| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) STMicroelectronics 2016 |
| * |
| * Author: Gerald Baeza <[email protected]> |
| * |
| * Inspired by timer-stm32.c from Maxime Coquelin |
| * pwm-atmel.c from Bo Shen |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/mfd/stm32-timers.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/pwm.h> |
| |
| #define CCMR_CHANNEL_SHIFT 8 |
| #define CCMR_CHANNEL_MASK 0xFF |
| #define MAX_BREAKINPUT 2 |
| |
| struct stm32_breakinput { |
| u32 index; |
| u32 level; |
| u32 filter; |
| }; |
| |
| struct stm32_pwm { |
| struct mutex lock; /* protect pwm config/enable */ |
| struct clk *clk; |
| struct regmap *regmap; |
| u32 max_arr; |
| bool have_complementary_output; |
| struct stm32_breakinput breakinputs[MAX_BREAKINPUT]; |
| unsigned int num_breakinputs; |
| u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ |
| }; |
| |
| static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) |
| { |
| return pwmchip_get_drvdata(chip); |
| } |
| |
| static u32 active_channels(struct stm32_pwm *dev) |
| { |
| u32 ccer; |
| |
| regmap_read(dev->regmap, TIM_CCER, &ccer); |
| |
| return ccer & TIM_CCER_CCXE; |
| } |
| |
| struct stm32_pwm_waveform { |
| u32 ccer; |
| u32 psc; |
| u32 arr; |
| u32 ccr; |
| }; |
| |
| static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| const struct pwm_waveform *wf, |
| void *_wfhw) |
| { |
| struct stm32_pwm_waveform *wfhw = _wfhw; |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned int ch = pwm->hwpwm; |
| unsigned long rate; |
| u64 ccr, duty; |
| int ret; |
| |
| if (wf->period_length_ns == 0) { |
| *wfhw = (struct stm32_pwm_waveform){ |
| .ccer = 0, |
| }; |
| |
| return 0; |
| } |
| |
| ret = clk_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| wfhw->ccer = TIM_CCER_CCxE(ch + 1); |
| if (priv->have_complementary_output) |
| wfhw->ccer |= TIM_CCER_CCxNE(ch + 1); |
| |
| rate = clk_get_rate(priv->clk); |
| |
| if (active_channels(priv) & ~(1 << ch * 4)) { |
| u64 arr; |
| |
| /* |
| * Other channels are already enabled, so the configured PSC and |
| * ARR must be used for this channel, too. |
| */ |
| ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); |
| if (ret) |
| goto out; |
| |
| ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); |
| if (ret) |
| goto out; |
| |
| arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, |
| (u64)NSEC_PER_SEC * (wfhw->psc + 1)); |
| if (arr <= wfhw->arr) { |
| /* |
| * requested period is smaller than the currently |
| * configured and unchangable period, report back the smallest |
| * possible period, i.e. the current state and return 1 |
| * to indicate the wrong rounding direction. |
| */ |
| ret = 1; |
| } |
| |
| } else { |
| /* |
| * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so |
| * the calculations here won't overflow. |
| * First we need to find the minimal value for prescaler such that |
| * |
| * period_ns * clkrate |
| * ------------------------------ < max_arr + 1 |
| * NSEC_PER_SEC * (prescaler + 1) |
| * |
| * This equation is equivalent to |
| * |
| * period_ns * clkrate |
| * ---------------------------- < prescaler + 1 |
| * NSEC_PER_SEC * (max_arr + 1) |
| * |
| * Using integer division and knowing that the right hand side is |
| * integer, this is further equivalent to |
| * |
| * (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler |
| */ |
| u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate, |
| (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1)); |
| u64 arr; |
| |
| wfhw->psc = min_t(u64, psc, MAX_TIM_PSC); |
| |
| arr = mul_u64_u64_div_u64(wf->period_length_ns, rate, |
| (u64)NSEC_PER_SEC * (wfhw->psc + 1)); |
| if (!arr) { |
| /* |
| * requested period is too small, report back the smallest |
| * possible period, i.e. ARR = 0. The only valid CCR |
| * value is then zero, too. |
| */ |
| wfhw->arr = 0; |
| wfhw->ccr = 0; |
| ret = 1; |
| goto out; |
| } |
| |
| /* |
| * ARR is limited intentionally to values less than |
| * priv->max_arr to allow 100% duty cycle. |
| */ |
| wfhw->arr = min_t(u64, arr, priv->max_arr) - 1; |
| } |
| |
| duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate, |
| (u64)NSEC_PER_SEC * (wfhw->psc + 1)); |
