|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * | 
|  | * Copyright 2016 Paul Mackerras, IBM Corp. <[email protected]> | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/pgtable.h> | 
|  |  | 
|  | #include <asm/kvm_ppc.h> | 
|  | #include <asm/kvm_book3s.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pte-walk.h> | 
|  | #include <asm/ultravisor.h> | 
|  | #include <asm/kvm_book3s_uvmem.h> | 
|  |  | 
|  | /* | 
|  | * Supported radix tree geometry. | 
|  | * Like p9, we support either 5 or 9 bits at the first (lowest) level, | 
|  | * for a page size of 64k or 4k. | 
|  | */ | 
|  | static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; | 
|  |  | 
|  | unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, | 
|  | gva_t eaddr, void *to, void *from, | 
|  | unsigned long n) | 
|  | { | 
|  | int old_pid, old_lpid; | 
|  | unsigned long quadrant, ret = n; | 
|  | bool is_load = !!to; | 
|  |  | 
|  | /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ | 
|  | if (kvmhv_on_pseries()) | 
|  | return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, | 
|  | (to != NULL) ? __pa(to): 0, | 
|  | (from != NULL) ? __pa(from): 0, n); | 
|  |  | 
|  | quadrant = 1; | 
|  | if (!pid) | 
|  | quadrant = 2; | 
|  | if (is_load) | 
|  | from = (void *) (eaddr | (quadrant << 62)); | 
|  | else | 
|  | to = (void *) (eaddr | (quadrant << 62)); | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | /* switch the lpid first to avoid running host with unallocated pid */ | 
|  | old_lpid = mfspr(SPRN_LPID); | 
|  | if (old_lpid != lpid) | 
|  | mtspr(SPRN_LPID, lpid); | 
|  | if (quadrant == 1) { | 
|  | old_pid = mfspr(SPRN_PID); | 
|  | if (old_pid != pid) | 
|  | mtspr(SPRN_PID, pid); | 
|  | } | 
|  | isync(); | 
|  |  | 
|  | pagefault_disable(); | 
|  | if (is_load) | 
|  | ret = __copy_from_user_inatomic(to, (const void __user *)from, n); | 
|  | else | 
|  | ret = __copy_to_user_inatomic((void __user *)to, from, n); | 
|  | pagefault_enable(); | 
|  |  | 
|  | /* switch the pid first to avoid running host with unallocated pid */ | 
|  | if (quadrant == 1 && pid != old_pid) | 
|  | mtspr(SPRN_PID, old_pid); | 
|  | if (lpid != old_lpid) | 
|  | mtspr(SPRN_LPID, old_lpid); | 
|  | isync(); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); | 
|  |  | 
|  | static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, | 
|  | void *to, void *from, unsigned long n) | 
|  | { | 
|  | int lpid = vcpu->kvm->arch.lpid; | 
|  | int pid = vcpu->arch.pid; | 
|  |  | 
|  | /* This would cause a data segment intr so don't allow the access */ | 
|  | if (eaddr & (0x3FFUL << 52)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Should we be using the nested lpid */ | 
|  | if (vcpu->arch.nested) | 
|  | lpid = vcpu->arch.nested->shadow_lpid; | 
|  |  | 
|  | /* If accessing quadrant 3 then pid is expected to be 0 */ | 
|  | if (((eaddr >> 62) & 0x3) == 0x3) | 
|  | pid = 0; | 
|  |  | 
|  | eaddr &= ~(0xFFFUL << 52); | 
|  |  | 
|  | return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); | 
|  | } | 
|  |  | 
|  | long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, | 
|  | unsigned long n) | 
|  | { | 
|  | long ret; | 
|  |  | 
|  | ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); | 
|  | if (ret > 0) | 
|  | memset(to + (n - ret), 0, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); | 
|  |  | 
|  | long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, | 
|  | unsigned long n) | 
|  | { | 
|  | return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); | 
|  |  | 
|  | int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, | 
|  | struct kvmppc_pte *gpte, u64 root, | 
|  | u64 *pte_ret_p) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret, level, ps; | 
|  | unsigned long rts, bits, offset, index; | 
|  | u64 pte, base, gpa; | 
|  | __be64 rpte; | 
|  |  | 
|  | rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | | 
|  | ((root & RTS2_MASK) >> RTS2_SHIFT); | 
|  | bits = root & RPDS_MASK; | 
|  | base = root & RPDB_MASK; | 
|  |  | 
|  | offset = rts + 31; | 
|  |  | 
|  | /* Current implementations only support 52-bit space */ | 
|  | if (offset != 52) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Walk each level of the radix tree */ | 
|  | for (level = 3; level >= 0; --level) { | 
|  | u64 addr; | 
|  | /* Check a valid size */ | 
|  | if (level && bits != p9_supported_radix_bits[level]) | 
|  | return -EINVAL; | 
|  | if (level == 0 && !(bits == 5 || bits == 9)) | 
|  | return -EINVAL; | 
|  | offset -= bits; | 
|  | index = (eaddr >> offset) & ((1UL << bits) - 1); | 
|  | /* Check that low bits of page table base are zero */ | 
|  | if (base & ((1UL << (bits + 3)) - 1)) | 
|  | return -EINVAL; | 
|  | /* Read the entry from guest memory */ | 
|  | addr = base + (index * sizeof(rpte)); | 
|  | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); | 
|  | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
|  | if (ret) { | 
|  | if (pte_ret_p) | 
|  | *pte_ret_p = addr; | 
|  | return ret; | 
|  | } | 
|  | pte = __be64_to_cpu(rpte); | 
|  | if (!(pte & _PAGE_PRESENT)) | 
|  | return -ENOENT; | 
|  | /* Check if a leaf entry */ | 
|  | if (pte & _PAGE_PTE) | 
|  | break; | 
|  | /* Get ready to walk the next level */ | 
|  | base = pte & RPDB_MASK; | 
|  | bits = pte & RPDS_MASK; | 
