| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_CLEANUP_H |
| #define _LINUX_CLEANUP_H |
| |
| #include <linux/compiler.h> |
| |
| /** |
| * DOC: scope-based cleanup helpers |
| * |
| * The "goto error" pattern is notorious for introducing subtle resource |
| * leaks. It is tedious and error prone to add new resource acquisition |
| * constraints into code paths that already have several unwind |
| * conditions. The "cleanup" helpers enable the compiler to help with |
| * this tedium and can aid in maintaining LIFO (last in first out) |
| * unwind ordering to avoid unintentional leaks. |
| * |
| * As drivers make up the majority of the kernel code base, here is an |
| * example of using these helpers to clean up PCI drivers. The target of |
| * the cleanups are occasions where a goto is used to unwind a device |
| * reference (pci_dev_put()), or unlock the device (pci_dev_unlock()) |
| * before returning. |
| * |
| * The DEFINE_FREE() macro can arrange for PCI device references to be |
| * dropped when the associated variable goes out of scope:: |
| * |
| * DEFINE_FREE(pci_dev_put, struct pci_dev *, if (_T) pci_dev_put(_T)) |
| * ... |
| * struct pci_dev *dev __free(pci_dev_put) = |
| * pci_get_slot(parent, PCI_DEVFN(0, 0)); |
| * |
| * The above will automatically call pci_dev_put() if @dev is non-NULL |
| * when @dev goes out of scope (automatic variable scope). If a function |
| * wants to invoke pci_dev_put() on error, but return @dev (i.e. without |
| * freeing it) on success, it can do:: |
| * |
| * return no_free_ptr(dev); |
| * |
| * ...or:: |
| * |
| * return_ptr(dev); |
| * |
| * The DEFINE_GUARD() macro can arrange for the PCI device lock to be |
| * dropped when the scope where guard() is invoked ends:: |
| * |
| * DEFINE_GUARD(pci_dev, struct pci_dev *, pci_dev_lock(_T), pci_dev_unlock(_T)) |
| * ... |
| * guard(pci_dev)(dev); |
| * |
| * The lifetime of the lock obtained by the guard() helper follows the |
| * scope of automatic variable declaration. Take the following example:: |
| * |
| * func(...) |
| * { |
| * if (...) { |
| * ... |
| * guard(pci_dev)(dev); // pci_dev_lock() invoked here |
| * ... |
| * } // <- implied pci_dev_unlock() triggered here |
| * } |
| * |
| * Observe the lock is held for the remainder of the "if ()" block not |
| * the remainder of "func()". |
| * |
| * Now, when a function uses both __free() and guard(), or multiple |
| * instances of __free(), the LIFO order of variable definition order |
| * matters. GCC documentation says: |
| * |
| * "When multiple variables in the same scope have cleanup attributes, |
| * at exit from the scope their associated cleanup functions are run in |
| * reverse order of definition (last defined, first cleanup)." |
| * |
| * When the unwind order matters it requires that variables be defined |
| * mid-function scope rather than at the top of the file. Take the |
| * following example and notice the bug highlighted by "!!":: |
| * |
| * LIST_HEAD(list); |
| * DEFINE_MUTEX(lock); |
| * |
| * struct object { |
| * struct list_head node; |
| * }; |
| * |
| * static struct object *alloc_add(void) |
| * { |
| * struct object *obj; |
| * |
| * lockdep_assert_held(&lock); |
| * obj = kzalloc(sizeof(*obj), GFP_KERNEL); |
| * if (obj) { |
| * LIST_HEAD_INIT(&obj->node); |
| * list_add(obj->node, &list): |
| * } |
| * return obj; |
| * } |
| * |
| * static void remove_free(struct object *obj) |
| * { |
| * lockdep_assert_held(&lock); |
| * list_del(&obj->node); |
| * kfree(obj); |
| * } |
| * |
| * DEFINE_FREE(remove_free, struct object *, if (_T) remove_free(_T)) |
| * static int init(void) |