| duty = min_t(u64, duty, wfhw->arr + 1); |
| |
| if (wf->duty_length_ns && wf->duty_offset_ns && |
| wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) { |
| wfhw->ccer |= TIM_CCER_CCxP(ch + 1); |
| if (priv->have_complementary_output) |
| wfhw->ccer |= TIM_CCER_CCxNP(ch + 1); |
| |
| ccr = wfhw->arr + 1 - duty; |
| } else { |
| ccr = duty; |
| } |
| |
| wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1); |
| |
| dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n", |
| pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, |
| rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr); |
| |
| out: |
| clk_disable(priv->clk); |
| |
| return ret; |
| } |
| |
| /* |
| * This should be moved to lib/math/div64.c. Currently there are some changes |
| * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles. |
| */ |
| static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c) |
| { |
| u64 res = mul_u64_u64_div_u64(a, b, c); |
| /* Those multiplications might overflow but it doesn't matter */ |
| u64 rem = a * b - c * res; |
| |
| if (rem) |
| res += 1; |
| |
| return res; |
| } |
| |
| static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| const void *_wfhw, |
| struct pwm_waveform *wf) |
| { |
| const struct stm32_pwm_waveform *wfhw = _wfhw; |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned int ch = pwm->hwpwm; |
| |
| if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { |
| unsigned long rate = clk_get_rate(priv->clk); |
| u64 ccr_ns; |
| |
| /* The result doesn't overflow for rate >= 15259 */ |
| wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1), |
| NSEC_PER_SEC, rate); |
| |
| ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr, |
| NSEC_PER_SEC, rate); |
| |
| if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) { |
| wf->duty_length_ns = |
| stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr), |
| NSEC_PER_SEC, rate); |
| |
| wf->duty_offset_ns = ccr_ns; |
| } else { |
| wf->duty_length_ns = ccr_ns; |
| wf->duty_offset_ns = 0; |
| } |
| |
| dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n", |
| pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate, |
| wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns); |
| |
| } else { |
| *wf = (struct pwm_waveform){ |
| .period_length_ns = 0, |
| }; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_read_waveform(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| void *_wfhw) |
| { |
| struct stm32_pwm_waveform *wfhw = _wfhw; |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned int ch = pwm->hwpwm; |
| int ret; |
| |
| ret = clk_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer); |
| if (ret) |
| goto out; |
| |
| if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { |
| ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc); |
| if (ret) |
| goto out; |
| |
| ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr); |
| if (ret) |
| goto out; |
| |
| if (wfhw->arr == U32_MAX) |
| wfhw->arr -= 1; |
| |
| ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr); |
| if (ret) |
| goto out; |
| |
| if (wfhw->ccr > wfhw->arr + 1) |
| wfhw->ccr = wfhw->arr + 1; |
| } |
| |
| out: |
| clk_disable(priv->clk); |
| |
| return ret; |
| } |
| |
| static int stm32_pwm_write_waveform(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| const void *_wfhw) |
| { |
| const struct stm32_pwm_waveform *wfhw = _wfhw; |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned int ch = pwm->hwpwm; |
| int ret; |
| |
| ret = clk_enable(priv->clk); |
| if (ret) |
| return ret; |
| |
| if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) { |
| u32 ccer, mask; |
| unsigned int shift; |
| u32 ccmr; |
| |
| ret = regmap_read(priv->regmap, TIM_CCER, &ccer); |
| if (ret) |
| goto out; |
| |
| /* If there are other channels enabled, don't update PSC and ARR */ |
| if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) { |
| u32 psc, arr; |
| |
| ret = regmap_read(priv->regmap, TIM_PSC, &psc); |
| if (ret) |
| goto out; |
| |
| if (psc != wfhw->psc) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| ret = regmap_read(priv->regmap, TIM_ARR, &arr); |
| if (ret) |
| goto out; |
| |
| if (arr != wfhw->arr) { |
| ret = -EBUSY; |