|  | } | 
|  |  | 
|  | /* Need a leaf at lowest level; 512GB pages not supported */ | 
|  | if (level < 0 || level == 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We found a valid leaf PTE */ | 
|  | /* Offset is now log base 2 of the page size */ | 
|  | gpa = pte & 0x01fffffffffff000ul; | 
|  | if (gpa & ((1ul << offset) - 1)) | 
|  | return -EINVAL; | 
|  | gpa |= eaddr & ((1ul << offset) - 1); | 
|  | for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) | 
|  | if (offset == mmu_psize_defs[ps].shift) | 
|  | break; | 
|  | gpte->page_size = ps; | 
|  | gpte->page_shift = offset; | 
|  |  | 
|  | gpte->eaddr = eaddr; | 
|  | gpte->raddr = gpa; | 
|  |  | 
|  | /* Work out permissions */ | 
|  | gpte->may_read = !!(pte & _PAGE_READ); | 
|  | gpte->may_write = !!(pte & _PAGE_WRITE); | 
|  | gpte->may_execute = !!(pte & _PAGE_EXEC); | 
|  |  | 
|  | gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); | 
|  |  | 
|  | if (pte_ret_p) | 
|  | *pte_ret_p = pte; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to walk a partition or process table radix tree in guest memory | 
|  | * Note: We exploit the fact that a partition table and a process | 
|  | * table have the same layout, a partition-scoped page table and a | 
|  | * process-scoped page table have the same layout, and the 2nd | 
|  | * doubleword of a partition table entry has the same layout as | 
|  | * the PTCR register. | 
|  | */ | 
|  | int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, | 
|  | struct kvmppc_pte *gpte, u64 table, | 
|  | int table_index, u64 *pte_ret_p) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret; | 
|  | unsigned long size, ptbl, root; | 
|  | struct prtb_entry entry; | 
|  |  | 
|  | if ((table & PRTS_MASK) > 24) | 
|  | return -EINVAL; | 
|  | size = 1ul << ((table & PRTS_MASK) + 12); | 
|  |  | 
|  | /* Is the table big enough to contain this entry? */ | 
|  | if ((table_index * sizeof(entry)) >= size) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Read the table to find the root of the radix tree */ | 
|  | ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); | 
|  | vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); | 
|  | srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Root is stored in the first double word */ | 
|  | root = be64_to_cpu(entry.prtb0); | 
|  |  | 
|  | return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); | 
|  | } | 
|  |  | 
|  | int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | 
|  | struct kvmppc_pte *gpte, bool data, bool iswrite) | 
|  | { | 
|  | u32 pid; | 
|  | u64 pte; | 
|  | int ret; | 
|  |  | 
|  | /* Work out effective PID */ | 
|  | switch (eaddr >> 62) { | 
|  | case 0: | 
|  | pid = vcpu->arch.pid; | 
|  | break; | 
|  | case 3: | 
|  | pid = 0; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, | 
|  | vcpu->kvm->arch.process_table, pid, &pte); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Check privilege (applies only to process scoped translations) */ | 
|  | if (kvmppc_get_msr(vcpu) & MSR_PR) { | 
|  | if (pte & _PAGE_PRIVILEGED) { | 
|  | gpte->may_read = 0; | 
|  | gpte->may_write = 0; | 
|  | gpte->may_execute = 0; | 
|  | } | 
|  | } else { | 
|  | if (!(pte & _PAGE_PRIVILEGED)) { | 
|  | /* Check AMR/IAMR to see if strict mode is in force */ | 
|  | if (vcpu->arch.amr & (1ul << 62)) | 
|  | gpte->may_read = 0; | 
|  | if (vcpu->arch.amr & (1ul << 63)) | 
|  | gpte->may_write = 0; | 
|  | if (vcpu->arch.iamr & (1ul << 62)) | 
|  | gpte->may_execute = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, | 
|  | unsigned int pshift, unsigned int lpid) | 
|  | { | 
|  | unsigned long psize = PAGE_SIZE; | 
|  | int psi; | 
|  | long rc; | 
|  | unsigned long rb; | 
|  |  | 
|  | if (pshift) | 
|  | psize = 1UL << pshift; | 
|  | else | 
|  | pshift = PAGE_SHIFT; | 
|  |  | 
|  | addr &= ~(psize - 1); | 
|  |  | 
|  | if (!kvmhv_on_pseries()) { | 
|  | radix__flush_tlb_lpid_page(lpid, addr, psize); | 
|  | return; | 
|  | } | 
|  |  | 
|  | psi = shift_to_mmu_psize(pshift); | 
|  | rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); | 
|  | rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), | 
|  | lpid, rb); | 
|  | if (rc) | 
|  | pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); | 
|  | } | 
|  |  | 
|  | static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) | 
|  | { | 
|  | long rc; | 
|  |  | 
|  | if (!kvmhv_on_pseries()) { | 
|  | radix__flush_pwc_lpid(lpid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), | 
|  | lpid, TLBIEL_INVAL_SET_LPID); | 
|  | if (rc) | 
|  | pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); | 
|  | } | 
|  |  | 
|  | static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, | 
|  | unsigned long clr, unsigned long set, | 
|  | unsigned long addr, unsigned int shift) | 
|  | { | 
|  | return __radix_pte_update(ptep, clr, set); | 
|  | } | 
|  |  | 
|  | static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *kvm_pte_cache; | 
|  | static struct kmem_cache *kvm_pmd_cache; | 
|  |  | 
|  | static pte_t *kvmppc_pte_alloc(void) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); | 
|  | /* pmd_populate() will only reference _pa(pte). */ | 
|  | kmemleak_ignore(pte); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | static void kvmppc_pte_free(pte_t *ptep) | 
