| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* Intel i7 core/Nehalem Memory Controller kernel module | 
 |  * | 
 |  * This driver supports the memory controllers found on the Intel | 
 |  * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, | 
 |  * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield | 
 |  * and Westmere-EP. | 
 |  * | 
 |  * Copyright (c) 2009-2010 by: | 
 |  *	 Mauro Carvalho Chehab | 
 |  * | 
 |  * Red Hat Inc. https://www.redhat.com | 
 |  * | 
 |  * Forked and adapted from the i5400_edac driver | 
 |  * | 
 |  * Based on the following public Intel datasheets: | 
 |  * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor | 
 |  * Datasheet, Volume 2: | 
 |  *	http://download.intel.com/design/processor/datashts/320835.pdf | 
 |  * Intel Xeon Processor 5500 Series Datasheet Volume 2 | 
 |  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf | 
 |  * also available at: | 
 |  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_ids.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/smp.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/div64.h> | 
 |  | 
 | #include "edac_module.h" | 
 |  | 
 | /* Static vars */ | 
 | static LIST_HEAD(i7core_edac_list); | 
 | static DEFINE_MUTEX(i7core_edac_lock); | 
 | static int probed; | 
 |  | 
 | static int use_pci_fixup; | 
 | module_param(use_pci_fixup, int, 0444); | 
 | MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); | 
 | /* | 
 |  * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core | 
 |  * registers start at bus 255, and are not reported by BIOS. | 
 |  * We currently find devices with only 2 sockets. In order to support more QPI | 
 |  * Quick Path Interconnect, just increment this number. | 
 |  */ | 
 | #define MAX_SOCKET_BUSES	2 | 
 |  | 
 |  | 
 | /* | 
 |  * Alter this version for the module when modifications are made | 
 |  */ | 
 | #define I7CORE_REVISION    " Ver: 1.0.0" | 
 | #define EDAC_MOD_STR      "i7core_edac" | 
 |  | 
 | /* | 
 |  * Debug macros | 
 |  */ | 
 | #define i7core_printk(level, fmt, arg...)			\ | 
 | 	edac_printk(level, "i7core", fmt, ##arg) | 
 |  | 
 | #define i7core_mc_printk(mci, level, fmt, arg...)		\ | 
 | 	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) | 
 |  | 
 | /* | 
 |  * i7core Memory Controller Registers | 
 |  */ | 
 |  | 
 | 	/* OFFSETS for Device 0 Function 0 */ | 
 |  | 
 | #define MC_CFG_CONTROL	0x90 | 
 |   #define MC_CFG_UNLOCK		0x02 | 
 |   #define MC_CFG_LOCK		0x00 | 
 |  | 
 | 	/* OFFSETS for Device 3 Function 0 */ | 
 |  | 
 | #define MC_CONTROL	0x48 | 
 | #define MC_STATUS	0x4c | 
 | #define MC_MAX_DOD	0x64 | 
 |  | 
 | /* | 
 |  * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: | 
 |  * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf | 
 |  */ | 
 |  | 
 | #define MC_TEST_ERR_RCV1	0x60 | 
 |   #define DIMM2_COR_ERR(r)			((r) & 0x7fff) | 
 |  | 
 | #define MC_TEST_ERR_RCV0	0x64 | 
 |   #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff) | 
 |   #define DIMM0_COR_ERR(r)			((r) & 0x7fff) | 
 |  | 
 | /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ | 
 | #define MC_SSRCONTROL		0x48 | 
 |   #define SSR_MODE_DISABLE	0x00 | 
 |   #define SSR_MODE_ENABLE	0x01 | 
 |   #define SSR_MODE_MASK		0x03 | 
 |  | 
 | #define MC_SCRUB_CONTROL	0x4c | 
 |   #define STARTSCRUB		(1 << 24) | 
 |   #define SCRUBINTERVAL_MASK    0xffffff | 
 |  | 
 | #define MC_COR_ECC_CNT_0	0x80 | 
 | #define MC_COR_ECC_CNT_1	0x84 | 
 | #define MC_COR_ECC_CNT_2	0x88 | 
 | #define MC_COR_ECC_CNT_3	0x8c | 
 | #define MC_COR_ECC_CNT_4	0x90 | 
 | #define MC_COR_ECC_CNT_5	0x94 | 
 |  | 
 | #define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff) | 
 | #define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff) | 
 |  | 
 |  | 
 | 	/* OFFSETS for Devices 4,5 and 6 Function 0 */ | 
 |  | 
 | #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 | 
 |   #define THREE_DIMMS_PRESENT		(1 << 24) | 
 |   #define SINGLE_QUAD_RANK_PRESENT	(1 << 23) | 
 |   #define QUAD_RANK_PRESENT		(1 << 22) | 
 |   #define REGISTERED_DIMM		(1 << 15) | 
 |  | 
 | #define MC_CHANNEL_MAPPER	0x60 | 
 |   #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1) | 
 |   #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1) | 
 |  | 
 | #define MC_CHANNEL_RANK_PRESENT 0x7c | 
 |   #define RANK_PRESENT_MASK		0xffff | 
 |  | 
 | #define MC_CHANNEL_ADDR_MATCH	0xf0 | 
 | #define MC_CHANNEL_ERROR_MASK	0xf8 | 
 | #define MC_CHANNEL_ERROR_INJECT	0xfc | 
 |   #define INJECT_ADDR_PARITY	0x10 | 
 |   #define INJECT_ECC		0x08 | 
 |   #define MASK_CACHELINE	0x06 | 
 |   #define MASK_FULL_CACHELINE	0x06 | 
 |   #define MASK_MSB32_CACHELINE	0x04 | 
 |   #define MASK_LSB32_CACHELINE	0x02 | 
 |   #define NO_MASK_CACHELINE	0x00 | 
 |   #define REPEAT_EN		0x01 | 
 |  | 
 | 	/* OFFSETS for Devices 4,5 and 6 Function 1 */ | 
 |  | 
 | #define MC_DOD_CH_DIMM0		0x48 | 
 | #define MC_DOD_CH_DIMM1		0x4c | 
 | #define MC_DOD_CH_DIMM2		0x50 | 
 |   #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10)) | 
 |   #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10) | 
 |   #define DIMM_PRESENT_MASK	(1 << 9) | 
 |   #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9) | 
 |   #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7)) | 
 |   #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7) | 
 |   #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5)) | 
 |   #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5) | 
 |   #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2)) | 
 |   #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2) | 
 |   #define MC_DOD_NUMCOL_MASK		3 | 
 |   #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK) | 
 |  | 
 | #define MC_RANK_PRESENT		0x7c | 
 |  | 
 | #define MC_SAG_CH_0	0x80 | 
 | #define MC_SAG_CH_1	0x84 | 
 | #define MC_SAG_CH_2	0x88 | 
 | #define MC_SAG_CH_3	0x8c | 
 | #define MC_SAG_CH_4	0x90 | 
 | #define MC_SAG_CH_5	0x94 | 
 | #define MC_SAG_CH_6	0x98 | 
 | #define MC_SAG_CH_7	0x9c | 
 |  | 
 | #define MC_RIR_LIMIT_CH_0	0x40 | 
 | #define MC_RIR_LIMIT_CH_1	0x44 | 
 | #define MC_RIR_LIMIT_CH_2	0x48 | 
 | #define MC_RIR_LIMIT_CH_3	0x4C | 
 | #define MC_RIR_LIMIT_CH_4	0x50 | 
 | #define MC_RIR_LIMIT_CH_5	0x54 | 
 | #define MC_RIR_LIMIT_CH_6	0x58 | 
 | #define MC_RIR_LIMIT_CH_7	0x5C | 
 | #define MC_RIR_LIMIT_MASK	((1 << 10) - 1) | 
 |  | 
 | #define MC_RIR_WAY_CH		0x80 | 
 |   #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7) | 
 |   #define MC_RIR_WAY_RANK_MASK		0x7 | 
 |  | 
 | /* | 
 |  * i7core structs | 
 |  */ | 
 |  | 
 | #define NUM_CHANS 3 | 
 | #define MAX_DIMMS 3		/* Max DIMMS per channel */ | 
 | #define MAX_MCR_FUNC  4 | 
 | #define MAX_CHAN_FUNC 3 | 
 |  | 
 | struct i7core_info { | 
 | 	u32	mc_control; | 
 | 	u32	mc_status; | 
 | 	u32	max_dod; | 
 | 	u32	ch_map; | 
 | }; | 
 |  | 
 |  | 
 | struct i7core_inject { | 
 | 	int	enable; | 
 |  | 
 | 	u32	section; | 
 | 	u32	type; | 
 | 	u32	eccmask; | 
 |  | 
 | 	/* Error address mask */ | 
 | 	int channel, dimm, rank, bank, page, col; | 
 | }; | 
 |  | 
 | struct i7core_channel { | 
 | 	bool		is_3dimms_present; | 
 | 	bool		is_single_4rank; | 
 | 	bool		has_4rank; | 
 | 	u32		dimms; | 
 | }; | 
 |  | 
 | struct pci_id_descr { | 
 | 	int			dev; | 
 | 	int			func; | 
 | 	int 			dev_id; | 
 | 	int			optional; | 
 | }; | 
 |  | 
 | struct pci_id_table { | 
 | 	const struct pci_id_descr	*descr; | 
 | 	int				n_devs; | 
 | }; | 
 |  | 
 | struct i7core_dev { | 
 | 	struct list_head	list; | 
 | 	u8			socket; | 
 | 	struct pci_dev		**pdev; | 
 | 	int			n_devs; | 
 | 	struct mem_ctl_info	*mci; | 
 | }; | 
 |  | 
 | struct i7core_pvt { | 
 | 	struct device *addrmatch_dev, *chancounts_dev; | 
 |  | 
 | 	struct pci_dev	*pci_noncore; | 
 | 	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1]; | 
 | 	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; | 
 |  | 
 | 	struct i7core_dev *i7core_dev; | 
 |  | 
 | 	struct i7core_info	info; | 
 | 	struct i7core_inject	inject; | 
 | 	struct i7core_channel	channel[NUM_CHANS]; | 
 |  | 
 | 	int		ce_count_available; | 
 |  | 
 | 			/* ECC corrected errors counts per udimm */ | 
 | 	unsigned long	udimm_ce_count[MAX_DIMMS]; | 
 | 	int		udimm_last_ce_count[MAX_DIMMS]; | 
 | 			/* ECC corrected errors counts per rdimm */ | 
 | 	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; | 
 | 	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; | 
 |  | 
 | 	bool		is_registered, enable_scrub; | 
 |  | 
 | 	/* DCLK Frequency used for computing scrub rate */ | 
 | 	int			dclk_freq; | 
 |  | 
 | 	/* Struct to control EDAC polling */ | 
 | 	struct edac_pci_ctl_info *i7core_pci; | 
 | }; | 
 |  | 
 | #define PCI_DESCR(device, function, device_id)	\ | 
 | 	.dev = (device),			\ | 
 | 	.func = (function),			\ | 
 | 	.dev_id = (device_id) | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { | 
 | 		/* Memory controller */ | 
 | 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     }, | 
 | 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  }, | 
 | 			/* Exists only for RDIMM */ | 
 | 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  }, | 
 | 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, | 
