * Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015. | 
 |  */ | 
 |  | 
 | #include <keys/user-type.h> | 
 | #include <linux/hashtable.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/algapi.h> | 
 | #include <crypto/sha.h> | 
 | #include <crypto/skcipher.h> | 
 | #include "fscrypt_private.h" | 
 |  | 
 | static struct crypto_shash *essiv_hash_tfm; | 
 |  | 
 | /* Table of keys referenced by FS_POLICY_FLAG_DIRECT_KEY policies */ | 
 | static DEFINE_HASHTABLE(fscrypt_master_keys, 6); /* 6 bits = 64 buckets */ | 
 | static DEFINE_SPINLOCK(fscrypt_master_keys_lock); | 
 |  | 
 | /* | 
 |  * Key derivation function.  This generates the derived key by encrypting the | 
 |  * master key with AES-128-ECB using the inode's nonce as the AES key. | 
 |  * | 
 |  * The master key must be at least as long as the derived key.  If the master | 
 |  * key is longer, then only the first 'derived_keysize' bytes are used. | 
 |  */ | 
 | static int derive_key_aes(const u8 *master_key, | 
 | 			  const struct fscrypt_context *ctx, | 
 | 			  u8 *derived_key, unsigned int derived_keysize) | 
 | { | 
 | 	int res = 0; | 
 | 	struct skcipher_request *req = NULL; | 
 | 	DECLARE_CRYPTO_WAIT(wait); | 
 | 	struct scatterlist src_sg, dst_sg; | 
 | 	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0); | 
 |  | 
 | 	if (IS_ERR(tfm)) { | 
 | 		res = PTR_ERR(tfm); | 
 | 		tfm = NULL; | 
 | 		goto out; | 
 | 	} | 
 | 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); | 
 | 	req = skcipher_request_alloc(tfm, GFP_NOFS); | 
 | 	if (!req) { | 
 | 		res = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	skcipher_request_set_callback(req, | 
 | 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | 
 | 			crypto_req_done, &wait); | 
 | 	res = crypto_skcipher_setkey(tfm, ctx->nonce, sizeof(ctx->nonce)); | 
 | 	if (res < 0) | 
 | 		goto out; | 
 |  | 
 | 	sg_init_one(&src_sg, master_key, derived_keysize); | 
 | 	sg_init_one(&dst_sg, derived_key, derived_keysize); | 
 | 	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize, | 
 | 				   NULL); | 
 | 	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); | 
 | out: | 
 | 	skcipher_request_free(req); | 
 | 	crypto_free_skcipher(tfm); | 
 | 	return res; | 
 | } | 
 |  | 
 | /* | 
 |  * Search the current task's subscribed keyrings for a "logon" key with | 
 |  * description prefix:descriptor, and if found acquire a read lock on it and | 
 |  * return a pointer to its validated payload in *payload_ret. | 
 |  */ | 
 | static struct key * | 
 | find_and_lock_process_key(const char *prefix, | 
 | 			  const u8 descriptor[FS_KEY_DESCRIPTOR_SIZE], | 
 | 			  unsigned int min_keysize, | 
 | 			  const struct fscrypt_key **payload_ret) | 
 | { | 
 | 	char *description; | 
 | 	struct key *key; | 
 | 	const struct user_key_payload *ukp; | 
 | 	const struct fscrypt_key *payload; | 
 |  | 
 | 	description = kasprintf(GFP_NOFS, "%s%*phN", prefix, | 
 | 				FS_KEY_DESCRIPTOR_SIZE, descriptor); | 
 | 	if (!description) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	key = request_key(&key_type_logon, description, NULL); | 
 | 	kfree(description); | 
 | 	if (IS_ERR(key)) | 
 | 		return key; | 
 |  | 
 | 	down_read(&key->sem); | 
 | 	ukp = user_key_payload_locked(key); | 
 |  | 
 | 	if (!ukp) /* was the key revoked before we acquired its semaphore? */ | 