|  | { | 
|  | kmem_cache_free(kvm_pte_cache, ptep); | 
|  | } | 
|  |  | 
|  | static pmd_t *kvmppc_pmd_alloc(void) | 
|  | { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); | 
|  | /* pud_populate() will only reference _pa(pmd). */ | 
|  | kmemleak_ignore(pmd); | 
|  |  | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | static void kvmppc_pmd_free(pmd_t *pmdp) | 
|  | { | 
|  | kmem_cache_free(kvm_pmd_cache, pmdp); | 
|  | } | 
|  |  | 
|  | /* Called with kvm->mmu_lock held */ | 
|  | void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, | 
|  | unsigned int shift, | 
|  | const struct kvm_memory_slot *memslot, | 
|  | unsigned int lpid) | 
|  |  | 
|  | { | 
|  | unsigned long old; | 
|  | unsigned long gfn = gpa >> PAGE_SHIFT; | 
|  | unsigned long page_size = PAGE_SIZE; | 
|  | unsigned long hpa; | 
|  |  | 
|  | old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); | 
|  | kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); | 
|  |  | 
|  | /* The following only applies to L1 entries */ | 
|  | if (lpid != kvm->arch.lpid) | 
|  | return; | 
|  |  | 
|  | if (!memslot) { | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  | if (!memslot) | 
|  | return; | 
|  | } | 
|  | if (shift) { /* 1GB or 2MB page */ | 
|  | page_size = 1ul << shift; | 
|  | if (shift == PMD_SHIFT) | 
|  | kvm->stat.num_2M_pages--; | 
|  | else if (shift == PUD_SHIFT) | 
|  | kvm->stat.num_1G_pages--; | 
|  | } | 
|  |  | 
|  | gpa &= ~(page_size - 1); | 
|  | hpa = old & PTE_RPN_MASK; | 
|  | kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); | 
|  |  | 
|  | if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) | 
|  | kvmppc_update_dirty_map(memslot, gfn, page_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvmppc_free_p?d are used to free existing page tables, and recursively | 
|  | * descend and clear and free children. | 
|  | * Callers are responsible for flushing the PWC. | 
|  | * | 
|  | * When page tables are being unmapped/freed as part of page fault path | 
|  | * (full == false), valid ptes are generally not expected; however, there | 
|  | * is one situation where they arise, which is when dirty page logging is | 
|  | * turned off for a memslot while the VM is running.  The new memslot | 
|  | * becomes visible to page faults before the memslot commit function | 
|  | * gets to flush the memslot, which can lead to a 2MB page mapping being | 
|  | * installed for a guest physical address where there are already 64kB | 
|  | * (or 4kB) mappings (of sub-pages of the same 2MB page). | 
|  | */ | 
|  | static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, | 
|  | unsigned int lpid) | 
|  | { | 
|  | if (full) { | 
|  | memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE); | 
|  | } else { | 
|  | pte_t *p = pte; | 
|  | unsigned long it; | 
|  |  | 
|  | for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { | 
|  | if (pte_val(*p) == 0) | 
|  | continue; | 
|  | kvmppc_unmap_pte(kvm, p, | 
|  | pte_pfn(*p) << PAGE_SHIFT, | 
|  | PAGE_SHIFT, NULL, lpid); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvmppc_pte_free(pte); | 
|  | } | 
|  |  | 
|  | static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, | 
|  | unsigned int lpid) | 
|  | { | 
|  | unsigned long im; | 
|  | pmd_t *p = pmd; | 
|  |  | 
|  | for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { | 
|  | if (!pmd_present(*p)) | 
|  | continue; | 
|  | if (pmd_is_leaf(*p)) { | 
|  | if (full) { | 
|  | pmd_clear(p); | 
|  | } else { | 
|  | WARN_ON_ONCE(1); | 
|  | kvmppc_unmap_pte(kvm, (pte_t *)p, | 
|  | pte_pfn(*(pte_t *)p) << PAGE_SHIFT, | 
|  | PMD_SHIFT, NULL, lpid); | 
|  | } | 
|  | } else { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_offset_map(p, 0); | 
|  | kvmppc_unmap_free_pte(kvm, pte, full, lpid); | 
|  | pmd_clear(p); | 
|  | } | 
|  | } | 
|  | kvmppc_pmd_free(pmd); | 
|  | } | 
|  |  | 
|  | static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, | 
|  | unsigned int lpid) | 
|  | { | 
|  | unsigned long iu; | 
|  | pud_t *p = pud; | 
|  |  | 
|  | for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { | 
|  | if (!pud_present(*p)) | 
|  | continue; | 
|  | if (pud_is_leaf(*p)) { | 
|  | pud_clear(p); | 
|  | } else { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = pmd_offset(p, 0); | 
|  | kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); | 
|  | pud_clear(p); | 
|  | } | 
|  | } | 
|  | pud_free(kvm->mm, pud); | 
|  | } | 
|  |  | 
|  | void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) | 
|  | { | 
|  | unsigned long ig; | 
|  |  | 
|  | for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { | 
|  | p4d_t *p4d = p4d_offset(pgd, 0); | 
|  | pud_t *pud; | 
|  |  | 
|  | if (!p4d_present(*p4d)) | 
|  | continue; | 
|  | pud = pud_offset(p4d, 0); | 
|  | kvmppc_unmap_free_pud(kvm, pud, lpid); | 
|  | p4d_clear(p4d); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvmppc_free_radix(struct kvm *kvm) | 
|  | { | 
|  | if (kvm->arch.pgtable) { | 
|  | kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, | 
|  | kvm->arch.lpid); | 
|  | pgd_free(kvm->mm, kvm->arch.pgtable); | 
|  | kvm->arch.pgtable = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, | 
|  | unsigned long gpa, unsigned int lpid) | 
|  | { | 
|  | pte_t *pte = pte_offset_kernel(pmd, 0); | 