 |  | 
 | 		/* Channel 0 */ | 
 | 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, | 
 | 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, | 
 | 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, | 
 | 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   }, | 
 |  | 
 | 		/* Channel 1 */ | 
 | 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, | 
 | 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, | 
 | 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, | 
 | 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   }, | 
 |  | 
 | 		/* Channel 2 */ | 
 | 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, | 
 | 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, | 
 | 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, | 
 | 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   }, | 
 |  | 
 | 		/* Generic Non-core registers */ | 
 | 	/* | 
 | 	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) | 
 | 	 * On Xeon 55xx, however, it has a different id (8086:2c40). So, | 
 | 	 * the probing code needs to test for the other address in case of | 
 | 	 * failure of this one | 
 | 	 */ | 
 | 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  }, | 
 |  | 
 | }; | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_lynnfield[] = { | 
 | 	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         }, | 
 | 	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      }, | 
 | 	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     }, | 
 |  | 
 | 	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, | 
 | 	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, | 
 | 	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, | 
 | 	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   }, | 
 |  | 
 | 	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, | 
 | 	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, | 
 | 	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, | 
 | 	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   }, | 
 |  | 
 | 	/* | 
 | 	 * This is the PCI device has an alternate address on some | 
 | 	 * processors like Core i7 860 | 
 | 	 */ | 
 | 	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     }, | 
 | }; | 
 |  | 
 | static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { | 
 | 		/* Memory controller */ | 
 | 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     }, | 
 | 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  }, | 
 | 			/* Exists only for RDIMM */ | 
 | 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  }, | 
 | 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, | 
 |  | 
 | 		/* Channel 0 */ | 
 | 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, | 
 | 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, | 
 | 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, | 
 | 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   }, | 
 |  | 
 | 		/* Channel 1 */ | 
 | 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, | 
 | 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, | 
 | 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, | 
 | 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   }, | 
 |  | 
 | 		/* Channel 2 */ | 
 | 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, | 
 | 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, | 
 | 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, | 
 | 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   }, | 
 |  | 
 | 		/* Generic Non-core registers */ | 
 | 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  }, | 
 |  | 
 | }; | 
 |  | 
 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | 
 | static const struct pci_id_table pci_dev_table[] = { | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), | 
 | 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /* | 
 |  *	pci_device_id	table for which devices we are looking for | 
 |  */ | 
 | static const struct pci_device_id i7core_pci_tbl[] = { | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, | 
 | 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, | 
 | 	{0,}			/* 0 terminated list. */ | 
 | }; | 
 |  | 
 | /**************************************************************************** | 
 | 			Ancillary status routines | 
 |  ****************************************************************************/ | 
 |  | 
 | 	/* MC_CONTROL bits */ | 
 | #define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch))) | 
 | #define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1)) | 
 |  | 
 | 	/* MC_STATUS bits */ | 
 | #define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4)) | 
 | #define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch)) | 
 |  | 
 | 	/* MC_MAX_DOD read functions */ | 
 | static inline int numdimms(u32 dimms) | 
 | { | 
 | 	return (dimms & 0x3) + 1; | 
 | } | 
 |  | 
 | static inline int numrank(u32 rank) | 
 | { | 
 | 	static const int ranks[] = { 1, 2, 4, -EINVAL }; | 
 |  | 
 | 	return ranks[rank & 0x3]; | 
 | } | 
 |  | 
 | static inline int numbank(u32 bank) | 
 | { | 
 | 	static const int banks[] = { 4, 8, 16, -EINVAL }; | 
 |  | 
 | 	return banks[bank & 0x3]; | 
 | } | 
 |  | 
 | static inline int numrow(u32 row) | 
 | { | 
 | 	static const int rows[] = { | 
 | 		1 << 12, 1 << 13, 1 << 14, 1 << 15, | 
 | 		1 << 16, -EINVAL, -EINVAL, -EINVAL, | 
 | 	}; | 
 |  | 
 | 	return rows[row & 0x7]; | 
 | } | 
 |  | 
 | static inline int numcol(u32 col) | 
 | { | 
 | 	static const int cols[] = { | 
 | 		1 << 10, 1 << 11, 1 << 12, -EINVAL, | 
 | 	}; | 
 | 	return cols[col & 0x3]; | 
 | } | 
 |  | 
 | static struct i7core_dev *get_i7core_dev(u8 socket) | 
 | { | 
 | 	struct i7core_dev *i7core_dev; | 
 |  | 
 | 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) { | 
 | 		if (i7core_dev->socket == socket) | 
 | 			return i7core_dev; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct i7core_dev *alloc_i7core_dev(u8 socket, | 
 | 					   const struct pci_id_table *table) | 
 | { | 
 | 	struct i7core_dev *i7core_dev; | 
 |  | 
 | 	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); | 
 | 	if (!i7core_dev) | 
 | 		return NULL; | 
 |  | 
 | 	i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev), | 
 | 				   GFP_KERNEL); | 
 | 	if (!i7core_dev->pdev) { | 
 | 		kfree(i7core_dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	i7core_dev->socket = socket; | 
 | 	i7core_dev->n_devs = table->n_devs; | 
 | 	list_add_tail(&i7core_dev->list, &i7core_edac_list); | 
 |  | 
 | 	return i7core_dev; | 
 | } | 
 |  | 
 | static void free_i7core_dev(struct i7core_dev *i7core_dev) | 
 | { | 
 | 	list_del(&i7core_dev->list); | 
 | 	kfree(i7core_dev->pdev); | 
 | 	kfree(i7core_dev); | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Memory check routines | 
 |  ****************************************************************************/ | 
 |  | 
 | static int get_dimm_config(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	int i, j; | 
 | 	enum edac_type mode; | 
 | 	enum mem_type mtype; | 
 | 	struct dimm_info *dimm; | 
 |  | 
 | 	/* Get data from the MC register, function 0 */ | 
 | 	pdev = pvt->pci_mcr[0]; | 
 | 	if (!pdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Device 3 function 0 reads */ | 
 | 	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); | 
 | 	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); | 
 | 	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); | 
 | 	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); | 
 |  | 
 | 	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", | 
 | 		 pvt->i7core_dev->socket, pvt->info.mc_control, | 
 | 		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); | 
 |  | 
 | 	if (ECC_ENABLED(pvt)) { | 
 | 		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); | 
 | 		if (ECCx8(pvt)) | 
 | 			mode = EDAC_S8ECD8ED; | 
 | 		else | 
 | 			mode = EDAC_S4ECD4ED; | 
 | 	} else { | 
 | 		edac_dbg(0, "ECC disabled\n"); | 
 | 		mode = EDAC_NONE; | 
 | 	} | 
 |  | 
 | 	/* FIXME: need to handle the error codes */ | 
 | 	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", | 
 | 		 numdimms(pvt->info.max_dod), | 
 | 		 numrank(pvt->info.max_dod >> 2), | 
 | 		 numbank(pvt->info.max_dod >> 4), | 
 | 		 numrow(pvt->info.max_dod >> 6), | 
 | 		 numcol(pvt->info.max_dod >> 9)); | 
 |  | 
 | 	for (i = 0; i < NUM_CHANS; i++) { | 
 | 		u32 data, dimm_dod[3], value[8]; | 
 |  | 
 | 		if (!pvt->pci_ch[i][0]) | 
 | 			continue; | 
 |  | 
 | 		if (!CH_ACTIVE(pvt, i)) { | 
 | 			edac_dbg(0, "Channel %i is not active\n", i); | 
 | 			continue; | 
 | 		} | 
 | 		if (CH_DISABLED(pvt, i)) { | 
 | 			edac_dbg(0, "Channel %i is disabled\n", i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Devices 4-6 function 0 */ | 
 | 		pci_read_config_dword(pvt->pci_ch[i][0], | 
 | 				MC_CHANNEL_DIMM_INIT_PARAMS, &data); | 
 |  | 
 |  | 
 | 		if (data & THREE_DIMMS_PRESENT) | 
 | 			pvt->channel[i].is_3dimms_present = true; | 
 |  | 
 | 		if (data & SINGLE_QUAD_RANK_PRESENT) | 
 | 			pvt->channel[i].is_single_4rank = true; | 
 |  | 
 | 		if (data & QUAD_RANK_PRESENT) | 
 | 			pvt->channel[i].has_4rank = true; | 