 | 		goto invalid; | 
 |  | 
 | 	payload = (const struct fscrypt_key *)ukp->data; | 
 |  | 
 | 	if (ukp->datalen != sizeof(struct fscrypt_key) || | 
 | 	    payload->size < 1 || payload->size > FS_MAX_KEY_SIZE) { | 
 | 		fscrypt_warn(NULL, | 
 | 			     "key with description '%s' has invalid payload", | 
 | 			     key->description); | 
 | 		goto invalid; | 
 | 	} | 
 |  | 
 | 	if (payload->size < min_keysize) { | 
 | 		fscrypt_warn(NULL, | 
 | 			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)", | 
 | 			     key->description, payload->size, min_keysize); | 
 | 		goto invalid; | 
 | 	} | 
 |  | 
 | 	*payload_ret = payload; | 
 | 	return key; | 
 |  | 
 | invalid: | 
 | 	up_read(&key->sem); | 
 | 	key_put(key); | 
 | 	return ERR_PTR(-ENOKEY); | 
 | } | 
 |  | 
 | static struct fscrypt_mode available_modes[] = { | 
 | 	[FS_ENCRYPTION_MODE_AES_256_XTS] = { | 
 | 		.friendly_name = "AES-256-XTS", | 
 | 		.cipher_str = "xts(aes)", | 
 | 		.keysize = 64, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FS_ENCRYPTION_MODE_AES_256_CTS] = { | 
 | 		.friendly_name = "AES-256-CTS-CBC", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 32, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FS_ENCRYPTION_MODE_AES_128_CBC] = { | 
 | 		.friendly_name = "AES-128-CBC", | 
 | 		.cipher_str = "cbc(aes)", | 
 | 		.keysize = 16, | 
 | 		.ivsize = 16, | 
 | 		.needs_essiv = true, | 
 | 	}, | 
 | 	[FS_ENCRYPTION_MODE_AES_128_CTS] = { | 
 | 		.friendly_name = "AES-128-CTS-CBC", | 
 | 		.cipher_str = "cts(cbc(aes))", | 
 | 		.keysize = 16, | 
 | 		.ivsize = 16, | 
 | 	}, | 
 | 	[FS_ENCRYPTION_MODE_ADIANTUM] = { | 
 | 		.friendly_name = "Adiantum", | 
 | 		.cipher_str = "adiantum(xchacha12,aes)", | 
 | 		.keysize = 32, | 
 | 		.ivsize = 32, | 
 | 	}, | 
 | }; | 
 |  | 
 | static struct fscrypt_mode * | 
 | select_encryption_mode(const struct fscrypt_info *ci, const struct inode *inode) | 
 | { | 
 | 	if (!fscrypt_valid_enc_modes(ci->ci_data_mode, ci->ci_filename_mode)) { | 
 | 		fscrypt_warn(inode->i_sb, | 
 | 			     "inode %lu uses unsupported encryption modes (contents mode %d, filenames mode %d)", | 
 | 			     inode->i_ino, ci->ci_data_mode, | 
 | 			     ci->ci_filename_mode); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		return &available_modes[ci->ci_data_mode]; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 		return &available_modes[ci->ci_filename_mode]; | 
 |  | 
 | 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", | 
 | 		  inode->i_ino, (inode->i_mode & S_IFMT)); | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | /* Find the master key, then derive the inode's actual encryption key */ | 
 | static int find_and_derive_key(const struct inode *inode, | 
 | 			       const struct fscrypt_context *ctx, | 
 | 			       u8 *derived_key, const struct fscrypt_mode *mode) | 
 | { | 
 | 	struct key *key; | 
 | 	const struct fscrypt_key *payload; | 
 | 	int err; | 
 |  | 
 | 	key = find_and_lock_process_key(FS_KEY_DESC_PREFIX, | 
 | 					ctx->master_key_descriptor, | 
 | 					mode->keysize, &payload); | 
 | 	if (key == ERR_PTR(-ENOKEY) && inode->i_sb->s_cop->key_prefix) { | 
 | 		key = find_and_lock_process_key(inode->i_sb->s_cop->key_prefix, | 
 | 						ctx->master_key_descriptor, | 
 | 						mode->keysize, &payload); | 
 | 	} | 
 | 	if (IS_ERR(key)) | 