|  |  | 
|  | /* | 
|  | * Clearing the pmd entry then flushing the PWC ensures that the pte | 
|  | * page no longer be cached by the MMU, so can be freed without | 
|  | * flushing the PWC again. | 
|  | */ | 
|  | pmd_clear(pmd); | 
|  | kvmppc_radix_flush_pwc(kvm, lpid); | 
|  |  | 
|  | kvmppc_unmap_free_pte(kvm, pte, false, lpid); | 
|  | } | 
|  |  | 
|  | static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, | 
|  | unsigned long gpa, unsigned int lpid) | 
|  | { | 
|  | pmd_t *pmd = pmd_offset(pud, 0); | 
|  |  | 
|  | /* | 
|  | * Clearing the pud entry then flushing the PWC ensures that the pmd | 
|  | * page and any children pte pages will no longer be cached by the MMU, | 
|  | * so can be freed without flushing the PWC again. | 
|  | */ | 
|  | pud_clear(pud); | 
|  | kvmppc_radix_flush_pwc(kvm, lpid); | 
|  |  | 
|  | kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are a number of bits which may differ between different faults to | 
|  | * the same partition scope entry. RC bits, in the course of cleaning and | 
|  | * aging. And the write bit can change, either the access could have been | 
|  | * upgraded, or a read fault could happen concurrently with a write fault | 
|  | * that sets those bits first. | 
|  | */ | 
|  | #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) | 
|  |  | 
|  | int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, | 
|  | unsigned long gpa, unsigned int level, | 
|  | unsigned long mmu_seq, unsigned int lpid, | 
|  | unsigned long *rmapp, struct rmap_nested **n_rmap) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud, *new_pud = NULL; | 
|  | pmd_t *pmd, *new_pmd = NULL; | 
|  | pte_t *ptep, *new_ptep = NULL; | 
|  | int ret; | 
|  |  | 
|  | /* Traverse the guest's 2nd-level tree, allocate new levels needed */ | 
|  | pgd = pgtable + pgd_index(gpa); | 
|  | p4d = p4d_offset(pgd, gpa); | 
|  |  | 
|  | pud = NULL; | 
|  | if (p4d_present(*p4d)) | 
|  | pud = pud_offset(p4d, gpa); | 
|  | else | 
|  | new_pud = pud_alloc_one(kvm->mm, gpa); | 
|  |  | 
|  | pmd = NULL; | 
|  | if (pud && pud_present(*pud) && !pud_is_leaf(*pud)) | 
|  | pmd = pmd_offset(pud, gpa); | 
|  | else if (level <= 1) | 
|  | new_pmd = kvmppc_pmd_alloc(); | 
|  |  | 
|  | if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) | 
|  | new_ptep = kvmppc_pte_alloc(); | 
|  |  | 
|  | /* Check if we might have been invalidated; let the guest retry if so */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ret = -EAGAIN; | 
|  | if (mmu_notifier_retry(kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Now traverse again under the lock and change the tree */ | 
|  | ret = -ENOMEM; | 
|  | if (p4d_none(*p4d)) { | 
|  | if (!new_pud) | 
|  | goto out_unlock; | 
|  | p4d_populate(kvm->mm, p4d, new_pud); | 
|  | new_pud = NULL; | 
|  | } | 
|  | pud = pud_offset(p4d, gpa); | 
|  | if (pud_is_leaf(*pud)) { | 
|  | unsigned long hgpa = gpa & PUD_MASK; | 
|  |  | 
|  | /* Check if we raced and someone else has set the same thing */ | 
|  | if (level == 2) { | 
|  | if (pud_raw(*pud) == pte_raw(pte)) { | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* Valid 1GB page here already, add our extra bits */ | 
|  | WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & | 
|  | PTE_BITS_MUST_MATCH); | 
|  | kvmppc_radix_update_pte(kvm, (pte_t *)pud, | 
|  | 0, pte_val(pte), hgpa, PUD_SHIFT); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* | 
|  | * If we raced with another CPU which has just put | 
|  | * a 1GB pte in after we saw a pmd page, try again. | 
|  | */ | 
|  | if (!new_pmd) { | 
|  | ret = -EAGAIN; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* Valid 1GB page here already, remove it */ | 
|  | kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, | 
|  | lpid); | 
|  | } | 
|  | if (level == 2) { | 
|  | if (!pud_none(*pud)) { | 
|  | /* | 
|  | * There's a page table page here, but we wanted to | 
|  | * install a large page, so remove and free the page | 
|  | * table page. | 
|  | */ | 
|  | kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); | 
|  | } | 
|  | kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); | 
|  | if (rmapp && n_rmap) | 
|  | kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (pud_none(*pud)) { | 
|  | if (!new_pmd) | 
|  | goto out_unlock; | 
|  | pud_populate(kvm->mm, pud, new_pmd); | 
|  | new_pmd = NULL; | 
|  | } | 
|  | pmd = pmd_offset(pud, gpa); | 
|  | if (pmd_is_leaf(*pmd)) { | 
|  | unsigned long lgpa = gpa & PMD_MASK; | 
|  |  | 
|  | /* Check if we raced and someone else has set the same thing */ | 
|  | if (level == 1) { | 
|  | if (pmd_raw(*pmd) == pte_raw(pte)) { | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* Valid 2MB page here already, add our extra bits */ | 
|  | WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & | 
|  | PTE_BITS_MUST_MATCH); | 
|  | kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), | 
|  | 0, pte_val(pte), lgpa, PMD_SHIFT); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we raced with another CPU which has just put | 
|  | * a 2MB pte in after we saw a pte page, try again. | 
|  | */ | 
|  | if (!new_ptep) { | 
|  | ret = -EAGAIN; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* Valid 2MB page here already, remove it */ | 