 |  | 
 | 		if (data & REGISTERED_DIMM) | 
 | 			mtype = MEM_RDDR3; | 
 | 		else | 
 | 			mtype = MEM_DDR3; | 
 |  | 
 | 		/* Devices 4-6 function 1 */ | 
 | 		pci_read_config_dword(pvt->pci_ch[i][1], | 
 | 				MC_DOD_CH_DIMM0, &dimm_dod[0]); | 
 | 		pci_read_config_dword(pvt->pci_ch[i][1], | 
 | 				MC_DOD_CH_DIMM1, &dimm_dod[1]); | 
 | 		pci_read_config_dword(pvt->pci_ch[i][1], | 
 | 				MC_DOD_CH_DIMM2, &dimm_dod[2]); | 
 |  | 
 | 		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", | 
 | 			 i, | 
 | 			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), | 
 | 			 data, | 
 | 			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", | 
 | 			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", | 
 | 			 pvt->channel[i].has_4rank ? "HAS_4R " : "", | 
 | 			 (data & REGISTERED_DIMM) ? 'R' : 'U'); | 
 |  | 
 | 		for (j = 0; j < 3; j++) { | 
 | 			u32 banks, ranks, rows, cols; | 
 | 			u32 size, npages; | 
 |  | 
 | 			if (!DIMM_PRESENT(dimm_dod[j])) | 
 | 				continue; | 
 |  | 
 | 			dimm = edac_get_dimm(mci, i, j, 0); | 
 | 			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); | 
 | 			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); | 
 | 			rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); | 
 | 			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); | 
 |  | 
 | 			/* DDR3 has 8 I/O banks */ | 
 | 			size = (rows * cols * banks * ranks) >> (20 - 3); | 
 |  | 
 | 			edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", | 
 | 				 j, size, | 
 | 				 RANKOFFSET(dimm_dod[j]), | 
 | 				 banks, ranks, rows, cols); | 
 |  | 
 | 			npages = MiB_TO_PAGES(size); | 
 |  | 
 | 			dimm->nr_pages = npages; | 
 |  | 
 | 			switch (banks) { | 
 | 			case 4: | 
 | 				dimm->dtype = DEV_X4; | 
 | 				break; | 
 | 			case 8: | 
 | 				dimm->dtype = DEV_X8; | 
 | 				break; | 
 | 			case 16: | 
 | 				dimm->dtype = DEV_X16; | 
 | 				break; | 
 | 			default: | 
 | 				dimm->dtype = DEV_UNKNOWN; | 
 | 			} | 
 |  | 
 | 			snprintf(dimm->label, sizeof(dimm->label), | 
 | 				 "CPU#%uChannel#%u_DIMM#%u", | 
 | 				 pvt->i7core_dev->socket, i, j); | 
 | 			dimm->grain = 8; | 
 | 			dimm->edac_mode = mode; | 
 | 			dimm->mtype = mtype; | 
 | 		} | 
 |  | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); | 
 | 		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); | 
 | 		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); | 
 | 		for (j = 0; j < 8; j++) | 
 | 			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", | 
 | 				 (value[j] >> 27) & 0x1, | 
 | 				 (value[j] >> 24) & 0x7, | 
 | 				 (value[j] & ((1 << 24) - 1))); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Error insertion routines | 
 |  ****************************************************************************/ | 
 |  | 
 | #define to_mci(k) container_of(k, struct mem_ctl_info, dev) | 
 |  | 
 | /* The i7core has independent error injection features per channel. | 
 |    However, to have a simpler code, we don't allow enabling error injection | 
 |    on more than one channel. | 
 |    Also, since a change at an inject parameter will be applied only at enable, | 
 |    we're disabling error injection on all write calls to the sysfs nodes that | 
 |    controls the error code injection. | 
 |  */ | 
 | static int disable_inject(const struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	pvt->inject.enable = 0; | 
 |  | 
 | 	if (!pvt->pci_ch[pvt->inject.channel][0]) | 
 | 		return -ENODEV; | 
 |  | 
 | 	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], | 
 | 				MC_CHANNEL_ERROR_INJECT, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * i7core inject inject.section | 
 |  * | 
 |  *	accept and store error injection inject.section value | 
 |  *	bit 0 - refers to the lower 32-byte half cacheline | 
 |  *	bit 1 - refers to the upper 32-byte half cacheline | 
 |  */ | 
 | static ssize_t i7core_inject_section_store(struct device *dev, | 
 | 					   struct device_attribute *mattr, | 
 | 					   const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int rc; | 
 |  | 
 | 	if (pvt->inject.enable) | 
 | 		disable_inject(mci); | 
 |  | 
 | 	rc = kstrtoul(data, 10, &value); | 
 | 	if ((rc < 0) || (value > 3)) | 
 | 		return -EIO; | 
 |  | 
 | 	pvt->inject.section = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t i7core_inject_section_show(struct device *dev, | 
 | 					  struct device_attribute *mattr, | 
 | 					  char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	return sprintf(data, "0x%08x\n", pvt->inject.section); | 
 | } | 
 |  | 
 | /* | 
 |  * i7core inject.type | 
 |  * | 
 |  *	accept and store error injection inject.section value | 
 |  *	bit 0 - repeat enable - Enable error repetition | 
 |  *	bit 1 - inject ECC error | 
 |  *	bit 2 - inject parity error | 
 |  */ | 
 | static ssize_t i7core_inject_type_store(struct device *dev, | 
 | 					struct device_attribute *mattr, | 
 | 					const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int rc; | 
 |  | 
 | 	if (pvt->inject.enable) | 
 | 		disable_inject(mci); | 
 |  | 
 | 	rc = kstrtoul(data, 10, &value); | 
 | 	if ((rc < 0) || (value > 7)) | 
 | 		return -EIO; | 
 |  | 
 | 	pvt->inject.type = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t i7core_inject_type_show(struct device *dev, | 
 | 				       struct device_attribute *mattr, | 
 | 				       char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	return sprintf(data, "0x%08x\n", pvt->inject.type); | 
 | } | 
 |  | 
 | /* | 
 |  * i7core_inject_inject.eccmask_store | 
 |  * | 
 |  * The type of error (UE/CE) will depend on the inject.eccmask value: | 
 |  *   Any bits set to a 1 will flip the corresponding ECC bit | 
 |  *   Correctable errors can be injected by flipping 1 bit or the bits within | 
 |  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or | 
 |  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an | 
 |  *   uncorrectable error to be injected. | 
 |  */ | 
 | static ssize_t i7core_inject_eccmask_store(struct device *dev, | 
 | 					   struct device_attribute *mattr, | 
 | 					   const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int rc; | 
 |  | 
 | 	if (pvt->inject.enable) | 
 | 		disable_inject(mci); | 
 |  | 
 | 	rc = kstrtoul(data, 10, &value); | 
 | 	if (rc < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	pvt->inject.eccmask = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t i7core_inject_eccmask_show(struct device *dev, | 
 | 					  struct device_attribute *mattr, | 
 | 					  char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	return sprintf(data, "0x%08x\n", pvt->inject.eccmask); | 
 | } | 
 |  | 
 | /* | 
 |  * i7core_addrmatch | 
 |  * | 
 |  * The type of error (UE/CE) will depend on the inject.eccmask value: | 
 |  *   Any bits set to a 1 will flip the corresponding ECC bit | 
 |  *   Correctable errors can be injected by flipping 1 bit or the bits within | 
 |  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or | 
 |  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an | 
 |  *   uncorrectable error to be injected. | 
 |  */ | 
 |  | 
 | #define DECLARE_ADDR_MATCH(param, limit)			\ | 
 | static ssize_t i7core_inject_store_##param(			\ | 
 | 	struct device *dev,					\ | 
 | 	struct device_attribute *mattr,				\ | 
 | 	const char *data, size_t count)				\ | 
 | {								\ | 
 | 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\ | 
 | 	struct i7core_pvt *pvt;					\ | 
 | 	long value;						\ | 
 | 	int rc;							\ | 
 | 								\ | 
 | 	edac_dbg(1, "\n");					\ | 
 | 	pvt = mci->pvt_info;					\ | 
 | 								\ | 
 | 	if (pvt->inject.enable)					\ | 
 | 		disable_inject(mci);				\ | 
 | 								\ | 
 | 	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ | 
 | 		value = -1;					\ | 
 | 	else {							\ | 
 | 		rc = kstrtoul(data, 10, &value);		\ | 
 | 		if ((rc < 0) || (value >= limit))		\ | 
 | 			return -EIO;				\ | 
 | 	}							\ | 
 | 								\ | 
 | 	pvt->inject.param = value;				\ | 
 | 								\ | 
 | 	return count;						\ | 
 | }								\ | 
 | 								\ | 
 | static ssize_t i7core_inject_show_##param(			\ | 
 | 	struct device *dev,					\ | 
 | 	struct device_attribute *mattr,				\ | 
 | 	char *data)						\ | 
 | {								\ | 
 | 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\ | 
 | 	struct i7core_pvt *pvt;					\ | 
 | 								\ | 
 | 	pvt = mci->pvt_info;					\ | 
 | 	edac_dbg(1, "pvt=%p\n", pvt);				\ | 
 | 	if (pvt->inject.param < 0)				\ | 
 | 		return sprintf(data, "any\n");			\ | 
 | 	else							\ | 
 | 		return sprintf(data, "%d\n", pvt->inject.param);\ | 
 | } | 
 |  | 
 | #define ATTR_ADDR_MATCH(param)					\ | 
 | 	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\ | 
 | 		    i7core_inject_show_##param,			\ | 
 | 		    i7core_inject_store_##param) | 
 |  | 
 | DECLARE_ADDR_MATCH(channel, 3); | 
 | DECLARE_ADDR_MATCH(dimm, 3); | 
 | DECLARE_ADDR_MATCH(rank, 4); | 
 | DECLARE_ADDR_MATCH(bank, 32); | 
 | DECLARE_ADDR_MATCH(page, 0x10000); | 
 | DECLARE_ADDR_MATCH(col, 0x4000); | 
 |  | 
 | ATTR_ADDR_MATCH(channel); | 
 | ATTR_ADDR_MATCH(dimm); | 
 | ATTR_ADDR_MATCH(rank); | 
 | ATTR_ADDR_MATCH(bank); | 