 | 		return PTR_ERR(key); | 
 |  | 
 | 	if (ctx->flags & FS_POLICY_FLAG_DIRECT_KEY) { | 
 | 		if (mode->ivsize < offsetofend(union fscrypt_iv, nonce)) { | 
 | 			fscrypt_warn(inode->i_sb, | 
 | 				     "direct key mode not allowed with %s", | 
 | 				     mode->friendly_name); | 
 | 			err = -EINVAL; | 
 | 		} else if (ctx->contents_encryption_mode != | 
 | 			   ctx->filenames_encryption_mode) { | 
 | 			fscrypt_warn(inode->i_sb, | 
 | 				     "direct key mode not allowed with different contents and filenames modes"); | 
 | 			err = -EINVAL; | 
 | 		} else { | 
 | 			memcpy(derived_key, payload->raw, mode->keysize); | 
 | 			err = 0; | 
 | 		} | 
 | 	} else { | 
 | 		err = derive_key_aes(payload->raw, ctx, derived_key, | 
 | 				     mode->keysize); | 
 | 	} | 
 | 	up_read(&key->sem); | 
 | 	key_put(key); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* Allocate and key a symmetric cipher object for the given encryption mode */ | 
 | static struct crypto_skcipher * | 
 | allocate_skcipher_for_mode(struct fscrypt_mode *mode, const u8 *raw_key, | 
 | 			   const struct inode *inode) | 
 | { | 
 | 	struct crypto_skcipher *tfm; | 
 | 	int err; | 
 |  | 
 | 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); | 
 | 	if (IS_ERR(tfm)) { | 
 | 		fscrypt_warn(inode->i_sb, | 
 | 			     "error allocating '%s' transform for inode %lu: %ld", | 
 | 			     mode->cipher_str, inode->i_ino, PTR_ERR(tfm)); | 
 | 		return tfm; | 
 | 	} | 
 | 	if (unlikely(!mode->logged_impl_name)) { | 
 | 		/* | 
 | 		 * fscrypt performance can vary greatly depending on which | 
 | 		 * crypto algorithm implementation is used.  Help people debug | 
 | 		 * performance problems by logging the ->cra_driver_name the | 
 | 		 * first time a mode is used.  Note that multiple threads can | 
 | 		 * race here, but it doesn't really matter. | 
 | 		 */ | 
 | 		mode->logged_impl_name = true; | 
 | 		pr_info("fscrypt: %s using implementation \"%s\"\n", | 
 | 			mode->friendly_name, | 
 | 			crypto_skcipher_alg(tfm)->base.cra_driver_name); | 
 | 	} | 
 | 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); | 
 | 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); | 
 | 	if (err) | 
 | 		goto err_free_tfm; | 
 |  | 
 | 	return tfm; | 
 |  | 
 | err_free_tfm: | 
 | 	crypto_free_skcipher(tfm); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* Master key referenced by FS_POLICY_FLAG_DIRECT_KEY policy */ | 
 | struct fscrypt_master_key { | 
 | 	struct hlist_node mk_node; | 
 | 	refcount_t mk_refcount; | 
 | 	const struct fscrypt_mode *mk_mode; | 
 | 	struct crypto_skcipher *mk_ctfm; | 
 | 	u8 mk_descriptor[FS_KEY_DESCRIPTOR_SIZE]; | 
 | 	u8 mk_raw[FS_MAX_KEY_SIZE]; | 
 | }; | 
 |  | 
 | static void free_master_key(struct fscrypt_master_key *mk) | 
 | { | 
 | 	if (mk) { | 
 | 		crypto_free_skcipher(mk->mk_ctfm); | 
 | 		kzfree(mk); | 
 | 	} | 
 | } | 
 |  | 
 | static void put_master_key(struct fscrypt_master_key *mk) | 
 | { | 
 | 	if (!refcount_dec_and_lock(&mk->mk_refcount, &fscrypt_master_keys_lock)) | 
 | 		return; | 
 | 	hash_del(&mk->mk_node); | 
 | 	spin_unlock(&fscrypt_master_keys_lock); | 
 |  | 
 | 	free_master_key(mk); | 
 | } | 
 |  | 
 | /* | 
 |  * Find/insert the given master key into the fscrypt_master_keys table.  If | 
 |  * found, it is returned with elevated refcount, and 'to_insert' is freed if | 