| goto out; |
| } |
| } else { |
| ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc); |
| if (ret) |
| goto out; |
| |
| ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr); |
| if (ret) |
| goto out; |
| |
| ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE); |
| if (ret) |
| goto out; |
| |
| } |
| |
| /* set polarity */ |
| mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1); |
| ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer); |
| if (ret) |
| goto out; |
| |
| ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr); |
| if (ret) |
| goto out; |
| |
| /* Configure output mode */ |
| shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; |
| ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; |
| mask = CCMR_CHANNEL_MASK << shift; |
| |
| if (ch < 2) |
| ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); |
| else |
| ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); |
| if (ret) |
| goto out; |
| |
| ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE); |
| if (ret) |
| goto out; |
| |
| if (!(ccer & TIM_CCER_CCxE(ch + 1))) { |
| mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1); |
| |
| ret = clk_enable(priv->clk); |
| if (ret) |
| goto out; |
| |
| ccer = (ccer & ~mask) | (wfhw->ccer & mask); |
| regmap_write(priv->regmap, TIM_CCER, ccer); |
| |
| /* Make sure that registers are updated */ |
| regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); |
| |
| /* Enable controller */ |
| regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); |
| } |
| |
| } else { |
| /* disable channel */ |
| u32 mask, ccer; |
| |
| mask = TIM_CCER_CCxE(ch + 1); |
| if (priv->have_complementary_output) |
| mask |= TIM_CCER_CCxNE(ch + 1); |
| |
| ret = regmap_read(priv->regmap, TIM_CCER, &ccer); |
| if (ret) |
| goto out; |
| |
| if (ccer & mask) { |
| ccer = ccer & ~mask; |
| |
| ret = regmap_write(priv->regmap, TIM_CCER, ccer); |
| if (ret) |
| goto out; |
| |
| if (!(ccer & TIM_CCER_CCXE)) { |
| /* When all channels are disabled, we can disable the controller */ |
| ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); |
| if (ret) |
| goto out; |
| } |
| |
| clk_disable(priv->clk); |
| } |
| } |
| |
| out: |
| clk_disable(priv->clk); |
| |
| return ret; |
| } |
| |
| #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) |
| #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) |
| #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) |
| #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) |
| |
| /* |
| * Capture using PWM input mode: |
| * ___ ___ |
| * TI[1, 2, 3 or 4]: ........._| |________| |
| * ^0 ^1 ^2 |
| * . . . |
| * . . XXXXX |
| * . . XXXXX | |
| * . XXXXX . | |
| * XXXXX . . | |
| * COUNTER: ______XXXXX . . . |_XXX |
| * start^ . . . ^stop |
| * . . . . |
| * v v . v |
| * v |
| * CCR1/CCR3: tx..........t0...........t2 |
| * CCR2/CCR4: tx..............t1......... |
| * |
| * DMA burst transfer: | | |
| * v v |
| * DMA buffer: { t0, tx } { t2, t1 } |
| * DMA done: ^ |
| * |
| * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 |
| * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) |
| * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 |
| * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 |
| * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) |
| * |
| * DMA done, compute: |
| * - Period = t2 - t0 |
| * - Duty cycle = t1 - t0 |
| */ |
| static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm, |
| unsigned long tmo_ms, u32 *raw_prd, |
| u32 *raw_dty) |
| { |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| struct device *parent = pwmchip_parent(chip)->parent; |
| enum stm32_timers_dmas dma_id; |
| u32 ccen, ccr; |
| int ret; |
| |
| /* Ensure registers have been updated, enable counter and capture */ |
| regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG); |
| regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); |
| |
| /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ |
| dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; |
| ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; |
| ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; |
| regmap_set_bits(priv->regmap, TIM_CCER, ccen); |
| |
| /* |
| * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both |
| * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. |
| * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } |
| * or { CCR3, CCR4 }, { CCR3, CCR4 } |
| */ |
| ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, |
| 2, tmo_ms); |
| if (ret) |
| goto stop; |
| |
| /* Period: t2 - t0 (take care of counter overflow) */ |
| if (priv->capture[0] <= priv->capture[2]) |
| *raw_prd = priv->capture[2] - priv->capture[0]; |
| else |
| *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; |
| |
| /* Duty cycle capture requires at least two capture units */ |
| if (pwm->chip->npwm < 2) |
| *raw_dty = 0; |
| else if (priv->capture[0] <= priv->capture[3]) |
| *raw_dty = priv->capture[3] - priv->capture[0]; |
| else |
| *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; |
| |
| if (*raw_dty > *raw_prd) { |
| /* |
| * Race beetween PWM input and DMA: it may happen |
| * falling edge triggers new capture on TI2/4 before DMA |
| * had a chance to read CCR2/4. It means capture[1] |
| * contains period + duty_cycle. So, subtract period. |
| */ |
| *raw_dty -= *raw_prd; |
| } |
| |
| stop: |
| regmap_clear_bits(priv->regmap, TIM_CCER, ccen); |
| regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN); |
| |
| return ret; |
| } |
| |
| static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, |
| struct pwm_capture *result, unsigned long tmo_ms) |
| { |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned long long prd, div, dty; |
| unsigned long rate; |
| unsigned int psc = 0, icpsc, scale; |
| u32 raw_prd = 0, raw_dty = 0; |
| int ret = 0; |
| |
| mutex_lock(&priv->lock); |
| |
| if (active_channels(priv)) { |
| ret = -EBUSY; |
| goto unlock; |
| } |
| |
| ret = clk_enable(priv->clk); |
| if (ret) { |
| dev_err(pwmchip_parent(chip), "failed to enable counter clock\n"); |
| goto unlock; |
| } |
| |
| rate = clk_get_rate(priv->clk); |
| if (!rate) { |
| ret = -EINVAL; |
| goto clk_dis; |
| } |
| |
| /* prescaler: fit timeout window provided by upper layer */ |
| div = (unsigned long long)rate * (unsigned long long)tmo_ms; |
| do_div(div, MSEC_PER_SEC); |
| prd = div; |
| while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { |
| psc++; |
| div = prd; |
| do_div(div, psc + 1); |
| } |
| regmap_write(priv->regmap, TIM_ARR, priv->max_arr); |
| regmap_write(priv->regmap, TIM_PSC, psc); |
| |
| /* Reset input selector to its default input and disable slave mode */ |
| regmap_write(priv->regmap, TIM_TISEL, 0x0); |
| regmap_write(priv->regmap, TIM_SMCR, 0x0); |
| |
| /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ |
| regmap_update_bits(priv->regmap, |
| pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, |
| TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? |
| TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : |
| TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); |
| |
| /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ |
| regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? |
| TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? |
| TIM_CCER_CC2P : TIM_CCER_CC4P); |
| |
| ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); |
| if (ret) |
| goto stop; |
| |
| /* |
| * Got a capture. Try to improve accuracy at high rates: |
| * - decrease counter clock prescaler, scale up to max rate. |
| * - use input prescaler, capture once every /2 /4 or /8 edges. |
| */ |
| if (raw_prd) { |
| u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ |
| |
| scale = max_arr / min(max_arr, raw_prd); |
| } else { |
| scale = priv->max_arr; /* below resolution, use max scale */ |
| } |
| |
| if (psc && scale > 1) { |
| /* 2nd measure with new scale */ |
| psc /= scale; |
| regmap_write(priv->regmap, TIM_PSC, psc); |
| ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, |
| &raw_dty); |
| if (ret) |
| goto stop; |
| } |
| |
| /* Compute intermediate period not to exceed timeout at low rates */ |
| prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; |
| do_div(prd, rate); |
| |
| for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { |
| /* input prescaler: also keep arbitrary margin */ |
| if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) |
| break; |
| if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) |
| break; |
| } |
| |
| if (!icpsc) |
| goto done; |
| |
| /* Last chance to improve period accuracy, using input prescaler */ |
| regmap_update_bits(priv->regmap, |
| pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, |
| TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, |
| FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | |
| FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); |
| |
| ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty); |
| if (ret) |
| goto stop; |
| |
| if (raw_dty >= (raw_prd >> icpsc)) { |
| /* |
| * We may fall here using input prescaler, when input |
| * capture starts on high side (before falling edge). |
| * Example with icpsc to capture on each 4 events: |
| * |
| * start 1st capture 2nd capture |
| * v v v |
| * ___ _____ _____ _____ _____ ____ |
| * TI1..4 |__| |__| |__| |__| |__| |
| * v v . . . . . v v |
| * icpsc1/3: . 0 . 1 . 2 . 3 . 0 |
| * icpsc2/4: 0 1 2 3 0 |
| * v v v v |
| * CCR1/3 ......t0..............................t2 |
| * CCR2/4 ..t1..............................t1'... |
| * . . . |
| * Capture0: .<----------------------------->. |
| * Capture1: .<-------------------------->. . |
| * . . . |
| * Period: .<------> . . |
| * Low side: .<>. |
| * |
| * Result: |
| * - Period = Capture0 / icpsc |
| * - Duty = Period - Low side = Period - (Capture0 - Capture1) |
| */ |
| raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); |
| } |
| |
| done: |
| prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; |
| result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); |
| dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; |
| result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); |
| stop: |
| regmap_write(priv->regmap, TIM_CCER, 0); |
| regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); |
| regmap_write(priv->regmap, TIM_PSC, 0); |
| clk_dis: |
| clk_disable(priv->clk); |
| unlock: |
| mutex_unlock(&priv->lock); |
| |
| return ret; |
| } |
| |
| static const struct pwm_ops stm32pwm_ops = { |
| .sizeof_wfhw = sizeof(struct stm32_pwm_waveform), |
| .round_waveform_tohw = stm32_pwm_round_waveform_tohw, |
| .round_waveform_fromhw = stm32_pwm_round_waveform_fromhw, |
| .read_waveform = stm32_pwm_read_waveform, |
| .write_waveform = stm32_pwm_write_waveform, |
| |
| .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, |
| }; |
| |
| static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, |
| const struct stm32_breakinput *bi) |
| { |
| u32 shift = TIM_BDTR_BKF_SHIFT(bi->index); |
| u32 bke = TIM_BDTR_BKE(bi->index); |
| u32 bkp = TIM_BDTR_BKP(bi->index); |
| u32 bkf = TIM_BDTR_BKF(bi->index); |
| u32 mask = bkf | bkp | bke; |
| u32 bdtr; |
| |
| bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke; |
| |
| if (bi->level) |
| bdtr |= bkp; |
| |
| regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); |
| |
| regmap_read(priv->regmap, TIM_BDTR, &bdtr); |
| |
| return (bdtr & bke) ? 0 : -EINVAL; |
| } |
| |
| static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv) |
| { |
| unsigned int i; |
| int ret; |
| |
| for (i = 0; i < priv->num_breakinputs; i++) { |
| ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, |
| struct device_node *np) |
| { |
| int nb, ret, array_size; |
| unsigned int i; |
| |
| nb = of_property_count_elems_of_size(np, "st,breakinput", |
| sizeof(struct stm32_breakinput)); |
| |
| /* |
| * Because "st,breakinput" parameter is optional do not make probe |
| * failed if it doesn't exist. |
| */ |
| if (nb <= 0) |
| return 0; |
| |
| if (nb > MAX_BREAKINPUT) |
| return -EINVAL; |
| |
| priv->num_breakinputs = nb; |
| array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); |
| ret = of_property_read_u32_array(np, "st,breakinput", |
| (u32 *)priv->breakinputs, array_size); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < priv->num_breakinputs; i++) { |
| if (priv->breakinputs[i].index > 1 || |
| priv->breakinputs[i].level > 1 || |
| priv->breakinputs[i].filter > 15) |
| return -EINVAL; |
| } |
| |
| return stm32_pwm_apply_breakinputs(priv); |
| } |
| |
| static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) |
| { |
| u32 ccer; |
| |