 | ATTR_ADDR_MATCH(page); | 
 | ATTR_ADDR_MATCH(col); | 
 |  | 
 | static int write_and_test(struct pci_dev *dev, const int where, const u32 val) | 
 | { | 
 | 	u32 read; | 
 | 	int count; | 
 |  | 
 | 	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", | 
 | 		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), | 
 | 		 where, val); | 
 |  | 
 | 	for (count = 0; count < 10; count++) { | 
 | 		if (count) | 
 | 			msleep(100); | 
 | 		pci_write_config_dword(dev, where, val); | 
 | 		pci_read_config_dword(dev, where, &read); | 
 |  | 
 | 		if (read == val) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " | 
 | 		"write=%08x. Read=%08x\n", | 
 | 		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), | 
 | 		where, val, read); | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine prepares the Memory Controller for error injection. | 
 |  * The error will be injected when some process tries to write to the | 
 |  * memory that matches the given criteria. | 
 |  * The criteria can be set in terms of a mask where dimm, rank, bank, page | 
 |  * and col can be specified. | 
 |  * A -1 value for any of the mask items will make the MCU to ignore | 
 |  * that matching criteria for error injection. | 
 |  * | 
 |  * It should be noticed that the error will only happen after a write operation | 
 |  * on a memory that matches the condition. if REPEAT_EN is not enabled at | 
 |  * inject mask, then it will produce just one error. Otherwise, it will repeat | 
 |  * until the injectmask would be cleaned. | 
 |  * | 
 |  * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD | 
 |  *    is reliable enough to check if the MC is using the | 
 |  *    three channels. However, this is not clear at the datasheet. | 
 |  */ | 
 | static ssize_t i7core_inject_enable_store(struct device *dev, | 
 | 					  struct device_attribute *mattr, | 
 | 					  const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 injectmask; | 
 | 	u64 mask = 0; | 
 | 	int  rc; | 
 | 	long enable; | 
 |  | 
 | 	if (!pvt->pci_ch[pvt->inject.channel][0]) | 
 | 		return 0; | 
 |  | 
 | 	rc = kstrtoul(data, 10, &enable); | 
 | 	if ((rc < 0)) | 
 | 		return 0; | 
 |  | 
 | 	if (enable) { | 
 | 		pvt->inject.enable = 1; | 
 | 	} else { | 
 | 		disable_inject(mci); | 
 | 		return count; | 
 | 	} | 
 |  | 
 | 	/* Sets pvt->inject.dimm mask */ | 
 | 	if (pvt->inject.dimm < 0) | 
 | 		mask |= 1LL << 41; | 
 | 	else { | 
 | 		if (pvt->channel[pvt->inject.channel].dimms > 2) | 
 | 			mask |= (pvt->inject.dimm & 0x3LL) << 35; | 
 | 		else | 
 | 			mask |= (pvt->inject.dimm & 0x1LL) << 36; | 
 | 	} | 
 |  | 
 | 	/* Sets pvt->inject.rank mask */ | 
 | 	if (pvt->inject.rank < 0) | 
 | 		mask |= 1LL << 40; | 
 | 	else { | 
 | 		if (pvt->channel[pvt->inject.channel].dimms > 2) | 
 | 			mask |= (pvt->inject.rank & 0x1LL) << 34; | 
 | 		else | 
 | 			mask |= (pvt->inject.rank & 0x3LL) << 34; | 
 | 	} | 
 |  | 
 | 	/* Sets pvt->inject.bank mask */ | 
 | 	if (pvt->inject.bank < 0) | 
 | 		mask |= 1LL << 39; | 
 | 	else | 
 | 		mask |= (pvt->inject.bank & 0x15LL) << 30; | 
 |  | 
 | 	/* Sets pvt->inject.page mask */ | 
 | 	if (pvt->inject.page < 0) | 
 | 		mask |= 1LL << 38; | 
 | 	else | 
 | 		mask |= (pvt->inject.page & 0xffff) << 14; | 
 |  | 
 | 	/* Sets pvt->inject.column mask */ | 
 | 	if (pvt->inject.col < 0) | 
 | 		mask |= 1LL << 37; | 
 | 	else | 
 | 		mask |= (pvt->inject.col & 0x3fff); | 
 |  | 
 | 	/* | 
 | 	 * bit    0: REPEAT_EN | 
 | 	 * bits 1-2: MASK_HALF_CACHELINE | 
 | 	 * bit    3: INJECT_ECC | 
 | 	 * bit    4: INJECT_ADDR_PARITY | 
 | 	 */ | 
 |  | 
 | 	injectmask = (pvt->inject.type & 1) | | 
 | 		     (pvt->inject.section & 0x3) << 1 | | 
 | 		     (pvt->inject.type & 0x6) << (3 - 1); | 
 |  | 
 | 	/* Unlock writes to registers - this register is write only */ | 
 | 	pci_write_config_dword(pvt->pci_noncore, | 
 | 			       MC_CFG_CONTROL, 0x2); | 
 |  | 
 | 	write_and_test(pvt->pci_ch[pvt->inject.channel][0], | 
 | 			       MC_CHANNEL_ADDR_MATCH, mask); | 
 | 	write_and_test(pvt->pci_ch[pvt->inject.channel][0], | 
 | 			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); | 
 |  | 
 | 	write_and_test(pvt->pci_ch[pvt->inject.channel][0], | 
 | 			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); | 
 |  | 
 | 	write_and_test(pvt->pci_ch[pvt->inject.channel][0], | 
 | 			       MC_CHANNEL_ERROR_INJECT, injectmask); | 
 |  | 
 | 	/* | 
 | 	 * This is something undocumented, based on my tests | 
 | 	 * Without writing 8 to this register, errors aren't injected. Not sure | 
 | 	 * why. | 
 | 	 */ | 
 | 	pci_write_config_dword(pvt->pci_noncore, | 
 | 			       MC_CFG_CONTROL, 8); | 
 |  | 
 | 	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", | 
 | 		 mask, pvt->inject.eccmask, injectmask); | 
 |  | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t i7core_inject_enable_show(struct device *dev, | 
 | 					 struct device_attribute *mattr, | 
 | 					 char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 injectmask; | 
 |  | 
 | 	if (!pvt->pci_ch[pvt->inject.channel][0]) | 
 | 		return 0; | 
 |  | 
 | 	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], | 
 | 			       MC_CHANNEL_ERROR_INJECT, &injectmask); | 
 |  | 
 | 	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); | 
 |  | 
 | 	if (injectmask & 0x0c) | 
 | 		pvt->inject.enable = 1; | 
 |  | 
 | 	return sprintf(data, "%d\n", pvt->inject.enable); | 
 | } | 
 |  | 
 | #define DECLARE_COUNTER(param)					\ | 
 | static ssize_t i7core_show_counter_##param(			\ | 
 | 	struct device *dev,					\ | 
 | 	struct device_attribute *mattr,				\ | 
 | 	char *data)						\ | 
 | {								\ | 
 | 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\ | 
 | 	struct i7core_pvt *pvt = mci->pvt_info;			\ | 
 | 								\ | 
 | 	edac_dbg(1, "\n");					\ | 
 | 	if (!pvt->ce_count_available || (pvt->is_registered))	\ | 
 | 		return sprintf(data, "data unavailable\n");	\ | 
 | 	return sprintf(data, "%lu\n",				\ | 
 | 			pvt->udimm_ce_count[param]);		\ | 
 | } | 
 |  | 
 | #define ATTR_COUNTER(param)					\ | 
 | 	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\ | 
 | 		    i7core_show_counter_##param,		\ | 
 | 		    NULL) | 
 |  | 
 | DECLARE_COUNTER(0); | 
 | DECLARE_COUNTER(1); | 
 | DECLARE_COUNTER(2); | 
 |  | 
 | ATTR_COUNTER(0); | 
 | ATTR_COUNTER(1); | 
 | ATTR_COUNTER(2); | 
 |  | 
 | /* | 
 |  * inject_addrmatch device sysfs struct | 
 |  */ | 
 |  | 
 | static struct attribute *i7core_addrmatch_attrs[] = { | 
 | 	&dev_attr_channel.attr, | 
 | 	&dev_attr_dimm.attr, | 
 | 	&dev_attr_rank.attr, | 
 | 	&dev_attr_bank.attr, | 
 | 	&dev_attr_page.attr, | 
 | 	&dev_attr_col.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group addrmatch_grp = { | 
 | 	.attrs	= i7core_addrmatch_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *addrmatch_groups[] = { | 
 | 	&addrmatch_grp, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static void addrmatch_release(struct device *device) | 
 | { | 
 | 	edac_dbg(1, "Releasing device %s\n", dev_name(device)); | 
 | 	kfree(device); | 
 | } | 
 |  | 
 | static const struct device_type addrmatch_type = { | 
 | 	.groups		= addrmatch_groups, | 
 | 	.release	= addrmatch_release, | 
 | }; | 
 |  | 
 | /* | 
 |  * all_channel_counts sysfs struct | 
 |  */ | 
 |  | 
 | static struct attribute *i7core_udimm_counters_attrs[] = { | 
 | 	&dev_attr_udimm0.attr, | 
 | 	&dev_attr_udimm1.attr, | 
 | 	&dev_attr_udimm2.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group all_channel_counts_grp = { | 
 | 	.attrs	= i7core_udimm_counters_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *all_channel_counts_groups[] = { | 
 | 	&all_channel_counts_grp, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static void all_channel_counts_release(struct device *device) | 
 | { | 
 | 	edac_dbg(1, "Releasing device %s\n", dev_name(device)); | 
 | 	kfree(device); | 
 | } | 
 |  | 
 | static const struct device_type all_channel_counts_type = { | 
 | 	.groups		= all_channel_counts_groups, | 
 | 	.release	= all_channel_counts_release, | 
 | }; | 
 |  | 
 | /* | 
 |  * inject sysfs attributes | 
 |  */ | 
 |  | 
 | static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, | 
 | 		   i7core_inject_section_show, i7core_inject_section_store); | 
 |  | 
 | static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, | 
 | 		   i7core_inject_type_show, i7core_inject_type_store); | 
 |  | 
 |  | 
 | static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, | 
 | 		   i7core_inject_eccmask_show, i7core_inject_eccmask_store); | 
 |  | 
 | static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, | 
 | 		   i7core_inject_enable_show, i7core_inject_enable_store); | 
 |  | 
 | static struct attribute *i7core_dev_attrs[] = { | 
 | 	&dev_attr_inject_section.attr, | 
 | 	&dev_attr_inject_type.attr, | 
 | 	&dev_attr_inject_eccmask.attr, | 
 | 	&dev_attr_inject_enable.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | ATTRIBUTE_GROUPS(i7core_dev); | 
 |  | 
 | static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	int rc; | 
 |  | 
 | 	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); | 