 |  * non-NULL.  If not found, 'to_insert' is inserted and returned if it's | 
 |  * non-NULL; otherwise NULL is returned. | 
 |  */ | 
 | static struct fscrypt_master_key * | 
 | find_or_insert_master_key(struct fscrypt_master_key *to_insert, | 
 | 			  const u8 *raw_key, const struct fscrypt_mode *mode, | 
 | 			  const struct fscrypt_info *ci) | 
 | { | 
 | 	unsigned long hash_key; | 
 | 	struct fscrypt_master_key *mk; | 
 |  | 
 | 	/* | 
 | 	 * Careful: to avoid potentially leaking secret key bytes via timing | 
 | 	 * information, we must key the hash table by descriptor rather than by | 
 | 	 * raw key, and use crypto_memneq() when comparing raw keys. | 
 | 	 */ | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(hash_key) > FS_KEY_DESCRIPTOR_SIZE); | 
 | 	memcpy(&hash_key, ci->ci_master_key_descriptor, sizeof(hash_key)); | 
 |  | 
 | 	spin_lock(&fscrypt_master_keys_lock); | 
 | 	hash_for_each_possible(fscrypt_master_keys, mk, mk_node, hash_key) { | 
 | 		if (memcmp(ci->ci_master_key_descriptor, mk->mk_descriptor, | 
 | 			   FS_KEY_DESCRIPTOR_SIZE) != 0) | 
 | 			continue; | 
 | 		if (mode != mk->mk_mode) | 
 | 			continue; | 
 | 		if (crypto_memneq(raw_key, mk->mk_raw, mode->keysize)) | 
 | 			continue; | 
 | 		/* using existing tfm with same (descriptor, mode, raw_key) */ | 
 | 		refcount_inc(&mk->mk_refcount); | 
 | 		spin_unlock(&fscrypt_master_keys_lock); | 
 | 		free_master_key(to_insert); | 
 | 		return mk; | 
 | 	} | 
 | 	if (to_insert) | 
 | 		hash_add(fscrypt_master_keys, &to_insert->mk_node, hash_key); | 
 | 	spin_unlock(&fscrypt_master_keys_lock); | 
 | 	return to_insert; | 
 | } | 
 |  | 
 | /* Prepare to encrypt directly using the master key in the given mode */ | 
 | static struct fscrypt_master_key * | 
 | fscrypt_get_master_key(const struct fscrypt_info *ci, struct fscrypt_mode *mode, | 
 | 		       const u8 *raw_key, const struct inode *inode) | 
 | { | 
 | 	struct fscrypt_master_key *mk; | 
 | 	int err; | 
 |  | 
 | 	/* Is there already a tfm for this key? */ | 
 | 	mk = find_or_insert_master_key(NULL, raw_key, mode, ci); | 
 | 	if (mk) | 
 | 		return mk; | 
 |  | 
 | 	/* Nope, allocate one. */ | 
 | 	mk = kzalloc(sizeof(*mk), GFP_NOFS); | 
 | 	if (!mk) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	refcount_set(&mk->mk_refcount, 1); | 
 | 	mk->mk_mode = mode; | 
 | 	mk->mk_ctfm = allocate_skcipher_for_mode(mode, raw_key, inode); | 
 | 	if (IS_ERR(mk->mk_ctfm)) { | 
 | 		err = PTR_ERR(mk->mk_ctfm); | 
 | 		mk->mk_ctfm = NULL; | 
 | 		goto err_free_mk; | 
 | 	} | 
 | 	memcpy(mk->mk_descriptor, ci->ci_master_key_descriptor, | 
 | 	       FS_KEY_DESCRIPTOR_SIZE); | 
 | 	memcpy(mk->mk_raw, raw_key, mode->keysize); | 
 |  | 
 | 	return find_or_insert_master_key(mk, raw_key, mode, ci); | 
 |  | 
 | err_free_mk: | 
 | 	free_master_key(mk); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt) | 
 | { | 
 | 	struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm); | 
 |  | 
 | 	/* init hash transform on demand */ | 
 | 	if (unlikely(!tfm)) { | 
 | 		struct crypto_shash *prev_tfm; | 
 |  | 
 | 		tfm = crypto_alloc_shash("sha256", 0, 0); | 
 | 		if (IS_ERR(tfm)) { | 
 | 			fscrypt_warn(NULL, | 
 | 				     "error allocating SHA-256 transform: %ld", | 
 | 				     PTR_ERR(tfm)); | 
 | 			return PTR_ERR(tfm); | 
 | 		} | 