| * { |
| * struct object *obj __free(remove_free) = NULL; |
| * int err; |
| * |
| * guard(mutex)(&lock); |
| * obj = alloc_add(); |
| * |
| * if (!obj) |
| * return -ENOMEM; |
| * |
| * err = other_init(obj); |
| * if (err) |
| * return err; // remove_free() called without the lock!! |
| * |
| * no_free_ptr(obj); |
| * return 0; |
| * } |
| * |
| * That bug is fixed by changing init() to call guard() and define + |
| * initialize @obj in this order:: |
| * |
| * guard(mutex)(&lock); |
| * struct object *obj __free(remove_free) = alloc_add(); |
| * |
| * Given that the "__free(...) = NULL" pattern for variables defined at |
| * the top of the function poses this potential interdependency problem |
| * the recommendation is to always define and assign variables in one |
| * statement and not group variable definitions at the top of the |
| * function when __free() is used. |
| * |
| * Lastly, given that the benefit of cleanup helpers is removal of |
| * "goto", and that the "goto" statement can jump between scopes, the |
| * expectation is that usage of "goto" and cleanup helpers is never |
| * mixed in the same function. I.e. for a given routine, convert all |
| * resources that need a "goto" cleanup to scope-based cleanup, or |
| * convert none of them. |
| */ |
| |
| /* |
| * DEFINE_FREE(name, type, free): |
| * simple helper macro that defines the required wrapper for a __free() |
| * based cleanup function. @free is an expression using '_T' to access the |
| * variable. @free should typically include a NULL test before calling a |
| * function, see the example below. |
| * |
| * __free(name): |
| * variable attribute to add a scoped based cleanup to the variable. |
| * |
| * no_free_ptr(var): |
| * like a non-atomic xchg(var, NULL), such that the cleanup function will |
| * be inhibited -- provided it sanely deals with a NULL value. |
| * |
| * NOTE: this has __must_check semantics so that it is harder to accidentally |
| * leak the resource. |
| * |
| * return_ptr(p): |
| * returns p while inhibiting the __free(). |
| * |
| * Ex. |
| * |
| * DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) |
| * |
| * void *alloc_obj(...) |
| * { |
| * struct obj *p __free(kfree) = kmalloc(...); |
| * if (!p) |
| * return NULL; |
| * |
| * if (!init_obj(p)) |
| * return NULL; |
| * |
| * return_ptr(p); |
| * } |
| * |
| * NOTE: the DEFINE_FREE()'s @free expression includes a NULL test even though |
| * kfree() is fine to be called with a NULL value. This is on purpose. This way |
| * the compiler sees the end of our alloc_obj() function as: |
| * |
| * tmp = p; |
| * p = NULL; |
| * if (p) |
| * kfree(p); |
| * return tmp; |
| * |
| * And through the magic of value-propagation and dead-code-elimination, it |
| * eliminates the actual cleanup call and compiles into: |
| * |
| * return p; |
| * |
| * Without the NULL test it turns into a mess and the compiler can't help us. |
| */ |
| |
| #define DEFINE_FREE(_name, _type, _free) \ |
| static inline void __free_##_name(void *p) { _type _T = *(_type *)p; _free; } |
| |
| #define __free(_name) __cleanup(__free_##_name) |
| |
| #define __get_and_null(p, nullvalue) \ |
| ({ \ |
| __auto_type __ptr = &(p); \ |
| __auto_type __val = *__ptr; \ |
| *__ptr = nullvalue; \ |
| __val; \ |
| }) |
| |
| static inline __must_check |
| const volatile void * __must_check_fn(const volatile void *val) |
| { return val; } |
| |
| #define no_free_ptr(p) \ |
| ((typeof(p)) __must_check_fn(__get_and_null(p, NULL))) |
| |
| #define return_ptr(p) return no_free_ptr(p) |
| |
| |
| /* |
| * DEFINE_CLASS(name, type, exit, init, init_args...): |
| * helper to define the destructor and constructor for a type. |
| * @exit is an expression using '_T' -- similar to FREE above. |
| * @init is an expression in @init_args resulting in @type |
| * |
| * EXTEND_CLASS(name, ext, init, init_args...): |
| * extends class @name to @name@ext with the new constructor |
| * |
| * CLASS(name, var)(args...): |
| * declare the variable @var as an instance of the named class |
| * |
| * Ex. |
| * |
| * DEFINE_CLASS(fdget, struct fd, fdput(_T), fdget(fd), int fd) |
| * |
| * CLASS(fdget, f)(fd); |
| * if (fd_empty(f)) |
| * return -EBADF; |
| * |
| * // use 'f' without concern |
| */ |
| |
| #define DEFINE_CLASS(_name, _type, _exit, _init, _init_args...) \ |
| typedef _type class_##_name##_t; \ |
| static inline void class_##_name##_destructor(_type *p) \ |
| { _type _T = *p; _exit; } \ |
| static inline _type class_##_name##_constructor(_init_args) \ |
| { _type t = _init; return t; } |
| |
| #define EXTEND_CLASS(_name, ext, _init, _init_args...) \ |
| typedef class_##_name##_t class_##_name##ext##_t; \ |
| static inline void class_##_name##ext##_destructor(class_##_name##_t *p)\ |
| { class_##_name##_destructor(p); } \ |
| static inline class_##_name##_t class_##_name##ext##_constructor(_init_args) \ |
| { class_##_name##_t t = _init; return t; } |
| |
| #define CLASS(_name, var) \ |
| class_##_name##_t var __cleanup(class_##_name##_destructor) = \ |
| class_##_name##_constructor |
| |
| |
| /* |
| * DEFINE_GUARD(name, type, lock, unlock): |
| * trivial wrapper around DEFINE_CLASS() above specifically |
| * for locks. |
| * |
| * DEFINE_GUARD_COND(name, ext, condlock) |
| * wrapper around EXTEND_CLASS above to add conditional lock |
| * variants to a base class, eg. mutex_trylock() or |
| * mutex_lock_interruptible(). |
| * |
| * guard(name): |
| * an anonymous instance of the (guard) class, not recommended for |
| * conditional locks. |
| * |
| * scoped_guard (name, args...) { }: |
| * similar to CLASS(name, scope)(args), except the variable (with the |
| * explicit name 'scope') is declard in a for-loop such that its scope is |
| * bound to the next (compound) statement. |
| * |
| * for conditional locks the loop body is skipped when the lock is not |
| * acquired. |
| * |
| * scoped_cond_guard (name, fail, args...) { }: |
| * similar to scoped_guard(), except it does fail when the lock |
| * acquire fails. |
| * |
| * Only for conditional locks. |
| */ |
| |
| #define __DEFINE_CLASS_IS_CONDITIONAL(_name, _is_cond) \ |
| static __maybe_unused const bool class_##_name##_is_conditional = _is_cond |
| |
| #define DEFINE_GUARD(_name, _type, _lock, _unlock) \ |
| __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ |
| DEFINE_CLASS(_name, _type, if (_T) { _unlock; }, ({ _lock; _T; }), _type _T); \ |
| static inline void * class_##_name##_lock_ptr(class_##_name##_t *_T) \ |
| { return (void *)(__force unsigned long)*_T; } |
| |
| #define DEFINE_GUARD_COND(_name, _ext, _condlock) \ |
| __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ |
| EXTEND_CLASS(_name, _ext, \ |
| ({ void *_t = _T; if (_T && !(_condlock)) _t = NULL; _t; }), \ |
| class_##_name##_t _T) \ |
| static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ |
| { return class_##_name##_lock_ptr(_T); } |
| |
| #define guard(_name) \ |
| CLASS(_name, __UNIQUE_ID(guard)) |
| |
| #define __guard_ptr(_name) class_##_name##_lock_ptr |
| #define __is_cond_ptr(_name) class_##_name##_is_conditional |
| |
| /* |
| * Helper macro for scoped_guard(). |
| * |
| * Note that the "!__is_cond_ptr(_name)" part of the condition ensures that |