|  | kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, | 
|  | lpid); | 
|  | } | 
|  | if (level == 1) { | 
|  | if (!pmd_none(*pmd)) { | 
|  | /* | 
|  | * There's a page table page here, but we wanted to | 
|  | * install a large page, so remove and free the page | 
|  | * table page. | 
|  | */ | 
|  | kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); | 
|  | } | 
|  | kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); | 
|  | if (rmapp && n_rmap) | 
|  | kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | if (pmd_none(*pmd)) { | 
|  | if (!new_ptep) | 
|  | goto out_unlock; | 
|  | pmd_populate(kvm->mm, pmd, new_ptep); | 
|  | new_ptep = NULL; | 
|  | } | 
|  | ptep = pte_offset_kernel(pmd, gpa); | 
|  | if (pte_present(*ptep)) { | 
|  | /* Check if someone else set the same thing */ | 
|  | if (pte_raw(*ptep) == pte_raw(pte)) { | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* Valid page here already, add our extra bits */ | 
|  | WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & | 
|  | PTE_BITS_MUST_MATCH); | 
|  | kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); | 
|  | if (rmapp && n_rmap) | 
|  | kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); | 
|  | ret = 0; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | if (new_pud) | 
|  | pud_free(kvm->mm, new_pud); | 
|  | if (new_pmd) | 
|  | kvmppc_pmd_free(new_pmd); | 
|  | if (new_ptep) | 
|  | kvmppc_pte_free(new_ptep); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing, | 
|  | unsigned long gpa, unsigned int lpid) | 
|  | { | 
|  | unsigned long pgflags; | 
|  | unsigned int shift; | 
|  | pte_t *ptep; | 
|  |  | 
|  | /* | 
|  | * Need to set an R or C bit in the 2nd-level tables; | 
|  | * since we are just helping out the hardware here, | 
|  | * it is sufficient to do what the hardware does. | 
|  | */ | 
|  | pgflags = _PAGE_ACCESSED; | 
|  | if (writing) | 
|  | pgflags |= _PAGE_DIRTY; | 
|  |  | 
|  | if (nested) | 
|  | ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); | 
|  | else | 
|  | ptep = find_kvm_secondary_pte(kvm, gpa, &shift); | 
|  |  | 
|  | if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { | 
|  | kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, | 
|  | unsigned long gpa, | 
|  | struct kvm_memory_slot *memslot, | 
|  | bool writing, bool kvm_ro, | 
|  | pte_t *inserted_pte, unsigned int *levelp) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct page *page = NULL; | 
|  | unsigned long mmu_seq; | 
|  | unsigned long hva, gfn = gpa >> PAGE_SHIFT; | 
|  | bool upgrade_write = false; | 
|  | bool *upgrade_p = &upgrade_write; | 
|  | pte_t pte, *ptep; | 
|  | unsigned int shift, level; | 
|  | int ret; | 
|  | bool large_enable; | 
|  |  | 
|  | /* used to check for invalidations in progress */ | 
|  | mmu_seq = kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | /* | 
|  | * Do a fast check first, since __gfn_to_pfn_memslot doesn't | 
|  | * do it with !atomic && !async, which is how we call it. | 
|  | * We always ask for write permission since the common case | 
|  | * is that the page is writable. | 
|  | */ | 
|  | hva = gfn_to_hva_memslot(memslot, gfn); | 
|  | if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) { | 
|  | upgrade_write = true; | 
|  | } else { | 
|  | unsigned long pfn; | 
|  |  | 
|  | /* Call KVM generic code to do the slow-path check */ | 
|  | pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, | 
|  | writing, upgrade_p); | 
|  | if (is_error_noslot_pfn(pfn)) | 
|  | return -EFAULT; | 
|  | page = NULL; | 
|  | if (pfn_valid(pfn)) { | 
|  | page = pfn_to_page(pfn); | 
|  | if (PageReserved(page)) | 
|  | page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the PTE from the process' radix tree and use that | 
|  | * so we get the shift and attribute bits. | 
|  | */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); | 
|  | pte = __pte(0); | 
|  | if (ptep) | 
|  | pte = READ_ONCE(*ptep); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | /* | 
|  | * If the PTE disappeared temporarily due to a THP | 
|  | * collapse, just return and let the guest try again. | 
|  | */ | 
|  | if (!pte_present(pte)) { | 
|  | if (page) | 
|  | put_page(page); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | /* If we're logging dirty pages, always map single pages */ | 
|  | large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); | 
|  |  | 
|  | /* Get pte level from shift/size */ | 
|  | if (large_enable && shift == PUD_SHIFT && | 
|  | (gpa & (PUD_SIZE - PAGE_SIZE)) == | 
|  | (hva & (PUD_SIZE - PAGE_SIZE))) { | 
|  | level = 2; | 
|  | } else if (large_enable && shift == PMD_SHIFT && | 
|  | (gpa & (PMD_SIZE - PAGE_SIZE)) == | 
|  | (hva & (PMD_SIZE - PAGE_SIZE))) { | 
|  | level = 1; | 
|  | } else { | 
|  | level = 0; | 
|  | if (shift > PAGE_SHIFT) { | 
|  | /* | 
|  | * If the pte maps more than one page, bring over | 
|  | * bits from the virtual address to get the real | 
|  | * address of the specific single page we want. | 
|  | */ | 
|  | unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; | 
|  | pte = __pte(pte_val(pte) | (hva & rpnmask)); | 
|  | } | 
|  | } | 
|  |  | 
|  | pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); | 
|  | if (writing || upgrade_write) { | 
|  | if (pte_val(pte) & _PAGE_WRITE) | 
|  | pte = __pte(pte_val(pte) | _PAGE_DIRTY); | 