 | 		prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm); | 
 | 		if (prev_tfm) { | 
 | 			crypto_free_shash(tfm); | 
 | 			tfm = prev_tfm; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	{ | 
 | 		SHASH_DESC_ON_STACK(desc, tfm); | 
 | 		desc->tfm = tfm; | 
 |  | 
 | 		return crypto_shash_digest(desc, key, keysize, salt); | 
 | 	} | 
 | } | 
 |  | 
 | static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key, | 
 | 				int keysize) | 
 | { | 
 | 	int err; | 
 | 	struct crypto_cipher *essiv_tfm; | 
 | 	u8 salt[SHA256_DIGEST_SIZE]; | 
 |  | 
 | 	essiv_tfm = crypto_alloc_cipher("aes", 0, 0); | 
 | 	if (IS_ERR(essiv_tfm)) | 
 | 		return PTR_ERR(essiv_tfm); | 
 |  | 
 | 	ci->ci_essiv_tfm = essiv_tfm; | 
 |  | 
 | 	err = derive_essiv_salt(raw_key, keysize, salt); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Using SHA256 to derive the salt/key will result in AES-256 being | 
 | 	 * used for IV generation. File contents encryption will still use the | 
 | 	 * configured keysize (AES-128) nevertheless. | 
 | 	 */ | 
 | 	err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | out: | 
 | 	memzero_explicit(salt, sizeof(salt)); | 
 | 	return err; | 
 | } | 
 |  | 
 | void __exit fscrypt_essiv_cleanup(void) | 
 | { | 
 | 	crypto_free_shash(essiv_hash_tfm); | 
 | } | 
 |  | 
 | /* | 
 |  * Given the encryption mode and key (normally the derived key, but for | 
 |  * FS_POLICY_FLAG_DIRECT_KEY mode it's the master key), set up the inode's | 
 |  * symmetric cipher transform object(s). | 
 |  */ | 
 | static int setup_crypto_transform(struct fscrypt_info *ci, | 
 | 				  struct fscrypt_mode *mode, | 
 | 				  const u8 *raw_key, const struct inode *inode) | 
 | { | 
 | 	struct fscrypt_master_key *mk; | 
 | 	struct crypto_skcipher *ctfm; | 
 | 	int err; | 
 |  | 
 | 	if (ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY) { | 
 | 		mk = fscrypt_get_master_key(ci, mode, raw_key, inode); | 
 | 		if (IS_ERR(mk)) | 
 | 			return PTR_ERR(mk); | 
 | 		ctfm = mk->mk_ctfm; | 
 | 	} else { | 
 | 		mk = NULL; | 
 | 		ctfm = allocate_skcipher_for_mode(mode, raw_key, inode); | 
 | 		if (IS_ERR(ctfm)) | 
 | 			return PTR_ERR(ctfm); | 
 | 	} | 
 | 	ci->ci_master_key = mk; | 
 | 	ci->ci_ctfm = ctfm; | 
 |  | 
 | 	if (mode->needs_essiv) { | 
 | 		/* ESSIV implies 16-byte IVs which implies !DIRECT_KEY */ | 
 | 		WARN_ON(mode->ivsize != AES_BLOCK_SIZE); | 
 | 		WARN_ON(ci->ci_flags & FS_POLICY_FLAG_DIRECT_KEY); | 
 |  | 
 | 		err = init_essiv_generator(ci, raw_key, mode->keysize); | 
 | 		if (err) { | 
 | 			fscrypt_warn(inode->i_sb, | 
 | 				     "error initializing ESSIV generator for inode %lu: %d", | 
 | 				     inode->i_ino, err); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void put_crypt_info(struct fscrypt_info *ci) | 
 | { | 
 | 	if (!ci) | 
 | 		return; | 
 |  | 
 | 	if (ci->ci_master_key) { | 
 | 		put_master_key(ci->ci_master_key); | 
 | 	} else { | 
 | 		crypto_free_skcipher(ci->ci_ctfm); | 
 | 		crypto_free_cipher(ci->ci_essiv_tfm); | 
 | 	} | 
 | 	kmem_cache_free(fscrypt_info_cachep, ci); | 
 | } | 
 |  | 
 | int fscrypt_get_encryption_info(struct inode *inode) | 
 | { | 
 | 	struct fscrypt_info *crypt_info; | 
 | 	struct fscrypt_context ctx; | 
 | 	struct fscrypt_mode *mode; | 
 | 	u8 *raw_key = NULL; | 
 | 	int res; | 
 |  | 
 | 	if (fscrypt_has_encryption_key(inode)) | 
