| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2015 Intel Corporation |
| * Keith Busch <[email protected]> |
| */ |
| #include <linux/blkdev.h> |
| #include <linux/pr.h> |
| #include <linux/unaligned.h> |
| |
| #include "nvme.h" |
| |
| static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type) |
| { |
| switch (type) { |
| case PR_WRITE_EXCLUSIVE: |
| return NVME_PR_WRITE_EXCLUSIVE; |
| case PR_EXCLUSIVE_ACCESS: |
| return NVME_PR_EXCLUSIVE_ACCESS; |
| case PR_WRITE_EXCLUSIVE_REG_ONLY: |
| return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY; |
| case PR_EXCLUSIVE_ACCESS_REG_ONLY: |
| return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY; |
| case PR_WRITE_EXCLUSIVE_ALL_REGS: |
| return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS; |
| case PR_EXCLUSIVE_ACCESS_ALL_REGS: |
| return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS; |
| } |
| |
| return 0; |
| } |
| |
| static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type) |
| { |
| switch (type) { |
| case NVME_PR_WRITE_EXCLUSIVE: |
| return PR_WRITE_EXCLUSIVE; |
| case NVME_PR_EXCLUSIVE_ACCESS: |
| return PR_EXCLUSIVE_ACCESS; |
| case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY: |
| return PR_WRITE_EXCLUSIVE_REG_ONLY; |
| case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY: |
| return PR_EXCLUSIVE_ACCESS_REG_ONLY; |
| case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS: |
| return PR_WRITE_EXCLUSIVE_ALL_REGS; |
| case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS: |
| return PR_EXCLUSIVE_ACCESS_ALL_REGS; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_send_ns_head_pr_command(struct block_device *bdev, |
| struct nvme_command *c, void *data, unsigned int data_len) |
| { |
| struct nvme_ns_head *head = bdev->bd_disk->private_data; |
| int srcu_idx = srcu_read_lock(&head->srcu); |
| struct nvme_ns *ns = nvme_find_path(head); |
| int ret = -EWOULDBLOCK; |
| |
| if (ns) { |
| c->common.nsid = cpu_to_le32(ns->head->ns_id); |
| ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len); |
| } |
| srcu_read_unlock(&head->srcu, srcu_idx); |
| return ret; |
| } |
| |
| static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, |
| void *data, unsigned int data_len) |
| { |
| c->common.nsid = cpu_to_le32(ns->head->ns_id); |
| return nvme_submit_sync_cmd(ns->queue, c, data, data_len); |
| } |
| |
| static int nvme_status_to_pr_err(int status) |
| { |
| if (nvme_is_path_error(status)) |
| return PR_STS_PATH_FAILED; |
| |
| switch (status & NVME_SCT_SC_MASK) { |
| case NVME_SC_SUCCESS: |
| return PR_STS_SUCCESS; |
| case NVME_SC_RESERVATION_CONFLICT: |
| return PR_STS_RESERVATION_CONFLICT; |
| case NVME_SC_ONCS_NOT_SUPPORTED: |
| return -EOPNOTSUPP; |
| case NVME_SC_BAD_ATTRIBUTES: |
| case NVME_SC_INVALID_OPCODE: |
| case NVME_SC_INVALID_FIELD: |
| case NVME_SC_INVALID_NS: |
| return -EINVAL; |
| default: |
| return PR_STS_IOERR; |
| } |
| } |
| |
| static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10, |
| u32 cdw11, u8 op, void *data, unsigned int data_len) |
| { |
| struct nvme_command c = { 0 }; |
| |
| c.common.opcode = op; |
| c.common.cdw10 = cpu_to_le32(cdw10); |
| c.common.cdw11 = cpu_to_le32(cdw11); |
| |
| if (nvme_disk_is_ns_head(bdev->bd_disk)) |
| return nvme_send_ns_head_pr_command(bdev, &c, data, data_len); |
| return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, |
| data, data_len); |
| } |
| |
| static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11, |
| u8 op, void *data, unsigned int data_len) |
| { |
| int ret; |
| |
| ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len); |
| return ret < 0 ? ret : nvme_status_to_pr_err(ret); |
| } |
| |
| static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, |
| unsigned int flags) |
| { |
| struct nvmet_pr_register_data data = { 0 }; |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| data.crkey = cpu_to_le64(old_key); |
| data.nrkey = cpu_to_le64(new_key); |
| |
| cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE : |
| NVME_PR_REGISTER_ACT_REG; |
| cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; |
| cdw10 |= NVME_PR_CPTPL_PERSIST; |
| |
| return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register, |
| &data, sizeof(data)); |
| } |
| |
| static int nvme_pr_reserve(struct block_device *bdev, u64 key, |
| enum pr_type type, unsigned flags) |
| { |
| struct nvmet_pr_acquire_data data = { 0 }; |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| data.crkey = cpu_to_le64(key); |
| |
| cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE; |
| cdw10 |= nvme_pr_type_from_blk(type) << 8; |
| cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0; |
| |
| return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, |
| &data, sizeof(data)); |
| } |
| |
| static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, |
| enum pr_type type, bool abort) |
| { |
| struct nvmet_pr_acquire_data data = { 0 }; |
| u32 cdw10; |
| |
| data.crkey = cpu_to_le64(old); |
| data.prkey = cpu_to_le64(new); |
| |
| cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT : |
| NVME_PR_ACQUIRE_ACT_PREEMPT; |
| cdw10 |= nvme_pr_type_from_blk(type) << 8; |
| |
| return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire, |
| &data, sizeof(data)); |
| } |
| |
| static int nvme_pr_clear(struct block_device *bdev, u64 key) |
| { |
| struct nvmet_pr_release_data data = { 0 }; |
| u32 cdw10; |
| |
| data.crkey = cpu_to_le64(key); |
| |
| cdw10 = NVME_PR_RELEASE_ACT_CLEAR; |
| cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; |
| |
| return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, |
| &data, sizeof(data)); |
| } |
| |
| static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) |
| { |
| struct nvmet_pr_release_data data = { 0 }; |
| u32 cdw10; |
| |
| data.crkey = cpu_to_le64(key); |
| |
| cdw10 = NVME_PR_RELEASE_ACT_RELEASE; |
| cdw10 |= nvme_pr_type_from_blk(type) << 8; |
| cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY; |
| |
| return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release, |
| &data, sizeof(data)); |
| } |
| |
| static int nvme_pr_resv_report(struct block_device *bdev, void *data, |
| u32 data_len, bool *eds) |
| { |
| u32 cdw10, cdw11; |
| int ret; |
| |
| cdw10 = nvme_bytes_to_numd(data_len); |
| cdw11 = NVME_EXTENDED_DATA_STRUCT; |
| *eds = true; |
| |
| retry: |
| ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report, |
| data, data_len); |
| if (ret == NVME_SC_HOST_ID_INCONSIST && |
| cdw11 == NVME_EXTENDED_DATA_STRUCT) { |
| cdw11 = 0; |
| *eds = false; |
| goto retry; |
| } |
| |
| return ret < 0 ? ret : nvme_status_to_pr_err(ret); |
| } |
| |
| static int nvme_pr_read_keys(struct block_device *bdev, |
| struct pr_keys *keys_info) |
| { |
| u32 rse_len, num_keys = keys_info->num_keys; |
| struct nvme_reservation_status_ext *rse; |
| int ret, i; |
| bool eds; |
| |
| /* |
| * Assume we are using 128-bit host IDs and allocate a buffer large |
| * enough to get enough keys to fill the return keys buffer. |
| */ |
| rse_len = struct_size(rse, regctl_eds, num_keys); |
| rse = kzalloc(rse_len, GFP_KERNEL); |
| if (!rse) |
| return -ENOMEM; |
| |
| ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); |
| if (ret) |
| goto free_rse; |
| |
| keys_info->generation = le32_to_cpu(rse->gen); |
| keys_info->num_keys = get_unaligned_le16(&rse->regctl); |
| |
| num_keys = min(num_keys, keys_info->num_keys); |
| for (i = 0; i < num_keys; i++) { |
| if (eds) { |
| keys_info->keys[i] = |
| le64_to_cpu(rse->regctl_eds[i].rkey); |
| } else { |
| struct nvme_reservation_status *rs; |
| |
| rs = (struct nvme_reservation_status *)rse; |
| keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey); |
| } |
| } |
| |
| free_rse: |
| kfree(rse); |
| return ret; |
| } |
| |
| static int nvme_pr_read_reservation(struct block_device *bdev, |
| struct pr_held_reservation *resv) |
| { |
| struct nvme_reservation_status_ext tmp_rse, *rse; |
| int ret, i, num_regs; |
| u32 rse_len; |
| bool eds; |
| |
| get_num_regs: |
| /* |
| * Get the number of registrations so we know how big to allocate |
| * the response buffer. |
| */ |
| ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds); |
| if (ret) |
| return ret; |
| |
| num_regs = get_unaligned_le16(&tmp_rse.regctl); |
| if (!num_regs) { |
| resv->generation = le32_to_cpu(tmp_rse.gen); |
| return 0; |
| } |
| |
| rse_len = struct_size(rse, regctl_eds, num_regs); |
| rse = kzalloc(rse_len, GFP_KERNEL); |
| if (!rse) |
| return -ENOMEM; |
| |
| ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds); |
| if (ret) |
| goto free_rse; |
| |
| if (num_regs != get_unaligned_le16(&rse->regctl)) { |
| kfree(rse); |
| goto get_num_regs; |
| } |
| |
| resv->generation = le32_to_cpu(rse->gen); |
| resv->type = block_pr_type_from_nvme(rse->rtype); |
| |
| for (i = 0; i < num_regs; i++) { |
| if (eds) { |
| if (rse->regctl_eds[i].rcsts) { |
| resv->key = le64_to_cpu(rse->regctl_eds[i].rkey); |
| break; |
| } |
| } else { |
| struct nvme_reservation_status *rs; |
| |
| rs = (struct nvme_reservation_status *)rse; |
| if (rs->regctl_ds[i].rcsts) { |
| resv->key = le64_to_cpu(rs->regctl_ds[i].rkey); |
| break; |
| } |
| } |
| } |
| |
| free_rse: |
| kfree(rse); |
| return ret; |
| } |
| |
| const struct pr_ops nvme_pr_ops = { |
| .pr_register = nvme_pr_register, |
| .pr_reserve = nvme_pr_reserve, |
| .pr_release = nvme_pr_release, |
| .pr_preempt = nvme_pr_preempt, |
| .pr_clear = nvme_pr_clear, |
| .pr_read_keys = nvme_pr_read_keys, |
| .pr_read_reservation = nvme_pr_read_reservation, |
| }; |