|  | } else { | 
|  | pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); | 
|  | } | 
|  |  | 
|  | /* Allocate space in the tree and write the PTE */ | 
|  | ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, | 
|  | mmu_seq, kvm->arch.lpid, NULL, NULL); | 
|  | if (inserted_pte) | 
|  | *inserted_pte = pte; | 
|  | if (levelp) | 
|  | *levelp = level; | 
|  |  | 
|  | if (page) { | 
|  | if (!ret && (pte_val(pte) & _PAGE_WRITE)) | 
|  | set_page_dirty_lock(page); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* Increment number of large pages if we (successfully) inserted one */ | 
|  | if (!ret) { | 
|  | if (level == 1) | 
|  | kvm->stat.num_2M_pages++; | 
|  | else if (level == 2) | 
|  | kvm->stat.num_1G_pages++; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu, | 
|  | unsigned long ea, unsigned long dsisr) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | unsigned long gpa, gfn; | 
|  | struct kvm_memory_slot *memslot; | 
|  | long ret; | 
|  | bool writing = !!(dsisr & DSISR_ISSTORE); | 
|  | bool kvm_ro = false; | 
|  |  | 
|  | /* Check for unusual errors */ | 
|  | if (dsisr & DSISR_UNSUPP_MMU) { | 
|  | pr_err("KVM: Got unsupported MMU fault\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (dsisr & DSISR_BADACCESS) { | 
|  | /* Reflect to the guest as DSI */ | 
|  | pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); | 
|  | kvmppc_core_queue_data_storage(vcpu, ea, dsisr); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | /* Translate the logical address */ | 
|  | gpa = vcpu->arch.fault_gpa & ~0xfffUL; | 
|  | gpa &= ~0xF000000000000000ul; | 
|  | gfn = gpa >> PAGE_SHIFT; | 
|  | if (!(dsisr & DSISR_PRTABLE_FAULT)) | 
|  | gpa |= ea & 0xfff; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | 
|  | return kvmppc_send_page_to_uv(kvm, gfn); | 
|  |  | 
|  | /* Get the corresponding memslot */ | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | /* No memslot means it's an emulated MMIO region */ | 
|  | if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { | 
|  | if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | | 
|  | DSISR_SET_RC)) { | 
|  | /* | 
|  | * Bad address in guest page table tree, or other | 
|  | * unusual error - reflect it to the guest as DSI. | 
|  | */ | 
|  | kvmppc_core_queue_data_storage(vcpu, ea, dsisr); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  | return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); | 
|  | } | 
|  |  | 
|  | if (memslot->flags & KVM_MEM_READONLY) { | 
|  | if (writing) { | 
|  | /* give the guest a DSI */ | 
|  | kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | | 
|  | DSISR_PROTFAULT); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  | kvm_ro = true; | 
|  | } | 
|  |  | 
|  | /* Failed to set the reference/change bits */ | 
|  | if (dsisr & DSISR_SET_RC) { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (kvmppc_hv_handle_set_rc(kvm, false, writing, | 
|  | gpa, kvm->arch.lpid)) | 
|  | dsisr &= ~DSISR_SET_RC; | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | | 
|  | DSISR_PROTFAULT | DSISR_SET_RC))) | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | /* Try to insert a pte */ | 
|  | ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, | 
|  | kvm_ro, NULL, NULL); | 
|  |  | 
|  | if (ret == 0 || ret == -EAGAIN) | 
|  | ret = RESUME_GUEST; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Called with kvm->mmu_lock held */ | 
|  | int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long gpa = gfn << PAGE_SHIFT; | 
|  | unsigned int shift; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) { | 
|  | uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ptep = find_kvm_secondary_pte(kvm, gpa, &shift); | 
|  | if (ptep && pte_present(*ptep)) | 
|  | kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, | 
|  | kvm->arch.lpid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called with kvm->mmu_lock held */ | 
|  | int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long gpa = gfn << PAGE_SHIFT; | 
|  | unsigned int shift; | 
|  | int ref = 0; | 
|  | unsigned long old, *rmapp; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | 
|  | return ref; | 
|  |  | 
|  | ptep = find_kvm_secondary_pte(kvm, gpa, &shift); | 
|  | if (ptep && pte_present(*ptep) && pte_young(*ptep)) { | 
|  | old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, | 
|  | gpa, shift); | 
|  | /* XXX need to flush tlb here? */ | 
|  | /* Also clear bit in ptes in shadow pgtable for nested guests */ | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  | kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, | 
|  | old & PTE_RPN_MASK, | 
|  | 1UL << shift); | 
|  | ref = 1; | 
|  | } | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | /* Called with kvm->mmu_lock held */ | 
|  | int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long gpa = gfn << PAGE_SHIFT; | 
|  | unsigned int shift; | 
|  | int ref = 0; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | 
|  | return ref; | 
|  |  | 
|  | ptep = find_kvm_secondary_pte(kvm, gpa, &shift); | 
|  | if (ptep && pte_present(*ptep) && pte_young(*ptep)) | 
|  | ref = 1; | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | /* Returns the number of PAGE_SIZE pages that are dirty */ | 
|  | static int kvm_radix_test_clear_dirty(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, int pagenum) | 
|  | { | 
|  | unsigned long gfn = memslot->base_gfn + pagenum; | 
|  | unsigned long gpa = gfn << PAGE_SHIFT; | 
|  | pte_t *ptep, pte; | 
|  | unsigned int shift; | 
|  | int ret = 0; | 
|  | unsigned long old, *rmapp; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * For performance reasons we don't hold kvm->mmu_lock while walking the | 
|  | * partition scoped table. | 
|  | */ | 
|  | ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift); | 
|  | if (!ptep) | 
|  | return 0; | 
|  |  | 
|  | pte = READ_ONCE(*ptep); | 
|  | if (pte_present(pte) && pte_dirty(pte)) { | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* | 
|  | * Recheck the pte again | 
|  | */ | 
|  | if (pte_val(pte) != pte_val(*ptep)) { | 
|  | /* | 
|  | * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can | 
|  | * only find PAGE_SIZE pte entries here. We can continue | 
|  | * to use the pte addr returned by above page table | 
|  | * walk. | 
|  | */ | 
|  | if (!pte_present(*ptep) || !pte_dirty(*ptep)) { | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | VM_BUG_ON(shift); | 
|  | old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, | 
|  | gpa, shift); | 
|  | kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); | 
|  | /* Also clear bit in ptes in shadow pgtable for nested guests */ | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  | kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, | 
|  | old & PTE_RPN_MASK, | 
|  | 1UL << shift); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, unsigned long *map) | 
|  | { | 
|  | unsigned long i, j; | 
|  | int npages; | 
|  |  | 
|  | for (i = 0; i < memslot->npages; i = j) { | 
|  | npages = kvm_radix_test_clear_dirty(kvm, memslot, i); | 
|  |  | 
|  | /* | 
|  | * Note that if npages > 0 then i must be a multiple of npages, | 
|  | * since huge pages are only used to back the guest at guest | 
|  | * real addresses that are a multiple of their size. | 
|  | * Since we have at most one PTE covering any given guest | 
|  | * real address, if npages > 1 we can skip to i + npages. | 
|  | */ | 
|  | j = i + 1; | 
|  | if (npages) { | 
|  | set_dirty_bits(map, i, npages); | 
|  | j = i + npages; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_radix_flush_memslot(struct kvm *kvm, | 
|  | const struct kvm_memory_slot *memslot) | 
|  | { | 
|  | unsigned long n; | 
|  | pte_t *ptep; | 
|  | unsigned long gpa; | 
|  | unsigned int shift; | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START) | 
|  | kvmppc_uvmem_drop_pages(memslot, kvm, true); | 
|  |  | 
|  | if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) | 
|  | return; | 
|  |  | 
|  | gpa = memslot->base_gfn << PAGE_SHIFT; | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | for (n = memslot->npages; n; --n) { | 
|  | ptep = find_kvm_secondary_pte(kvm, gpa, &shift); | 
|  | if (ptep && pte_present(*ptep)) | 
|  | kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, | 
|  | kvm->arch.lpid); | 
|  | gpa += PAGE_SIZE; | 
|  | } | 
|  | /* | 
|  | * Increase the mmu notifier sequence number to prevent any page | 
|  | * fault that read the memslot earlier from writing a PTE. | 
|  | */ | 
|  | kvm->mmu_notifier_seq++; | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, | 
|  | int psize, int *indexp) | 
|  | { | 
|  | if (!mmu_psize_defs[psize].shift) | 
|  | return; | 
|  | info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | | 
|  | (mmu_psize_defs[psize].ap << 29); | 
|  | ++(*indexp); | 
|  | } | 
|  |  | 
|  | int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!radix_enabled()) | 
|  | return -EINVAL; | 
|  | memset(info, 0, sizeof(*info)); | 
|  |  | 
|  | /* 4k page size */ | 
|  | info->geometries[0].page_shift = 12; | 
|  | info->geometries[0].level_bits[0] = 9; | 
|  | for (i = 1; i < 4; ++i) | 
|  | info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; | 
|  | /* 64k page size */ | 
|  | info->geometries[1].page_shift = 16; | 
|  | for (i = 0; i < 4; ++i) | 
|  | info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; | 
|  |  | 
|  | i = 0; | 
|  | add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); | 
|  | add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); | 
|  | add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); | 
|  | add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_init_vm_radix(struct kvm *kvm) | 
|  | { | 
|  | kvm->arch.pgtable = pgd_alloc(kvm->mm); | 
|  | if (!kvm->arch.pgtable) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pte_ctor(void *addr) | 
|  | { | 
|  | memset(addr, 0, RADIX_PTE_TABLE_SIZE); | 
|  | } | 
|  |  | 
|  | static void pmd_ctor(void *addr) | 
|  | { | 
|  | memset(addr, 0, RADIX_PMD_TABLE_SIZE); | 
|  | } | 
|  |  | 
|  | struct debugfs_radix_state { | 
|  | struct kvm	*kvm; | 
|  | struct mutex	mutex; | 
|  | unsigned long	gpa; | 
|  | int		lpid; | 
|  | int		chars_left; | 
|  | int		buf_index; | 
|  | char		buf[128]; | 
|  | u8		hdr; | 
|  | }; | 
|  |  | 
|  | static int debugfs_radix_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct kvm *kvm = inode->i_private; | 
|  | struct debugfs_radix_state *p; | 
|  |  | 
|  | p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | kvm_get_kvm(kvm); | 
|  | p->kvm = kvm; | 