 | 	if (!pvt->addrmatch_dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pvt->addrmatch_dev->type = &addrmatch_type; | 
 | 	pvt->addrmatch_dev->bus = mci->dev.bus; | 
 | 	device_initialize(pvt->addrmatch_dev); | 
 | 	pvt->addrmatch_dev->parent = &mci->dev; | 
 | 	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); | 
 | 	dev_set_drvdata(pvt->addrmatch_dev, mci); | 
 |  | 
 | 	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); | 
 |  | 
 | 	rc = device_add(pvt->addrmatch_dev); | 
 | 	if (rc < 0) | 
 | 		goto err_put_addrmatch; | 
 |  | 
 | 	if (!pvt->is_registered) { | 
 | 		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), | 
 | 					      GFP_KERNEL); | 
 | 		if (!pvt->chancounts_dev) { | 
 | 			rc = -ENOMEM; | 
 | 			goto err_del_addrmatch; | 
 | 		} | 
 |  | 
 | 		pvt->chancounts_dev->type = &all_channel_counts_type; | 
 | 		pvt->chancounts_dev->bus = mci->dev.bus; | 
 | 		device_initialize(pvt->chancounts_dev); | 
 | 		pvt->chancounts_dev->parent = &mci->dev; | 
 | 		dev_set_name(pvt->chancounts_dev, "all_channel_counts"); | 
 | 		dev_set_drvdata(pvt->chancounts_dev, mci); | 
 |  | 
 | 		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); | 
 |  | 
 | 		rc = device_add(pvt->chancounts_dev); | 
 | 		if (rc < 0) | 
 | 			goto err_put_chancounts; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | err_put_chancounts: | 
 | 	put_device(pvt->chancounts_dev); | 
 | err_del_addrmatch: | 
 | 	device_del(pvt->addrmatch_dev); | 
 | err_put_addrmatch: | 
 | 	put_device(pvt->addrmatch_dev); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	edac_dbg(1, "\n"); | 
 |  | 
 | 	if (!pvt->is_registered) { | 
 | 		device_del(pvt->chancounts_dev); | 
 | 		put_device(pvt->chancounts_dev); | 
 | 	} | 
 | 	device_del(pvt->addrmatch_dev); | 
 | 	put_device(pvt->addrmatch_dev); | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 	Device initialization routines: put/get, init/exit | 
 |  ****************************************************************************/ | 
 |  | 
 | /* | 
 |  *	i7core_put_all_devices	'put' all the devices that we have | 
 |  *				reserved via 'get' | 
 |  */ | 
 | static void i7core_put_devices(struct i7core_dev *i7core_dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	edac_dbg(0, "\n"); | 
 | 	for (i = 0; i < i7core_dev->n_devs; i++) { | 
 | 		struct pci_dev *pdev = i7core_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 | 		edac_dbg(0, "Removing dev %02x:%02x.%d\n", | 
 | 			 pdev->bus->number, | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | 
 | 		pci_dev_put(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void i7core_put_all_devices(void) | 
 | { | 
 | 	struct i7core_dev *i7core_dev, *tmp; | 
 |  | 
 | 	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { | 
 | 		i7core_put_devices(i7core_dev); | 
 | 		free_i7core_dev(i7core_dev); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) | 
 | { | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses | 
 | 	 * aren't announced by acpi. So, we need to use a legacy scan probing | 
 | 	 * to detect them | 
 | 	 */ | 
 | 	while (table && table->descr) { | 
 | 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); | 
 | 		if (unlikely(!pdev)) { | 
 | 			for (i = 0; i < MAX_SOCKET_BUSES; i++) | 
 | 				pcibios_scan_specific_bus(255-i); | 
 | 		} | 
 | 		pci_dev_put(pdev); | 
 | 		table++; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned i7core_pci_lastbus(void) | 
 | { | 
 | 	int last_bus = 0, bus; | 
 | 	struct pci_bus *b = NULL; | 
 |  | 
 | 	while ((b = pci_find_next_bus(b)) != NULL) { | 
 | 		bus = b->number; | 
 | 		edac_dbg(0, "Found bus %d\n", bus); | 
 | 		if (bus > last_bus) | 
 | 			last_bus = bus; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "Last bus %d\n", last_bus); | 
 |  | 
 | 	return last_bus; | 
 | } | 
 |  | 
 | /* | 
 |  *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's | 
 |  *			device/functions we want to reference for this driver | 
 |  * | 
 |  *			Need to 'get' device 16 func 1 and func 2 | 
 |  */ | 
 | static int i7core_get_onedevice(struct pci_dev **prev, | 
 | 				const struct pci_id_table *table, | 
 | 				const unsigned devno, | 
 | 				const unsigned last_bus) | 
 | { | 
 | 	struct i7core_dev *i7core_dev; | 
 | 	const struct pci_id_descr *dev_descr = &table->descr[devno]; | 
 |  | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	u8 bus = 0; | 
 | 	u8 socket = 0; | 
 |  | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 			      dev_descr->dev_id, *prev); | 
 |  | 
 | 	/* | 
 | 	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs | 
 | 	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need | 
 | 	 * to probe for the alternate address in case of failure | 
 | 	 */ | 
 | 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { | 
 | 		pci_dev_get(*prev);	/* pci_get_device will put it */ | 
 | 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); | 
 | 	} | 
 |  | 
 | 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && | 
 | 	    !pdev) { | 
 | 		pci_dev_get(*prev);	/* pci_get_device will put it */ | 
 | 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | 
 | 				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, | 
 | 				      *prev); | 
 | 	} | 
 |  | 
 | 	if (!pdev) { | 
 | 		if (*prev) { | 
 | 			*prev = pdev; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (dev_descr->optional) | 
 | 			return 0; | 
 |  | 
 | 		if (devno == 0) | 
 | 			return -ENODEV; | 
 |  | 
 | 		i7core_printk(KERN_INFO, | 
 | 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n", | 
 | 			dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 		/* End of list, leave */ | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	bus = pdev->bus->number; | 
 |  | 
 | 	socket = last_bus - bus; | 
 |  | 
 | 	i7core_dev = get_i7core_dev(socket); | 
 | 	if (!i7core_dev) { | 
 | 		i7core_dev = alloc_i7core_dev(socket, table); | 
 | 		if (!i7core_dev) { | 
 | 			pci_dev_put(pdev); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i7core_dev->pdev[devno]) { | 
 | 		i7core_printk(KERN_ERR, | 
 | 			"Duplicated device for " | 
 | 			"dev %02x:%02x.%d PCI ID %04x:%04x\n", | 
 | 			bus, dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		pci_dev_put(pdev); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	i7core_dev->pdev[devno] = pdev; | 
 |  | 
 | 	/* Sanity check */ | 
 | 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | 
 | 			PCI_FUNC(pdev->devfn) != dev_descr->func)) { | 
 | 		i7core_printk(KERN_ERR, | 
 | 			"Device PCI ID %04x:%04x " | 
 | 			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | 
 | 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			bus, dev_descr->dev, dev_descr->func); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Be sure that the device is enabled */ | 
 | 	if (unlikely(pci_enable_device(pdev) < 0)) { | 
 | 		i7core_printk(KERN_ERR, | 
 | 			"Couldn't enable " | 
 | 			"dev %02x:%02x.%d PCI ID %04x:%04x\n", | 
 | 			bus, dev_descr->dev, dev_descr->func, | 
 | 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", | 
 | 		 socket, bus, dev_descr->dev, | 
 | 		 dev_descr->func, | 
 | 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | 
 |  | 
 | 	/* | 
 | 	 * As stated on drivers/pci/search.c, the reference count for | 
 | 	 * @from is always decremented if it is not %NULL. So, as we need | 
 | 	 * to get all devices up to null, we need to do a get for the device | 
 | 	 */ | 
 | 	pci_dev_get(pdev); | 
 |  | 
 | 	*prev = pdev; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int i7core_get_all_devices(void) | 
 | { | 
 | 	int i, rc, last_bus; | 
 | 	struct pci_dev *pdev = NULL; | 
 | 	const struct pci_id_table *table = pci_dev_table; | 
 |  | 
 | 	last_bus = i7core_pci_lastbus(); | 
 |  | 
 | 	while (table && table->descr) { | 
 | 		for (i = 0; i < table->n_devs; i++) { | 
 | 			pdev = NULL; | 
 | 			do { | 
 | 				rc = i7core_get_onedevice(&pdev, table, i, | 
 | 							  last_bus); | 
 | 				if (rc < 0) { | 
 | 					if (i == 0) { | 
 | 						i = table->n_devs; | 
 | 						break; | 
 | 					} | 
 | 					i7core_put_all_devices(); | 
 | 					return -ENODEV; | 
 | 				} | 
 | 			} while (pdev); | 
 | 		} | 
 | 		table++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mci_bind_devs(struct mem_ctl_info *mci, | 
 | 			 struct i7core_dev *i7core_dev) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	int i, func, slot; | 
 | 	char *family; | 
 |  | 
 | 	pvt->is_registered = false; | 
 | 	pvt->enable_scrub  = false; | 
 | 	for (i = 0; i < i7core_dev->n_devs; i++) { | 
 | 		pdev = i7core_dev->pdev[i]; | 
 | 		if (!pdev) | 
 | 			continue; | 
 |  | 
 | 		func = PCI_FUNC(pdev->devfn); | 
 | 		slot = PCI_SLOT(pdev->devfn); | 
 | 		if (slot == 3) { | 
 | 			if (unlikely(func > MAX_MCR_FUNC)) | 
 | 				goto error; | 
 | 			pvt->pci_mcr[func] = pdev; | 
 | 		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { | 
 | 			if (unlikely(func > MAX_CHAN_FUNC)) | 
 | 				goto error; | 
 | 			pvt->pci_ch[slot - 4][func] = pdev; | 
 | 		} else if (!slot && !func) { | 
 | 			pvt->pci_noncore = pdev; | 
 |  | 
 | 			/* Detect the processor family */ | 