| * compiler would be sure that for the unconditional locks the body of the |
| * loop (caller-provided code glued to the else clause) could not be skipped. |
| * It is needed because the other part - "__guard_ptr(_name)(&scope)" - is too |
| * hard to deduce (even if could be proven true for unconditional locks). |
| */ |
| #define __scoped_guard(_name, _label, args...) \ |
| for (CLASS(_name, scope)(args); \ |
| __guard_ptr(_name)(&scope) || !__is_cond_ptr(_name); \ |
| ({ goto _label; })) \ |
| if (0) { \ |
| _label: \ |
| break; \ |
| } else |
| |
| #define scoped_guard(_name, args...) \ |
| __scoped_guard(_name, __UNIQUE_ID(label), args) |
| |
| #define __scoped_cond_guard(_name, _fail, _label, args...) \ |
| for (CLASS(_name, scope)(args); true; ({ goto _label; })) \ |
| if (!__guard_ptr(_name)(&scope)) { \ |
| BUILD_BUG_ON(!__is_cond_ptr(_name)); \ |
| _fail; \ |
| _label: \ |
| break; \ |
| } else |
| |
| #define scoped_cond_guard(_name, _fail, args...) \ |
| __scoped_cond_guard(_name, _fail, __UNIQUE_ID(label), args) |
| |
| /* |
| * Additional helper macros for generating lock guards with types, either for |
| * locks that don't have a native type (eg. RCU, preempt) or those that need a |
| * 'fat' pointer (eg. spin_lock_irqsave). |
| * |
| * DEFINE_LOCK_GUARD_0(name, lock, unlock, ...) |
| * DEFINE_LOCK_GUARD_1(name, type, lock, unlock, ...) |
| * DEFINE_LOCK_GUARD_1_COND(name, ext, condlock) |
| * |
| * will result in the following type: |
| * |
| * typedef struct { |
| * type *lock; // 'type := void' for the _0 variant |
| * __VA_ARGS__; |
| * } class_##name##_t; |
| * |
| * As above, both _lock and _unlock are statements, except this time '_T' will |
| * be a pointer to the above struct. |
| */ |
| |
| #define __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, ...) \ |
| typedef struct { \ |
| _type *lock; \ |
| __VA_ARGS__; \ |
| } class_##_name##_t; \ |
| \ |
| static inline void class_##_name##_destructor(class_##_name##_t *_T) \ |
| { \ |
| if (_T->lock) { _unlock; } \ |
| } \ |
| \ |
| static inline void *class_##_name##_lock_ptr(class_##_name##_t *_T) \ |
| { \ |
| return (void *)(__force unsigned long)_T->lock; \ |
| } |
| |
| |
| #define __DEFINE_LOCK_GUARD_1(_name, _type, _lock) \ |
| static inline class_##_name##_t class_##_name##_constructor(_type *l) \ |
| { \ |
| class_##_name##_t _t = { .lock = l }, *_T = &_t; \ |
| _lock; \ |
| return _t; \ |
| } |
| |
| #define __DEFINE_LOCK_GUARD_0(_name, _lock) \ |
| static inline class_##_name##_t class_##_name##_constructor(void) \ |
| { \ |
| class_##_name##_t _t = { .lock = (void*)1 }, \ |
| *_T __maybe_unused = &_t; \ |
| _lock; \ |
| return _t; \ |
| } |
| |
| #define DEFINE_LOCK_GUARD_1(_name, _type, _lock, _unlock, ...) \ |
| __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ |
| __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, __VA_ARGS__) \ |
| __DEFINE_LOCK_GUARD_1(_name, _type, _lock) |
| |
| #define DEFINE_LOCK_GUARD_0(_name, _lock, _unlock, ...) \ |
| __DEFINE_CLASS_IS_CONDITIONAL(_name, false); \ |
| __DEFINE_UNLOCK_GUARD(_name, void, _unlock, __VA_ARGS__) \ |
| __DEFINE_LOCK_GUARD_0(_name, _lock) |
| |
| #define DEFINE_LOCK_GUARD_1_COND(_name, _ext, _condlock) \ |
| __DEFINE_CLASS_IS_CONDITIONAL(_name##_ext, true); \ |
| EXTEND_CLASS(_name, _ext, \ |
| ({ class_##_name##_t _t = { .lock = l }, *_T = &_t;\ |
| if (_T->lock && !(_condlock)) _T->lock = NULL; \ |
| _t; }), \ |
| typeof_member(class_##_name##_t, lock) l) \ |
| static inline void * class_##_name##_ext##_lock_ptr(class_##_name##_t *_T) \ |
| { return class_##_name##_lock_ptr(_T); } |
| |
| |
| #endif /* _LINUX_CLEANUP_H */ |