| /* |
| * If complementary bit doesn't exist writing 1 will have no |
| * effect so we can detect it. |
| */ |
| regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); |
| regmap_read(priv->regmap, TIM_CCER, &ccer); |
| regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE); |
| |
| priv->have_complementary_output = (ccer != 0); |
| } |
| |
| static unsigned int stm32_pwm_detect_channels(struct regmap *regmap, |
| unsigned int *num_enabled) |
| { |
| u32 ccer, ccer_backup; |
| |
| /* |
| * If channels enable bits don't exist writing 1 will have no |
| * effect so we can detect and count them. |
| */ |
| regmap_read(regmap, TIM_CCER, &ccer_backup); |
| regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE); |
| regmap_read(regmap, TIM_CCER, &ccer); |
| regmap_write(regmap, TIM_CCER, ccer_backup); |
| |
| *num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE); |
| |
| return hweight32(ccer & TIM_CCER_CCXE); |
| } |
| |
| static int stm32_pwm_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); |
| struct pwm_chip *chip; |
| struct stm32_pwm *priv; |
| unsigned int npwm, num_enabled; |
| unsigned int i; |
| int ret; |
| |
| npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled); |
| |
| chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv)); |
| if (IS_ERR(chip)) |
| return PTR_ERR(chip); |
| priv = to_stm32_pwm_dev(chip); |
| |
| mutex_init(&priv->lock); |
| priv->regmap = ddata->regmap; |
| priv->clk = ddata->clk; |
| priv->max_arr = ddata->max_arr; |
| |
| if (!priv->regmap || !priv->clk) |
| return dev_err_probe(dev, -EINVAL, "Failed to get %s\n", |
| priv->regmap ? "clk" : "regmap"); |
| |
| ret = stm32_pwm_probe_breakinputs(priv, np); |
| if (ret) |
| return dev_err_probe(dev, ret, |
| "Failed to configure breakinputs\n"); |
| |
| stm32_pwm_detect_complementary(priv); |
| |
| ret = devm_clk_rate_exclusive_get(dev, priv->clk); |
| if (ret) |
| return dev_err_probe(dev, ret, "Failed to lock clock\n"); |
| |
| /* |
| * With the clk running with not more than 1 GHz the calculations in |
| * .apply() won't overflow. |
| */ |
| if (clk_get_rate(priv->clk) > 1000000000) |
| return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n", |
| clk_get_rate(priv->clk)); |
| |
| chip->ops = &stm32pwm_ops; |
| |
| /* Initialize clock refcount to number of enabled PWM channels. */ |
| for (i = 0; i < num_enabled; i++) { |
| ret = clk_enable(priv->clk); |
| if (ret) |
| return ret; |
| } |
| |
| ret = devm_pwmchip_add(dev, chip); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, |
| "Failed to register pwmchip\n"); |
| |
| platform_set_drvdata(pdev, chip); |
| |
| return 0; |
| } |
| |
| static int stm32_pwm_suspend(struct device *dev) |
| { |
| struct pwm_chip *chip = dev_get_drvdata(dev); |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| unsigned int i; |
| u32 ccer, mask; |
| |
| /* Look for active channels */ |
| ccer = active_channels(priv); |
| |
| for (i = 0; i < chip->npwm; i++) { |
| mask = TIM_CCER_CCxE(i + 1); |
| if (ccer & mask) { |
| dev_err(dev, "PWM %u still in use by consumer %s\n", |
| i, chip->pwms[i].label); |
| return -EBUSY; |
| } |
| } |
| |
| return pinctrl_pm_select_sleep_state(dev); |
| } |
| |
| static int stm32_pwm_resume(struct device *dev) |
| { |
| struct pwm_chip *chip = dev_get_drvdata(dev); |
| struct stm32_pwm *priv = to_stm32_pwm_dev(chip); |
| int ret; |
| |
| ret = pinctrl_pm_select_default_state(dev); |
| if (ret) |
| return ret; |
| |
| /* restore breakinput registers that may have been lost in low power */ |
| return stm32_pwm_apply_breakinputs(priv); |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); |
| |
| static const struct of_device_id stm32_pwm_of_match[] = { |
| { .compatible = "st,stm32-pwm", }, |
| { /* end node */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); |
| |
| static struct platform_driver stm32_pwm_driver = { |
| .probe = stm32_pwm_probe, |
| .driver = { |
| .name = "stm32-pwm", |
| .of_match_table = stm32_pwm_of_match, |
| .pm = pm_ptr(&stm32_pwm_pm_ops), |
| }, |
| }; |
| module_platform_driver(stm32_pwm_driver); |
| |
| MODULE_ALIAS("platform:stm32-pwm"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); |
| MODULE_LICENSE("GPL v2"); |