 | 			switch (pdev->device) { | 
 | 			case PCI_DEVICE_ID_INTEL_I7_NONCORE: | 
 | 				family = "Xeon 35xx/ i7core"; | 
 | 				pvt->enable_scrub = false; | 
 | 				break; | 
 | 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: | 
 | 				family = "i7-800/i5-700"; | 
 | 				pvt->enable_scrub = false; | 
 | 				break; | 
 | 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: | 
 | 				family = "Xeon 34xx"; | 
 | 				pvt->enable_scrub = false; | 
 | 				break; | 
 | 			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: | 
 | 				family = "Xeon 55xx"; | 
 | 				pvt->enable_scrub = true; | 
 | 				break; | 
 | 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: | 
 | 				family = "Xeon 56xx / i7-900"; | 
 | 				pvt->enable_scrub = true; | 
 | 				break; | 
 | 			default: | 
 | 				family = "unknown"; | 
 | 				pvt->enable_scrub = false; | 
 | 			} | 
 | 			edac_dbg(0, "Detected a processor type %s\n", family); | 
 | 		} else | 
 | 			goto error; | 
 |  | 
 | 		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", | 
 | 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | 
 | 			 pdev, i7core_dev->socket); | 
 |  | 
 | 		if (PCI_SLOT(pdev->devfn) == 3 && | 
 | 			PCI_FUNC(pdev->devfn) == 2) | 
 | 			pvt->is_registered = true; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	i7core_printk(KERN_ERR, "Device %d, function %d " | 
 | 		      "is out of the expected range\n", | 
 | 		      slot, func); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 | 			Error check routines | 
 |  ****************************************************************************/ | 
 |  | 
 | static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, | 
 | 					 const int chan, | 
 | 					 const int new0, | 
 | 					 const int new1, | 
 | 					 const int new2) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	int add0 = 0, add1 = 0, add2 = 0; | 
 | 	/* Updates CE counters if it is not the first time here */ | 
 | 	if (pvt->ce_count_available) { | 
 | 		/* Updates CE counters */ | 
 |  | 
 | 		add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; | 
 | 		add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; | 
 | 		add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; | 
 |  | 
 | 		if (add2 < 0) | 
 | 			add2 += 0x7fff; | 
 | 		pvt->rdimm_ce_count[chan][2] += add2; | 
 |  | 
 | 		if (add1 < 0) | 
 | 			add1 += 0x7fff; | 
 | 		pvt->rdimm_ce_count[chan][1] += add1; | 
 |  | 
 | 		if (add0 < 0) | 
 | 			add0 += 0x7fff; | 
 | 		pvt->rdimm_ce_count[chan][0] += add0; | 
 | 	} else | 
 | 		pvt->ce_count_available = 1; | 
 |  | 
 | 	/* Store the new values */ | 
 | 	pvt->rdimm_last_ce_count[chan][2] = new2; | 
 | 	pvt->rdimm_last_ce_count[chan][1] = new1; | 
 | 	pvt->rdimm_last_ce_count[chan][0] = new0; | 
 |  | 
 | 	/*updated the edac core */ | 
 | 	if (add0 != 0) | 
 | 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, | 
 | 				     0, 0, 0, | 
 | 				     chan, 0, -1, "error", ""); | 
 | 	if (add1 != 0) | 
 | 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, | 
 | 				     0, 0, 0, | 
 | 				     chan, 1, -1, "error", ""); | 
 | 	if (add2 != 0) | 
 | 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, | 
 | 				     0, 0, 0, | 
 | 				     chan, 2, -1, "error", ""); | 
 | } | 
 |  | 
 | static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 rcv[3][2]; | 
 | 	int i, new0, new1, new2; | 
 |  | 
 | 	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/ | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, | 
 | 								&rcv[0][0]); | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, | 
 | 								&rcv[0][1]); | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, | 
 | 								&rcv[1][0]); | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, | 
 | 								&rcv[1][1]); | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, | 
 | 								&rcv[2][0]); | 
 | 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, | 
 | 								&rcv[2][1]); | 
 | 	for (i = 0 ; i < 3; i++) { | 
 | 		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", | 
 | 			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); | 
 | 		/*if the channel has 3 dimms*/ | 
 | 		if (pvt->channel[i].dimms > 2) { | 
 | 			new0 = DIMM_BOT_COR_ERR(rcv[i][0]); | 
 | 			new1 = DIMM_TOP_COR_ERR(rcv[i][0]); | 
 | 			new2 = DIMM_BOT_COR_ERR(rcv[i][1]); | 
 | 		} else { | 
 | 			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + | 
 | 					DIMM_BOT_COR_ERR(rcv[i][0]); | 
 | 			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + | 
 | 					DIMM_BOT_COR_ERR(rcv[i][1]); | 
 | 			new2 = 0; | 
 | 		} | 
 |  | 
 | 		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); | 
 | 	} | 
 | } | 
 |  | 
 | /* This function is based on the device 3 function 4 registers as described on: | 
 |  * Intel Xeon Processor 5500 Series Datasheet Volume 2 | 
 |  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf | 
 |  * also available at: | 
 |  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf | 
 |  */ | 
 | static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 rcv1, rcv0; | 
 | 	int new0, new1, new2; | 
 |  | 
 | 	if (!pvt->pci_mcr[4]) { | 
 | 		edac_dbg(0, "MCR registers not found\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Corrected test errors */ | 
 | 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); | 
 | 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); | 
 |  | 
 | 	/* Store the new values */ | 
 | 	new2 = DIMM2_COR_ERR(rcv1); | 
 | 	new1 = DIMM1_COR_ERR(rcv0); | 
 | 	new0 = DIMM0_COR_ERR(rcv0); | 
 |  | 
 | 	/* Updates CE counters if it is not the first time here */ | 
 | 	if (pvt->ce_count_available) { | 
 | 		/* Updates CE counters */ | 
 | 		int add0, add1, add2; | 
 |  | 
 | 		add2 = new2 - pvt->udimm_last_ce_count[2]; | 
 | 		add1 = new1 - pvt->udimm_last_ce_count[1]; | 
 | 		add0 = new0 - pvt->udimm_last_ce_count[0]; | 
 |  | 
 | 		if (add2 < 0) | 
 | 			add2 += 0x7fff; | 
 | 		pvt->udimm_ce_count[2] += add2; | 
 |  | 
 | 		if (add1 < 0) | 
 | 			add1 += 0x7fff; | 
 | 		pvt->udimm_ce_count[1] += add1; | 
 |  | 
 | 		if (add0 < 0) | 
 | 			add0 += 0x7fff; | 
 | 		pvt->udimm_ce_count[0] += add0; | 
 |  | 
 | 		if (add0 | add1 | add2) | 
 | 			i7core_printk(KERN_ERR, "New Corrected error(s): " | 
 | 				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", | 
 | 				      add0, add1, add2); | 
 | 	} else | 
 | 		pvt->ce_count_available = 1; | 
 |  | 
 | 	/* Store the new values */ | 
 | 	pvt->udimm_last_ce_count[2] = new2; | 
 | 	pvt->udimm_last_ce_count[1] = new1; | 
 | 	pvt->udimm_last_ce_count[0] = new0; | 
 | } | 
 |  | 
 | /* | 
 |  * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 | 
 |  * Architectures Software Developer’s Manual Volume 3B. | 
 |  * Nehalem are defined as family 0x06, model 0x1a | 
 |  * | 
 |  * The MCA registers used here are the following ones: | 
 |  *     struct mce field	MCA Register | 
 |  *     m->status	MSR_IA32_MC8_STATUS | 
 |  *     m->addr		MSR_IA32_MC8_ADDR | 
 |  *     m->misc		MSR_IA32_MC8_MISC | 
 |  * In the case of Nehalem, the error information is masked at .status and .misc | 
 |  * fields | 
 |  */ | 
 | static void i7core_mce_output_error(struct mem_ctl_info *mci, | 
 | 				    const struct mce *m) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	char *optype, *err; | 
 | 	enum hw_event_mc_err_type tp_event; | 
 | 	unsigned long error = m->status & 0x1ff0000l; | 
 | 	bool uncorrected_error = m->mcgstatus & 1ll << 61; | 
 | 	bool ripv = m->mcgstatus & 1; | 
 | 	u32 optypenum = (m->status >> 4) & 0x07; | 
 | 	u32 core_err_cnt = (m->status >> 38) & 0x7fff; | 
 | 	u32 dimm = (m->misc >> 16) & 0x3; | 
 | 	u32 channel = (m->misc >> 18) & 0x3; | 
 | 	u32 syndrome = m->misc >> 32; | 
 | 	u32 errnum = find_first_bit(&error, 32); | 
 |  | 
 | 	if (uncorrected_error) { | 
 | 		core_err_cnt = 1; | 
 | 		if (ripv) | 
 | 			tp_event = HW_EVENT_ERR_UNCORRECTED; | 
 | 		else | 
 | 			tp_event = HW_EVENT_ERR_FATAL; | 
 | 	} else { | 
 | 		tp_event = HW_EVENT_ERR_CORRECTED; | 
 | 	} | 
 |  | 
 | 	switch (optypenum) { | 
 | 	case 0: | 
 | 		optype = "generic undef request"; | 
 | 		break; | 
 | 	case 1: | 
 | 		optype = "read error"; | 
 | 		break; | 
 | 	case 2: | 
 | 		optype = "write error"; | 
 | 		break; | 
 | 	case 3: | 
 | 		optype = "addr/cmd error"; | 
 | 		break; | 
 | 	case 4: | 
 | 		optype = "scrubbing error"; | 
 | 		break; | 
 | 	default: | 
 | 		optype = "reserved"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	switch (errnum) { | 
 | 	case 16: | 
 | 		err = "read ECC error"; | 
 | 		break; | 
 | 	case 17: | 
 | 		err = "RAS ECC error"; | 
 | 		break; | 
 | 	case 18: | 
 | 		err = "write parity error"; | 
 | 		break; | 
 | 	case 19: | 
 | 		err = "redundancy loss"; | 
 | 		break; | 
 | 	case 20: | 
 | 		err = "reserved"; | 
 | 		break; | 
 | 	case 21: | 
 | 		err = "memory range error"; | 
 | 		break; | 
 | 	case 22: | 
 | 		err = "RTID out of range"; | 
 | 		break; | 
 | 	case 23: | 
 | 		err = "address parity error"; | 
 | 		break; | 
 | 	case 24: | 
 | 		err = "byte enable parity error"; | 
 | 		break; | 
 | 	default: | 
 | 		err = "unknown"; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Call the helper to output message | 