|  | mutex_init(&p->mutex); | 
|  | file->private_data = p; | 
|  |  | 
|  | return nonseekable_open(inode, file); | 
|  | } | 
|  |  | 
|  | static int debugfs_radix_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct debugfs_radix_state *p = file->private_data; | 
|  |  | 
|  | kvm_put_kvm(p->kvm); | 
|  | kfree(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t debugfs_radix_read(struct file *file, char __user *buf, | 
|  | size_t len, loff_t *ppos) | 
|  | { | 
|  | struct debugfs_radix_state *p = file->private_data; | 
|  | ssize_t ret, r; | 
|  | unsigned long n; | 
|  | struct kvm *kvm; | 
|  | unsigned long gpa; | 
|  | pgd_t *pgt; | 
|  | struct kvm_nested_guest *nested; | 
|  | pgd_t *pgdp; | 
|  | p4d_t p4d, *p4dp; | 
|  | pud_t pud, *pudp; | 
|  | pmd_t pmd, *pmdp; | 
|  | pte_t *ptep; | 
|  | int shift; | 
|  | unsigned long pte; | 
|  |  | 
|  | kvm = p->kvm; | 
|  | if (!kvm_is_radix(kvm)) | 
|  | return 0; | 
|  |  | 
|  | ret = mutex_lock_interruptible(&p->mutex); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (p->chars_left) { | 
|  | n = p->chars_left; | 
|  | if (n > len) | 
|  | n = len; | 
|  | r = copy_to_user(buf, p->buf + p->buf_index, n); | 
|  | n -= r; | 
|  | p->chars_left -= n; | 
|  | p->buf_index += n; | 
|  | buf += n; | 
|  | len -= n; | 
|  | ret = n; | 
|  | if (r) { | 
|  | if (!n) | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | gpa = p->gpa; | 
|  | nested = NULL; | 
|  | pgt = NULL; | 
|  | while (len != 0 && p->lpid >= 0) { | 
|  | if (gpa >= RADIX_PGTABLE_RANGE) { | 
|  | gpa = 0; | 
|  | pgt = NULL; | 
|  | if (nested) { | 
|  | kvmhv_put_nested(nested); | 
|  | nested = NULL; | 
|  | } | 
|  | p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); | 
|  | p->hdr = 0; | 
|  | if (p->lpid < 0) | 
|  | break; | 
|  | } | 
|  | if (!pgt) { | 
|  | if (p->lpid == 0) { | 
|  | pgt = kvm->arch.pgtable; | 
|  | } else { | 
|  | nested = kvmhv_get_nested(kvm, p->lpid, false); | 
|  | if (!nested) { | 
|  | gpa = RADIX_PGTABLE_RANGE; | 
|  | continue; | 
|  | } | 
|  | pgt = nested->shadow_pgtable; | 
|  | } | 
|  | } | 
|  | n = 0; | 
|  | if (!p->hdr) { | 
|  | if (p->lpid > 0) | 
|  | n = scnprintf(p->buf, sizeof(p->buf), | 
|  | "\nNested LPID %d: ", p->lpid); | 
|  | n += scnprintf(p->buf + n, sizeof(p->buf) - n, | 
|  | "pgdir: %lx\n", (unsigned long)pgt); | 
|  | p->hdr = 1; | 
|  | goto copy; | 
|  | } | 
|  |  | 
|  | pgdp = pgt + pgd_index(gpa); | 
|  | p4dp = p4d_offset(pgdp, gpa); | 
|  | p4d = READ_ONCE(*p4dp); | 
|  | if (!(p4d_val(p4d) & _PAGE_PRESENT)) { | 
|  | gpa = (gpa & P4D_MASK) + P4D_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pudp = pud_offset(&p4d, gpa); | 
|  | pud = READ_ONCE(*pudp); | 
|  | if (!(pud_val(pud) & _PAGE_PRESENT)) { | 
|  | gpa = (gpa & PUD_MASK) + PUD_SIZE; | 
|  | continue; | 
|  | } | 
|  | if (pud_val(pud) & _PAGE_PTE) { | 
|  | pte = pud_val(pud); | 
|  | shift = PUD_SHIFT; | 
|  | goto leaf; | 
|  | } | 
|  |  | 
|  | pmdp = pmd_offset(&pud, gpa); | 
|  | pmd = READ_ONCE(*pmdp); | 
|  | if (!(pmd_val(pmd) & _PAGE_PRESENT)) { | 
|  | gpa = (gpa & PMD_MASK) + PMD_SIZE; | 
|  | continue; | 
|  | } | 
|  | if (pmd_val(pmd) & _PAGE_PTE) { | 
|  | pte = pmd_val(pmd); | 
|  | shift = PMD_SHIFT; | 
|  | goto leaf; | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_kernel(&pmd, gpa); | 
|  | pte = pte_val(READ_ONCE(*ptep)); | 
|  | if (!(pte & _PAGE_PRESENT)) { | 
|  | gpa += PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  | shift = PAGE_SHIFT; | 
|  | leaf: | 
|  | n = scnprintf(p->buf, sizeof(p->buf), | 
|  | " %lx: %lx %d\n", gpa, pte, shift); | 
|  | gpa += 1ul << shift; | 
|  | copy: | 
|  | p->chars_left = n; | 
|  | if (n > len) | 
|  | n = len; | 
|  | r = copy_to_user(buf, p->buf, n); | 
|  | n -= r; | 
|  | p->chars_left -= n; | 
|  | p->buf_index = n; | 
|  | buf += n; | 
|  | len -= n; | 
|  | ret += n; | 
|  | if (r) { | 
|  | if (!ret) | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | p->gpa = gpa; | 
|  | if (nested) | 
|  | kvmhv_put_nested(nested); | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&p->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, | 
|  | size_t len, loff_t *ppos) | 
|  | { | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static const struct file_operations debugfs_radix_fops = { | 
|  | .owner	 = THIS_MODULE, | 
|  | .open	 = debugfs_radix_open, | 
|  | .release = debugfs_radix_release, | 
|  | .read	 = debugfs_radix_read, | 
|  | .write	 = debugfs_radix_write, | 
|  | .llseek	 = generic_file_llseek, | 
|  | }; | 
|  |  | 
|  | void kvmhv_radix_debugfs_init(struct kvm *kvm) | 
|  | { | 
|  | debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm, | 
|  | &debugfs_radix_fops); | 
|  | } | 
|  |  | 
|  | int kvmppc_radix_init(void) | 
|  | { | 
|  | unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; | 
|  |  | 
|  | kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); | 
|  | if (!kvm_pte_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; | 
|  |  | 
|  | kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); | 
|  | if (!kvm_pmd_cache) { | 
|  | kmem_cache_destroy(kvm_pte_cache); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_radix_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(kvm_pte_cache); | 
|  | kmem_cache_destroy(kvm_pmd_cache); | 
|  | } |