 | 		return 0; | 
 |  | 
 | 	res = fscrypt_initialize(inode->i_sb->s_cop->flags); | 
 | 	if (res) | 
 | 		return res; | 
 |  | 
 | 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); | 
 | 	if (res < 0) { | 
 | 		if (!fscrypt_dummy_context_enabled(inode) || | 
 | 		    IS_ENCRYPTED(inode)) | 
 | 			return res; | 
 | 		/* Fake up a context for an unencrypted directory */ | 
 | 		memset(&ctx, 0, sizeof(ctx)); | 
 | 		ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1; | 
 | 		ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS; | 
 | 		ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS; | 
 | 		memset(ctx.master_key_descriptor, 0x42, FS_KEY_DESCRIPTOR_SIZE); | 
 | 	} else if (res != sizeof(ctx)) { | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (ctx.flags & ~FS_POLICY_FLAGS_VALID) | 
 | 		return -EINVAL; | 
 |  | 
 | 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS); | 
 | 	if (!crypt_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	crypt_info->ci_flags = ctx.flags; | 
 | 	crypt_info->ci_data_mode = ctx.contents_encryption_mode; | 
 | 	crypt_info->ci_filename_mode = ctx.filenames_encryption_mode; | 
 | 	memcpy(crypt_info->ci_master_key_descriptor, ctx.master_key_descriptor, | 
 | 	       FS_KEY_DESCRIPTOR_SIZE); | 
 | 	memcpy(crypt_info->ci_nonce, ctx.nonce, FS_KEY_DERIVATION_NONCE_SIZE); | 
 |  | 
 | 	mode = select_encryption_mode(crypt_info, inode); | 
 | 	if (IS_ERR(mode)) { | 
 | 		res = PTR_ERR(mode); | 
 | 		goto out; | 
 | 	} | 
 | 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); | 
 | 	crypt_info->ci_mode = mode; | 
 |  | 
 | 	/* | 
 | 	 * This cannot be a stack buffer because it may be passed to the | 
 | 	 * scatterlist crypto API as part of key derivation. | 
 | 	 */ | 
 | 	res = -ENOMEM; | 
 | 	raw_key = kmalloc(mode->keysize, GFP_NOFS); | 
 | 	if (!raw_key) | 
 | 		goto out; | 
 |  | 
 | 	res = find_and_derive_key(inode, &ctx, raw_key, mode); | 
 | 	if (res) | 
 | 		goto out; | 
 |  | 
 | 	res = setup_crypto_transform(crypt_info, mode, raw_key, inode); | 
 | 	if (res) | 
 | 		goto out; | 
 |  | 
 | 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) | 
 | 		crypt_info = NULL; | 
 | out: | 
 | 	if (res == -ENOKEY) | 
 | 		res = 0; | 
 | 	put_crypt_info(crypt_info); | 
 | 	kzfree(raw_key); | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_get_encryption_info); | 
 |  | 
 | /** | 
 |  * fscrypt_put_encryption_info - free most of an inode's fscrypt data | 
 |  * | 
 |  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is | 
 |  * being evicted.  An RCU grace period need not have elapsed yet. | 
 |  */ | 
 | void fscrypt_put_encryption_info(struct inode *inode) | 
 | { | 
 | 	put_crypt_info(inode->i_crypt_info); | 
 | 	inode->i_crypt_info = NULL; | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_put_encryption_info); | 
 |  | 
 | /** | 
 |  * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay | 
 |  * | 
 |  * Free the inode's cached decrypted symlink target, if any.  Filesystems must | 
 |  * call this after an RCU grace period, just before they free the inode. | 
 |  */ | 
 | void fscrypt_free_inode(struct inode *inode) | 
 | { | 
 | 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { | 
 | 		kfree(inode->i_link); | 
 | 		inode->i_link = NULL; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(fscrypt_free_inode); |