 | 	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates | 
 | 	 * only one event | 
 | 	 */ | 
 | 	if (uncorrected_error || !pvt->is_registered) | 
 | 		edac_mc_handle_error(tp_event, mci, core_err_cnt, | 
 | 				     m->addr >> PAGE_SHIFT, | 
 | 				     m->addr & ~PAGE_MASK, | 
 | 				     syndrome, | 
 | 				     channel, dimm, -1, | 
 | 				     err, optype); | 
 | } | 
 |  | 
 | /* | 
 |  *	i7core_check_error	Retrieve and process errors reported by the | 
 |  *				hardware. Called by the Core module. | 
 |  */ | 
 | static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	i7core_mce_output_error(mci, m); | 
 |  | 
 | 	/* | 
 | 	 * Now, let's increment CE error counts | 
 | 	 */ | 
 | 	if (!pvt->is_registered) | 
 | 		i7core_udimm_check_mc_ecc_err(mci); | 
 | 	else | 
 | 		i7core_rdimm_check_mc_ecc_err(mci); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that logging is enabled and that this is the right type | 
 |  * of error for us to handle. | 
 |  */ | 
 | static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, | 
 | 				  void *data) | 
 | { | 
 | 	struct mce *mce = (struct mce *)data; | 
 | 	struct i7core_dev *i7_dev; | 
 | 	struct mem_ctl_info *mci; | 
 |  | 
 | 	i7_dev = get_i7core_dev(mce->socketid); | 
 | 	if (!i7_dev || (mce->kflags & MCE_HANDLED_CEC)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	mci = i7_dev->mci; | 
 |  | 
 | 	/* | 
 | 	 * Just let mcelog handle it if the error is | 
 | 	 * outside the memory controller | 
 | 	 */ | 
 | 	if (((mce->status & 0xffff) >> 7) != 1) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* Bank 8 registers are the only ones that we know how to handle */ | 
 | 	if (mce->bank != 8) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	i7core_check_error(mci, mce); | 
 |  | 
 | 	/* Advise mcelog that the errors were handled */ | 
 | 	mce->kflags |= MCE_HANDLED_EDAC; | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block i7_mce_dec = { | 
 | 	.notifier_call	= i7core_mce_check_error, | 
 | 	.priority	= MCE_PRIO_EDAC, | 
 | }; | 
 |  | 
 | struct memdev_dmi_entry { | 
 | 	u8 type; | 
 | 	u8 length; | 
 | 	u16 handle; | 
 | 	u16 phys_mem_array_handle; | 
 | 	u16 mem_err_info_handle; | 
 | 	u16 total_width; | 
 | 	u16 data_width; | 
 | 	u16 size; | 
 | 	u8 form; | 
 | 	u8 device_set; | 
 | 	u8 device_locator; | 
 | 	u8 bank_locator; | 
 | 	u8 memory_type; | 
 | 	u16 type_detail; | 
 | 	u16 speed; | 
 | 	u8 manufacturer; | 
 | 	u8 serial_number; | 
 | 	u8 asset_tag; | 
 | 	u8 part_number; | 
 | 	u8 attributes; | 
 | 	u32 extended_size; | 
 | 	u16 conf_mem_clk_speed; | 
 | } __attribute__((__packed__)); | 
 |  | 
 |  | 
 | /* | 
 |  * Decode the DRAM Clock Frequency, be paranoid, make sure that all | 
 |  * memory devices show the same speed, and if they don't then consider | 
 |  * all speeds to be invalid. | 
 |  */ | 
 | static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) | 
 | { | 
 | 	int *dclk_freq = _dclk_freq; | 
 | 	u16 dmi_mem_clk_speed; | 
 |  | 
 | 	if (*dclk_freq == -1) | 
 | 		return; | 
 |  | 
 | 	if (dh->type == DMI_ENTRY_MEM_DEVICE) { | 
 | 		struct memdev_dmi_entry *memdev_dmi_entry = | 
 | 			(struct memdev_dmi_entry *)dh; | 
 | 		unsigned long conf_mem_clk_speed_offset = | 
 | 			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - | 
 | 			(unsigned long)&memdev_dmi_entry->type; | 
 | 		unsigned long speed_offset = | 
 | 			(unsigned long)&memdev_dmi_entry->speed - | 
 | 			(unsigned long)&memdev_dmi_entry->type; | 
 |  | 
 | 		/* Check that a DIMM is present */ | 
 | 		if (memdev_dmi_entry->size == 0) | 
 | 			return; | 
 |  | 
 | 		/* | 
 | 		 * Pick the configured speed if it's available, otherwise | 
 | 		 * pick the DIMM speed, or we don't have a speed. | 
 | 		 */ | 
 | 		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { | 
 | 			dmi_mem_clk_speed = | 
 | 				memdev_dmi_entry->conf_mem_clk_speed; | 
 | 		} else if (memdev_dmi_entry->length > speed_offset) { | 
 | 			dmi_mem_clk_speed = memdev_dmi_entry->speed; | 
 | 		} else { | 
 | 			*dclk_freq = -1; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (*dclk_freq == 0) { | 
 | 			/* First pass, speed was 0 */ | 
 | 			if (dmi_mem_clk_speed > 0) { | 
 | 				/* Set speed if a valid speed is read */ | 
 | 				*dclk_freq = dmi_mem_clk_speed; | 
 | 			} else { | 
 | 				/* Otherwise we don't have a valid speed */ | 
 | 				*dclk_freq = -1; | 
 | 			} | 
 | 		} else if (*dclk_freq > 0 && | 
 | 			   *dclk_freq != dmi_mem_clk_speed) { | 
 | 			/* | 
 | 			 * If we have a speed, check that all DIMMS are the same | 
 | 			 * speed, otherwise set the speed as invalid. | 
 | 			 */ | 
 | 			*dclk_freq = -1; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The default DCLK frequency is used as a fallback if we | 
 |  * fail to find anything reliable in the DMI. The value | 
 |  * is taken straight from the datasheet. | 
 |  */ | 
 | #define DEFAULT_DCLK_FREQ 800 | 
 |  | 
 | static int get_dclk_freq(void) | 
 | { | 
 | 	int dclk_freq = 0; | 
 |  | 
 | 	dmi_walk(decode_dclk, (void *)&dclk_freq); | 
 |  | 
 | 	if (dclk_freq < 1) | 
 | 		return DEFAULT_DCLK_FREQ; | 
 |  | 
 | 	return dclk_freq; | 
 | } | 
 |  | 
 | /* | 
 |  * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate | 
 |  *				to hardware according to SCRUBINTERVAL formula | 
 |  *				found in datasheet. | 
 |  */ | 
 | static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	u32 dw_scrub; | 
 | 	u32 dw_ssr; | 
 |  | 
 | 	/* Get data from the MC register, function 2 */ | 
 | 	pdev = pvt->pci_mcr[2]; | 
 | 	if (!pdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); | 
 |  | 
 | 	if (new_bw == 0) { | 
 | 		/* Prepare to disable petrol scrub */ | 
 | 		dw_scrub &= ~STARTSCRUB; | 
 | 		/* Stop the patrol scrub engine */ | 
 | 		write_and_test(pdev, MC_SCRUB_CONTROL, | 
 | 			       dw_scrub & ~SCRUBINTERVAL_MASK); | 
 |  | 
 | 		/* Get current status of scrub rate and set bit to disable */ | 
 | 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); | 
 | 		dw_ssr &= ~SSR_MODE_MASK; | 
 | 		dw_ssr |= SSR_MODE_DISABLE; | 
 | 	} else { | 
 | 		const int cache_line_size = 64; | 
 | 		const u32 freq_dclk_mhz = pvt->dclk_freq; | 
 | 		unsigned long long scrub_interval; | 
 | 		/* | 
 | 		 * Translate the desired scrub rate to a register value and | 
 | 		 * program the corresponding register value. | 
 | 		 */ | 
 | 		scrub_interval = (unsigned long long)freq_dclk_mhz * | 
 | 			cache_line_size * 1000000; | 
 | 		do_div(scrub_interval, new_bw); | 
 |  | 
 | 		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) | 
 | 			return -EINVAL; | 
 |  | 
 | 		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; | 
 |  | 
 | 		/* Start the patrol scrub engine */ | 
 | 		pci_write_config_dword(pdev, MC_SCRUB_CONTROL, | 
 | 				       STARTSCRUB | dw_scrub); | 
 |  | 
 | 		/* Get current status of scrub rate and set bit to enable */ | 
 | 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); | 
 | 		dw_ssr &= ~SSR_MODE_MASK; | 
 | 		dw_ssr |= SSR_MODE_ENABLE; | 
 | 	} | 
 | 	/* Disable or enable scrubbing */ | 
 | 	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); | 
 |  | 
 | 	return new_bw; | 
 | } | 
 |  | 
 | /* | 
 |  * get_sdram_scrub_rate		This routine convert current scrub rate value | 
 |  *				into byte/sec bandwidth according to | 
 |  *				SCRUBINTERVAL formula found in datasheet. | 
 |  */ | 
 | static int get_sdram_scrub_rate(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	struct pci_dev *pdev; | 
 | 	const u32 cache_line_size = 64; | 
 | 	const u32 freq_dclk_mhz = pvt->dclk_freq; | 
 | 	unsigned long long scrub_rate; | 
 | 	u32 scrubval; | 
 |  | 
 | 	/* Get data from the MC register, function 2 */ | 
 | 	pdev = pvt->pci_mcr[2]; | 
 | 	if (!pdev) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Get current scrub control data */ | 
 | 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); | 
 |  | 
 | 	/* Mask highest 8-bits to 0 */ | 
 | 	scrubval &=  SCRUBINTERVAL_MASK; | 
 | 	if (!scrubval) | 
 | 		return 0; | 
 |  | 
 | 	/* Calculate scrub rate value into byte/sec bandwidth */ | 
 | 	scrub_rate =  (unsigned long long)freq_dclk_mhz * | 
 | 		1000000 * cache_line_size; | 
 | 	do_div(scrub_rate, scrubval); | 
 | 	return (int)scrub_rate; | 
 | } | 
 |  | 
 | static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 pci_lock; | 
 |  | 
 | 	/* Unlock writes to pci registers */ | 
 | 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); | 
 | 	pci_lock &= ~0x3; | 
 | 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, | 
 | 			       pci_lock | MC_CFG_UNLOCK); | 
 |  | 
 | 	mci->set_sdram_scrub_rate = set_sdram_scrub_rate; | 
 | 	mci->get_sdram_scrub_rate = get_sdram_scrub_rate; | 
 | } | 
 |  | 
 | static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct i7core_pvt *pvt = mci->pvt_info; | 
 | 	u32 pci_lock; | 
 |  | 
 | 	/* Lock writes to pci registers */ | 
 | 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); | 
 | 	pci_lock &= ~0x3; | 
 | 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, | 
 | 			       pci_lock | MC_CFG_LOCK); | 
 | } | 
 |  | 
 | static void i7core_pci_ctl_create(struct i7core_pvt *pvt) | 
 | { | 
 | 	pvt->i7core_pci = edac_pci_create_generic_ctl( | 
 | 						&pvt->i7core_dev->pdev[0]->dev, | 
 | 						EDAC_MOD_STR); | 
 | 	if (unlikely(!pvt->i7core_pci)) | 
 | 		i7core_printk(KERN_WARNING, | 
 | 			      "Unable to setup PCI error report via EDAC\n"); | 
 | } | 
 |  | 
 | static void i7core_pci_ctl_release(struct i7core_pvt *pvt) | 
 | { | 
 | 	if (likely(pvt->i7core_pci)) | 
 | 		edac_pci_release_generic_ctl(pvt->i7core_pci); | 
 | 	else | 
 | 		i7core_printk(KERN_ERR, | 
 | 				"Couldn't find mem_ctl_info for socket %d\n", | 
 | 				pvt->i7core_dev->socket); | 
 | 	pvt->i7core_pci = NULL; | 
 | } | 
 |  | 
 | static void i7core_unregister_mci(struct i7core_dev *i7core_dev) | 
 | { | 
 | 	struct mem_ctl_info *mci = i7core_dev->mci; | 
 | 	struct i7core_pvt *pvt; | 
 |  | 
 | 	if (unlikely(!mci || !mci->pvt_info)) { | 
 | 		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); | 
 |  | 
 | 		i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); | 
 |  | 
 | 	/* Disable scrubrate setting */ | 
 | 	if (pvt->enable_scrub) | 
 | 		disable_sdram_scrub_setting(mci); | 
 |  | 
 | 	/* Disable EDAC polling */ | 
 | 	i7core_pci_ctl_release(pvt); | 
 |  | 
 | 	/* Remove MC sysfs nodes */ | 
 | 	i7core_delete_sysfs_devices(mci); | 
 | 	edac_mc_del_mc(mci->pdev); | 
 |  | 
 | 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
 | 	kfree(mci->ctl_name); | 
 | 	edac_mc_free(mci); | 
 | 	i7core_dev->mci = NULL; | 
 | } | 
 |  | 
 | static int i7core_register_mci(struct i7core_dev *i7core_dev) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct i7core_pvt *pvt; | 
 | 	int rc; | 
 | 	struct edac_mc_layer layers[2]; | 
 |  | 
 | 	/* allocate a new MC control structure */ | 
 |  | 
 | 	layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
 | 	layers[0].size = NUM_CHANS; | 
 | 	layers[0].is_virt_csrow = false; | 
 | 	layers[1].type = EDAC_MC_LAYER_SLOT; | 
 | 	layers[1].size = MAX_DIMMS; | 
 | 	layers[1].is_virt_csrow = true; | 
 | 	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, | 
 | 			    sizeof(*pvt)); | 
 | 	if (unlikely(!mci)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	memset(pvt, 0, sizeof(*pvt)); | 
 |  | 
 | 	/* Associates i7core_dev and mci for future usage */ | 
 | 	pvt->i7core_dev = i7core_dev; | 
 | 	i7core_dev->mci = mci; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have | 
 | 	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different | 
 | 	 * memory channels | 
 | 	 */ | 
 | 	mci->mtype_cap = MEM_FLAG_DDR3; | 
 | 	mci->edac_ctl_cap = EDAC_FLAG_NONE; | 
 | 	mci->edac_cap = EDAC_FLAG_NONE; | 
 | 	mci->mod_name = "i7core_edac.c"; | 
 |  | 
 | 	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket); | 
 | 	if (!mci->ctl_name) { | 
 | 		rc = -ENOMEM; | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	mci->dev_name = pci_name(i7core_dev->pdev[0]); | 
 | 	mci->ctl_page_to_phys = NULL; | 
 |  | 
 | 	/* Store pci devices at mci for faster access */ | 
 | 	rc = mci_bind_devs(mci, i7core_dev); | 
 | 	if (unlikely(rc < 0)) | 
 | 		goto fail0; | 
 |  | 
 |  | 
 | 	/* Get dimm basic config */ | 
 | 	get_dimm_config(mci); | 
 | 	/* record ptr to the generic device */ | 
 | 	mci->pdev = &i7core_dev->pdev[0]->dev; | 
 |  | 
 | 	/* Enable scrubrate setting */ | 
 | 	if (pvt->enable_scrub) | 
 | 		enable_sdram_scrub_setting(mci); | 
 |  | 
 | 	/* add this new MC control structure to EDAC's list of MCs */ | 
 | 	if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { | 
 | 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
 | 		/* FIXME: perhaps some code should go here that disables error | 
 | 		 * reporting if we just enabled it | 
 | 		 */ | 
 |  | 
 | 		rc = -EINVAL; | 
 | 		goto fail0; | 
 | 	} | 
 | 	if (i7core_create_sysfs_devices(mci)) { | 
 | 		edac_dbg(0, "MC: failed to create sysfs nodes\n"); | 
 | 		edac_mc_del_mc(mci->pdev); | 
 | 		rc = -EINVAL; | 
 | 		goto fail0; | 
 | 	} | 
 |  | 
 | 	/* Default error mask is any memory */ | 
 | 	pvt->inject.channel = 0; | 
 | 	pvt->inject.dimm = -1; | 
 | 	pvt->inject.rank = -1; | 
 | 	pvt->inject.bank = -1; | 
 | 	pvt->inject.page = -1; | 
 | 	pvt->inject.col = -1; | 
 |  | 
 | 	/* allocating generic PCI control info */ | 
 | 	i7core_pci_ctl_create(pvt); | 
 |  | 
 | 	/* DCLK for scrub rate setting */ | 
 | 	pvt->dclk_freq = get_dclk_freq(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail0: | 
 | 	kfree(mci->ctl_name); | 
 |  | 
 | fail1: | 
 | 	edac_mc_free(mci); | 
 | 	i7core_dev->mci = NULL; | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	i7core_probe	Probe for ONE instance of device to see if it is | 
 |  *			present. | 
 |  *	return: | 
 |  *		0 for FOUND a device | 
 |  *		< 0 for error code | 
 |  */ | 
 |  | 
 | static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) | 
 | { | 
 | 	int rc, count = 0; | 
 | 	struct i7core_dev *i7core_dev; | 
 |  | 
 | 	/* get the pci devices we want to reserve for our use */ | 
 | 	mutex_lock(&i7core_edac_lock); | 
 |  | 
 | 	/* | 
 | 	 * All memory controllers are allocated at the first pass. | 
 | 	 */ | 
 | 	if (unlikely(probed >= 1)) { | 
 | 		mutex_unlock(&i7core_edac_lock); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	probed++; | 
 |  | 
 | 	rc = i7core_get_all_devices(); | 
 | 	if (unlikely(rc < 0)) | 
 | 		goto fail0; | 
 |  | 
 | 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) { | 
 | 		count++; | 
 | 		rc = i7core_register_mci(i7core_dev); | 
 | 		if (unlikely(rc < 0)) | 
 | 			goto fail1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Nehalem-EX uses a different memory controller. However, as the | 
 | 	 * memory controller is not visible on some Nehalem/Nehalem-EP, we | 
 | 	 * need to indirectly probe via a X58 PCI device. The same devices | 
 | 	 * are found on (some) Nehalem-EX. So, on those machines, the | 
 | 	 * probe routine needs to return -ENODEV, as the actual Memory | 
 | 	 * Controller registers won't be detected. | 
 | 	 */ | 
 | 	if (!count) { | 
 | 		rc = -ENODEV; | 
 | 		goto fail1; | 
 | 	} | 
 |  | 
 | 	i7core_printk(KERN_INFO, | 
 | 		      "Driver loaded, %d memory controller(s) found.\n", | 
 | 		      count); | 
 |  | 
 | 	mutex_unlock(&i7core_edac_lock); | 
 | 	return 0; | 
 |  | 
 | fail1: | 
 | 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) | 
 | 		i7core_unregister_mci(i7core_dev); | 
 |  | 
 | 	i7core_put_all_devices(); | 
 | fail0: | 
 | 	mutex_unlock(&i7core_edac_lock); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	i7core_remove	destructor for one instance of device | 
 |  * | 
 |  */ | 
 | static void i7core_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct i7core_dev *i7core_dev; | 
 |  | 
 | 	edac_dbg(0, "\n"); | 
 |  | 
 | 	/* | 
 | 	 * we have a trouble here: pdev value for removal will be wrong, since | 
 | 	 * it will point to the X58 register used to detect that the machine | 
 | 	 * is a Nehalem or upper design. However, due to the way several PCI | 
 | 	 * devices are grouped together to provide MC functionality, we need | 
 | 	 * to use a different method for releasing the devices | 
 | 	 */ | 
 |  | 
 | 	mutex_lock(&i7core_edac_lock); | 
 |  | 
 | 	if (unlikely(!probed)) { | 
 | 		mutex_unlock(&i7core_edac_lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) | 
 | 		i7core_unregister_mci(i7core_dev); | 
 |  | 
 | 	/* Release PCI resources */ | 
 | 	i7core_put_all_devices(); | 
 |  | 
 | 	probed--; | 
 |  | 
 | 	mutex_unlock(&i7core_edac_lock); | 
 | } | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); | 
 |  | 
 | /* | 
 |  *	i7core_driver	pci_driver structure for this module | 
 |  * | 
 |  */ | 
 | static struct pci_driver i7core_driver = { | 
 | 	.name     = "i7core_edac", | 
 | 	.probe    = i7core_probe, | 
 | 	.remove   = i7core_remove, | 
 | 	.id_table = i7core_pci_tbl, | 
 | }; | 
 |  | 
 | /* | 
 |  *	i7core_init		Module entry function | 
 |  *			Try to initialize this module for its devices | 
 |  */ | 
 | static int __init i7core_init(void) | 
 | { | 
 | 	int pci_rc; | 
 |  | 
 | 	edac_dbg(2, "\n"); | 
 |  | 
 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 	opstate_init(); | 
 |  | 
 | 	if (use_pci_fixup) | 
 | 		i7core_xeon_pci_fixup(pci_dev_table); | 
 |  | 
 | 	pci_rc = pci_register_driver(&i7core_driver); | 
 |  | 
 | 	if (pci_rc >= 0) { | 
 | 		mce_register_decode_chain(&i7_mce_dec); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", | 
 | 		      pci_rc); | 
 |  | 
 | 	return pci_rc; | 
 | } | 
 |  | 
 | /* | 
 |  *	i7core_exit()	Module exit function | 
 |  *			Unregister the driver | 
 |  */ | 
 | static void __exit i7core_exit(void) | 
 | { | 
 | 	edac_dbg(2, "\n"); | 
 | 	pci_unregister_driver(&i7core_driver); | 
 | 	mce_unregister_decode_chain(&i7_mce_dec); | 
 | } | 
 |  | 
 | module_init(i7core_init); | 
 | module_exit(i7core_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Mauro Carvalho Chehab"); | 
 | MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); | 
 | MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " | 
 | 		   I7CORE_REVISION); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |