| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Written by Mark Hemment, 1996 ([email protected]). |
| * |
| * (C) SGI 2006, Christoph Lameter |
| * Cleaned up and restructured to ease the addition of alternative |
| * implementations of SLAB allocators. |
| * (C) Linux Foundation 2008-2013 |
| * Unified interface for all slab allocators |
| */ |
| |
| #ifndef _LINUX_SLAB_H |
| #define _LINUX_SLAB_H |
| |
| #include <linux/cache.h> |
| #include <linux/gfp.h> |
| #include <linux/overflow.h> |
| #include <linux/types.h> |
| #include <linux/workqueue.h> |
| #include <linux/percpu-refcount.h> |
| #include <linux/cleanup.h> |
| #include <linux/hash.h> |
| |
| enum _slab_flag_bits { |
| _SLAB_CONSISTENCY_CHECKS, |
| _SLAB_RED_ZONE, |
| _SLAB_POISON, |
| _SLAB_KMALLOC, |
| _SLAB_HWCACHE_ALIGN, |
| _SLAB_CACHE_DMA, |
| _SLAB_CACHE_DMA32, |
| _SLAB_STORE_USER, |
| _SLAB_PANIC, |
| _SLAB_TYPESAFE_BY_RCU, |
| _SLAB_TRACE, |
| #ifdef CONFIG_DEBUG_OBJECTS |
| _SLAB_DEBUG_OBJECTS, |
| #endif |
| _SLAB_NOLEAKTRACE, |
| _SLAB_NO_MERGE, |
| #ifdef CONFIG_FAILSLAB |
| _SLAB_FAILSLAB, |
| #endif |
| #ifdef CONFIG_MEMCG |
| _SLAB_ACCOUNT, |
| #endif |
| #ifdef CONFIG_KASAN_GENERIC |
| _SLAB_KASAN, |
| #endif |
| _SLAB_NO_USER_FLAGS, |
| #ifdef CONFIG_KFENCE |
| _SLAB_SKIP_KFENCE, |
| #endif |
| #ifndef CONFIG_SLUB_TINY |
| _SLAB_RECLAIM_ACCOUNT, |
| #endif |
| _SLAB_OBJECT_POISON, |
| _SLAB_CMPXCHG_DOUBLE, |
| #ifdef CONFIG_SLAB_OBJ_EXT |
| _SLAB_NO_OBJ_EXT, |
| #endif |
| _SLAB_FLAGS_LAST_BIT |
| }; |
| |
| #define __SLAB_FLAG_BIT(nr) ((slab_flags_t __force)(1U << (nr))) |
| #define __SLAB_FLAG_UNUSED ((slab_flags_t __force)(0U)) |
| |
| /* |
| * Flags to pass to kmem_cache_create(). |
| * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op |
| */ |
| /* DEBUG: Perform (expensive) checks on alloc/free */ |
| #define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS) |
| /* DEBUG: Red zone objs in a cache */ |
| #define SLAB_RED_ZONE __SLAB_FLAG_BIT(_SLAB_RED_ZONE) |
| /* DEBUG: Poison objects */ |
| #define SLAB_POISON __SLAB_FLAG_BIT(_SLAB_POISON) |
| /* Indicate a kmalloc slab */ |
| #define SLAB_KMALLOC __SLAB_FLAG_BIT(_SLAB_KMALLOC) |
| /** |
| * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. |
| * |
| * Sufficiently large objects are aligned on cache line boundary. For object |
| * size smaller than a half of cache line size, the alignment is on the half of |
| * cache line size. In general, if object size is smaller than 1/2^n of cache |
| * line size, the alignment is adjusted to 1/2^n. |
| * |
| * If explicit alignment is also requested by the respective |
| * &struct kmem_cache_args field, the greater of both is alignments is applied. |
| */ |
| #define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN) |
| /* Use GFP_DMA memory */ |
| #define SLAB_CACHE_DMA __SLAB_FLAG_BIT(_SLAB_CACHE_DMA) |
| /* Use GFP_DMA32 memory */ |
| #define SLAB_CACHE_DMA32 __SLAB_FLAG_BIT(_SLAB_CACHE_DMA32) |
| /* DEBUG: Store the last owner for bug hunting */ |
| #define SLAB_STORE_USER __SLAB_FLAG_BIT(_SLAB_STORE_USER) |
| /* Panic if kmem_cache_create() fails */ |
| #define SLAB_PANIC __SLAB_FLAG_BIT(_SLAB_PANIC) |
| /** |
| * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! |
| * |
| * This delays freeing the SLAB page by a grace period, it does _NOT_ |
| * delay object freeing. This means that if you do kmem_cache_free() |
| * that memory location is free to be reused at any time. Thus it may |
| * be possible to see another object there in the same RCU grace period. |
| * |
| * This feature only ensures the memory location backing the object |
| * stays valid, the trick to using this is relying on an independent |
| * object validation pass. Something like: |
| * |
| * :: |
| * |
| * begin: |
| * rcu_read_lock(); |
| * obj = lockless_lookup(key); |
| * if (obj) { |
| * if (!try_get_ref(obj)) // might fail for free objects |
| * rcu_read_unlock(); |
| * goto begin; |
| * |
| * if (obj->key != key) { // not the object we expected |
| * put_ref(obj); |
| * rcu_read_unlock(); |
| * goto begin; |
| * } |
| * } |
| * rcu_read_unlock(); |
| * |
| * This is useful if we need to approach a kernel structure obliquely, |
| * from its address obtained without the usual locking. We can lock |
| * the structure to stabilize it and check it's still at the given address, |
| * only if we can be sure that the memory has not been meanwhile reused |
| * for some other kind of object (which our subsystem's lock might corrupt). |
| * |
| * rcu_read_lock before reading the address, then rcu_read_unlock after |
| * taking the spinlock within the structure expected at that address. |
| * |
| * Note that it is not possible to acquire a lock within a structure |
| * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference |
| * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages |
| * are not zeroed before being given to the slab, which means that any |
| * locks must be initialized after each and every kmem_struct_alloc(). |
| * Alternatively, make the ctor passed to kmem_cache_create() initialize |
| * the locks at page-allocation time, as is done in __i915_request_ctor(), |
| * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers |
| * to safely acquire those ctor-initialized locks under rcu_read_lock() |
| * protection. |
| * |
| * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. |
| */ |
| #define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU) |
| /* Trace allocations and frees */ |
| #define SLAB_TRACE __SLAB_FLAG_BIT(_SLAB_TRACE) |
| |
| /* Flag to prevent checks on free */ |
| #ifdef CONFIG_DEBUG_OBJECTS |
| # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS) |
| #else |
| # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UNUSED |
| #endif |
| |
| /* Avoid kmemleak tracing */ |
| #define SLAB_NOLEAKTRACE __SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE) |
| |
| /* |
| * Prevent merging with compatible kmem caches. This flag should be used |
| * cautiously. Valid use cases: |
| * |
| * - caches created for self-tests (e.g. kunit) |
| * - general caches created and used by a subsystem, only when a |
| * (subsystem-specific) debug option is enabled |
| * - performance critical caches, should be very rare and consulted with slab |
| * maintainers, and not used together with CONFIG_SLUB_TINY |
| */ |
| #define SLAB_NO_MERGE __SLAB_FLAG_BIT(_SLAB_NO_MERGE) |
| |
| /* Fault injection mark */ |
| #ifdef CONFIG_FAILSLAB |
| # define SLAB_FAILSLAB __SLAB_FLAG_BIT(_SLAB_FAILSLAB) |
| #else |
| # define SLAB_FAILSLAB __SLAB_FLAG_UNUSED |
| #endif |
| /** |
| * define SLAB_ACCOUNT - Account allocations to memcg. |
| * |
| * All object allocations from this cache will be memcg accounted, regardless of |
| * __GFP_ACCOUNT being or not being passed to individual allocations. |
| */ |
| #ifdef CONFIG_MEMCG |
| # define SLAB_ACCOUNT __SLAB_FLAG_BIT(_SLAB_ACCOUNT) |
| #else |
| # define SLAB_ACCOUNT __SLAB_FLAG_UNUSED |
| #endif |
| |
| #ifdef CONFIG_KASAN_GENERIC |
| #define SLAB_KASAN __SLAB_FLAG_BIT(_SLAB_KASAN) |
| #else |
| #define SLAB_KASAN __SLAB_FLAG_UNUSED |
| #endif |
| |
| /* |
| * Ignore user specified debugging flags. |
| * Intended for caches created for self-tests so they have only flags |
| * specified in the code and other flags are ignored. |
| */ |
| #define SLAB_NO_USER_FLAGS __SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS) |
| |
| #ifdef CONFIG_KFENCE |
| #define SLAB_SKIP_KFENCE __SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE) |
| #else |
| #define SLAB_SKIP_KFENCE __SLAB_FLAG_UNUSED |
| #endif |
| |
| /* The following flags affect the page allocator grouping pages by mobility */ |
| /** |
| * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. |
| * |
| * Use this flag for caches that have an associated shrinker. As a result, slab |
| * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by |
| * mobility, and are accounted in SReclaimable counter in /proc/meminfo |
| */ |
| #ifndef CONFIG_SLUB_TINY |
| #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT) |
| #else |
| #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UNUSED |
| #endif |
| #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ |
| |
| /* Slab created using create_boot_cache */ |
| #ifdef CONFIG_SLAB_OBJ_EXT |
| #define SLAB_NO_OBJ_EXT __SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT) |
| #else |
| #define SLAB_NO_OBJ_EXT __SLAB_FLAG_UNUSED |
| #endif |
| |
| /* |
| * freeptr_t represents a SLUB freelist pointer, which might be encoded |
| * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. |
| */ |
| typedef struct { unsigned long v; } freeptr_t; |
| |
| /* |
| * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. |
| * |
| * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. |
| * |
| * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. |
| * Both make kfree a no-op. |
| */ |
| #define ZERO_SIZE_PTR ((void *)16) |
| |
| #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ |
| (unsigned long)ZERO_SIZE_PTR) |
| |
| #include <linux/kasan.h> |
| |
| struct list_lru; |
| struct mem_cgroup; |
| /* |
| * struct kmem_cache related prototypes |
| */ |
| bool slab_is_available(void); |
| |
| /** |
| * struct kmem_cache_args - Less common arguments for kmem_cache_create() |
| * |
| * Any uninitialized fields of the structure are interpreted as unused. The |
| * exception is @freeptr_offset where %0 is a valid value, so |
| * @use_freeptr_offset must be also set to %true in order to interpret the field |
| * as used. For @useroffset %0 is also valid, but only with non-%0 |
| * @usersize. |
| * |
| * When %NULL args is passed to kmem_cache_create(), it is equivalent to all |
| * fields unused. |
| */ |
| struct kmem_cache_args { |
| /** |
| * @align: The required alignment for the objects. |
| * |
| * %0 means no specific alignment is requested. |
| */ |
| unsigned int align; |
| /** |
| * @useroffset: Usercopy region offset. |
| * |
| * %0 is a valid offset, when @usersize is non-%0 |
| */ |
| unsigned int useroffset; |
| /** |
| * @usersize: Usercopy region size. |
| * |
| * %0 means no usercopy region is specified. |
| */ |
| unsigned int usersize; |
| /** |
| * @freeptr_offset: Custom offset for the free pointer |
| * in &SLAB_TYPESAFE_BY_RCU caches |
| * |
| * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer |
| * outside of the object. This might cause the object to grow in size. |
| * Cache creators that have a reason to avoid this can specify a custom |
| * free pointer offset in their struct where the free pointer will be |
| * placed. |
| * |
| * Note that placing the free pointer inside the object requires the |
| * caller to ensure that no fields are invalidated that are required to |
| * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for |
| * details). |
| * |
| * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset |
| * is specified, %use_freeptr_offset must be set %true. |
| * |
| * Note that @ctor currently isn't supported with custom free pointers |
| * as a @ctor requires an external free pointer. |
| */ |
| unsigned int freeptr_offset; |
| /** |
| * @use_freeptr_offset: Whether a @freeptr_offset is used. |
| */ |
| bool use_freeptr_offset; |
| /** |
| * @ctor: A constructor for the objects. |
| * |
| * The constructor is invoked for each object in a newly allocated slab |
| * page. It is the cache user's responsibility to free object in the |
| * same state as after calling the constructor, or deal appropriately |
| * with any differences between a freshly constructed and a reallocated |
| * object. |
| * |
| * %NULL means no constructor. |
| */ |
| void (*ctor)(void *); |
| }; |
| |
| struct kmem_cache *__kmem_cache_create_args(const char *name, |
| unsigned int object_size, |
| struct kmem_cache_args *args, |
| slab_flags_t flags); |
| static inline struct kmem_cache * |
| __kmem_cache_create(const char *name, unsigned int size, unsigned int align, |
| slab_flags_t flags, void (*ctor)(void *)) |
| { |
| struct kmem_cache_args kmem_args = { |
| .align = align, |
| .ctor = ctor, |
| }; |
| |
| return __kmem_cache_create_args(name, size, &kmem_args, flags); |
| } |
| |
| /** |
| * kmem_cache_create_usercopy - Create a kmem cache with a region suitable |
| * for copying to userspace. |
| * @name: A string which is used in /proc/slabinfo to identify this cache. |
| * @size: The size of objects to be created in this cache. |
| * @align: The required alignment for the objects. |
| * @flags: SLAB flags |
| * @useroffset: Usercopy region offset |
| * @usersize: Usercopy region size |
| * @ctor: A constructor for the objects, or %NULL. |
| * |
| * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY() |
| * if whitelisting a single field is sufficient, or kmem_cache_create() with |
| * the necessary parameters passed via the args parameter (see |
| * &struct kmem_cache_args) |
| * |
| * Return: a pointer to the cache on success, NULL on failure. |
| */ |
| static inline struct kmem_cache * |
| kmem_cache_create_usercopy(const char *name, unsigned int size, |
| unsigned int align, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize, |
| void (*ctor)(void *)) |
| { |
| struct kmem_cache_args kmem_args = { |
| .align = align, |
| .ctor = ctor, |
| .useroffset = useroffset, |
| .usersize = usersize, |
| }; |
| |
| return __kmem_cache_create_args(name, size, &kmem_args, flags); |
| } |
| |
| /* If NULL is passed for @args, use this variant with default arguments. */ |
| static inline struct kmem_cache * |
| __kmem_cache_default_args(const char *name, unsigned int size, |
| struct kmem_cache_args *args, |
| slab_flags_t flags) |
| { |
| struct kmem_cache_args kmem_default_args = {}; |
| |
| /* Make sure we don't get passed garbage. */ |
| if (WARN_ON_ONCE(args)) |
| return ERR_PTR(-EINVAL); |
| |
| return __kmem_cache_create_args(name, size, &kmem_default_args, flags); |
| } |
| |
| /** |
| * kmem_cache_create - Create a kmem cache. |
| * @__name: A string which is used in /proc/slabinfo to identify this cache. |
| * @__object_size: The size of objects to be created in this cache. |
| * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL |
| * means defaults will be used for all the arguments. |
| * |
| * This is currently implemented as a macro using ``_Generic()`` to call |
| * either the new variant of the function, or a legacy one. |
| * |
| * The new variant has 4 parameters: |
| * ``kmem_cache_create(name, object_size, args, flags)`` |
| * |
| * See __kmem_cache_create_args() which implements this. |
| * |
| * The legacy variant has 5 parameters: |
| * ``kmem_cache_create(name, object_size, align, flags, ctor)`` |
| * |
| * The align and ctor parameters map to the respective fields of |
| * &struct kmem_cache_args |
| * |
| * Context: Cannot be called within a interrupt, but can be interrupted. |
| * |
| * Return: a pointer to the cache on success, NULL on failure. |
| */ |
| #define kmem_cache_create(__name, __object_size, __args, ...) \ |
| _Generic((__args), \ |
| struct kmem_cache_args *: __kmem_cache_create_args, \ |
| void *: __kmem_cache_default_args, \ |
| default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__) |
| |
| void kmem_cache_destroy(struct kmem_cache *s); |
| int kmem_cache_shrink(struct kmem_cache *s); |
| |
| /* |
| * Please use this macro to create slab caches. Simply specify the |
| * name of the structure and maybe some flags that are listed above. |
| * |
| * The alignment of the struct determines object alignment. If you |
| * f.e. add ____cacheline_aligned_in_smp to the struct declaration |
| * then the objects will be properly aligned in SMP configurations. |
| */ |
| #define KMEM_CACHE(__struct, __flags) \ |
| __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ |
| &(struct kmem_cache_args) { \ |
| .align = __alignof__(struct __struct), \ |
| }, (__flags)) |
| |
| /* |
| * To whitelist a single field for copying to/from usercopy, use this |
| * macro instead for KMEM_CACHE() above. |
| */ |
| #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ |
| __kmem_cache_create_args(#__struct, sizeof(struct __struct), \ |
| &(struct kmem_cache_args) { \ |
| .align = __alignof__(struct __struct), \ |
| .useroffset = offsetof(struct __struct, __field), \ |
| .usersize = sizeof_field(struct __struct, __field), \ |
| }, (__flags)) |
| |
| /* |
| * Common kmalloc functions provided by all allocators |
| */ |
| void * __must_check krealloc_noprof(const void *objp, size_t new_size, |
| gfp_t flags) __realloc_size(2); |
| #define krealloc(...) alloc_hooks(krealloc_noprof(__VA_ARGS__)) |
| |
| void kfree(const void *objp); |
| void kfree_sensitive(const void *objp); |
| size_t __ksize(const void *objp); |
| |
| DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) |
| DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T)) |
| |
| /** |
| * ksize - Report actual allocation size of associated object |
| * |
| * @objp: Pointer returned from a prior kmalloc()-family allocation. |
| * |
| * This should not be used for writing beyond the originally requested |
| * allocation size. Either use krealloc() or round up the allocation size |
| * with kmalloc_size_roundup() prior to allocation. If this is used to |
| * access beyond the originally requested allocation size, UBSAN_BOUNDS |
| * and/or FORTIFY_SOURCE may trip, since they only know about the |
| * originally allocated size via the __alloc_size attribute. |
| */ |
| size_t ksize(const void *objp); |
| |
| #ifdef CONFIG_PRINTK |
| bool kmem_dump_obj(void *object); |
| #else |
| static inline bool kmem_dump_obj(void *object) { return false; } |
| #endif |
| |
| /* |
| * Some archs want to perform DMA into kmalloc caches and need a guaranteed |
| * alignment larger than the alignment of a 64-bit integer. |
| * Setting ARCH_DMA_MINALIGN in arch headers allows that. |
| */ |
| #ifdef ARCH_HAS_DMA_MINALIGN |
| #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) |
| #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN |
| #endif |
| #endif |
| |
| #ifndef ARCH_KMALLOC_MINALIGN |
| #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
| #elif ARCH_KMALLOC_MINALIGN > 8 |
| #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN |
| #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) |
| #endif |
| |
| /* |
| * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. |
| * Intended for arches that get misalignment faults even for 64 bit integer |
| * aligned buffers. |
| */ |
| #ifndef ARCH_SLAB_MINALIGN |
| #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
| #endif |
| |
| /* |
| * Arches can define this function if they want to decide the minimum slab |
| * alignment at runtime. The value returned by the function must be a power |
| * of two and >= ARCH_SLAB_MINALIGN. |
| */ |
| #ifndef arch_slab_minalign |
| static inline unsigned int arch_slab_minalign(void) |
| { |
| return ARCH_SLAB_MINALIGN; |
| } |
| #endif |
| |
| /* |
| * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. |
| * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN |
| * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. |
| */ |
| #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) |
| #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) |
| #define __assume_page_alignment __assume_aligned(PAGE_SIZE) |
| |
| /* |
| * Kmalloc array related definitions |
| */ |
| |
| /* |
| * SLUB directly allocates requests fitting in to an order-1 page |
| * (PAGE_SIZE*2). Larger requests are passed to the page allocator. |
| */ |
| #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) |
| #define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDER + PAGE_SHIFT) |
| #ifndef KMALLOC_SHIFT_LOW |
| #define KMALLOC_SHIFT_LOW 3 |
| #endif |
| |
| /* Maximum allocatable size */ |
| #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) |
| /* Maximum size for which we actually use a slab cache */ |
| #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) |
| /* Maximum order allocatable via the slab allocator */ |
| #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) |
| |
| /* |
| * Kmalloc subsystem. |
| */ |
| #ifndef KMALLOC_MIN_SIZE |
| #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) |
| #endif |
| |
| /* |
| * This restriction comes from byte sized index implementation. |
| * Page size is normally 2^12 bytes and, in this case, if we want to use |
| * byte sized index which can represent 2^8 entries, the size of the object |
| * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. |
| * If minimum size of kmalloc is less than 16, we use it as minimum object |
| * size and give up to use byte sized index. |
| */ |
| #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ |
| (KMALLOC_MIN_SIZE) : 16) |
| |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| #define RANDOM_KMALLOC_CACHES_NR 15 // # of cache copies |
| #else |
| #define RANDOM_KMALLOC_CACHES_NR 0 |
| #endif |
| |
| /* |
| * Whenever changing this, take care of that kmalloc_type() and |
| * create_kmalloc_caches() still work as intended. |
| * |
| * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP |
| * is for accounted but unreclaimable and non-dma objects. All the other |
| * kmem caches can have both accounted and unaccounted objects. |
| */ |
| enum kmalloc_cache_type { |
| KMALLOC_NORMAL = 0, |
| #ifndef CONFIG_ZONE_DMA |
| KMALLOC_DMA = KMALLOC_NORMAL, |
| #endif |
| #ifndef CONFIG_MEMCG |
| KMALLOC_CGROUP = KMALLOC_NORMAL, |
| #endif |
| KMALLOC_RANDOM_START = KMALLOC_NORMAL, |
| KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR, |
| #ifdef CONFIG_SLUB_TINY |
| KMALLOC_RECLAIM = KMALLOC_NORMAL, |
| #else |
| KMALLOC_RECLAIM, |
| #endif |
| #ifdef CONFIG_ZONE_DMA |
| KMALLOC_DMA, |
| #endif |
| #ifdef CONFIG_MEMCG |
| KMALLOC_CGROUP, |
| #endif |
| NR_KMALLOC_TYPES |
| }; |
| |
| typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1]; |
| |
| extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES]; |
| |
| /* |
| * Define gfp bits that should not be set for KMALLOC_NORMAL. |
| */ |
| #define KMALLOC_NOT_NORMAL_BITS \ |
| (__GFP_RECLAIMABLE | \ |
| (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ |
| (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0)) |
| |
| extern unsigned long random_kmalloc_seed; |
| |
| static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller) |
| { |
| /* |
| * The most common case is KMALLOC_NORMAL, so test for it |
| * with a single branch for all the relevant flags. |
| */ |
| if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| /* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */ |
| return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed, |
| ilog2(RANDOM_KMALLOC_CACHES_NR + 1)); |
| #else |
| return KMALLOC_NORMAL; |
| #endif |
| |
| /* |
| * At least one of the flags has to be set. Their priorities in |
| * decreasing order are: |
| * 1) __GFP_DMA |
| * 2) __GFP_RECLAIMABLE |
| * 3) __GFP_ACCOUNT |
| */ |
| if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) |
| return KMALLOC_DMA; |
| if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE)) |
| return KMALLOC_RECLAIM; |
| else |
| return KMALLOC_CGROUP; |
| } |
| |
| /* |
| * Figure out which kmalloc slab an allocation of a certain size |
| * belongs to. |
| * 0 = zero alloc |
| * 1 = 65 .. 96 bytes |
| * 2 = 129 .. 192 bytes |
| * n = 2^(n-1)+1 .. 2^n |
| * |
| * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; |
| * typical usage is via kmalloc_index() and therefore evaluated at compile-time. |
| * Callers where !size_is_constant should only be test modules, where runtime |
| * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). |
| */ |
| static __always_inline unsigned int __kmalloc_index(size_t size, |
| bool size_is_constant) |
| { |
| if (!size) |
| return 0; |
| |
| if (size <= KMALLOC_MIN_SIZE) |
| return KMALLOC_SHIFT_LOW; |
| |
| if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) |
| return 1; |
| if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) |
| return 2; |
| if (size <= 8) return 3; |
| if (size <= 16) return 4; |
| if (size <= 32) return 5; |
| if (size <= 64) return 6; |
| if (size <= 128) return 7; |
| if (size <= 256) return 8; |
| if (size <= 512) return 9; |
| if (size <= 1024) return 10; |
| if (size <= 2 * 1024) return 11; |
| if (size <= 4 * 1024) return 12; |
| if (size <= 8 * 1024) return 13; |
| if (size <= 16 * 1024) return 14; |
| if (size <= 32 * 1024) return 15; |
| if (size <= 64 * 1024) return 16; |
| if (size <= 128 * 1024) return 17; |
| if (size <= 256 * 1024) return 18; |
| if (size <= 512 * 1024) return 19; |
| if (size <= 1024 * 1024) return 20; |
| if (size <= 2 * 1024 * 1024) return 21; |
| |
| if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) |
| BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); |
| else |
| BUG(); |
| |
| /* Will never be reached. Needed because the compiler may complain */ |
| return -1; |
| } |
| static_assert(PAGE_SHIFT <= 20); |
| #define kmalloc_index(s) __kmalloc_index(s, true) |
| |
| #include <linux/alloc_tag.h> |
| |
| /** |
| * kmem_cache_alloc - Allocate an object |
| * @cachep: The cache to allocate from. |
| * @flags: See kmalloc(). |
| * |
| * Allocate an object from this cache. |
| * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. |
| * |
| * Return: pointer to the new object or %NULL in case of error |
| */ |
| void *kmem_cache_alloc_noprof(struct kmem_cache *cachep, |
| gfp_t flags) __assume_slab_alignment __malloc; |
| #define kmem_cache_alloc(...) alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__)) |
| |
| void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, |
| gfp_t gfpflags) __assume_slab_alignment __malloc; |
| #define kmem_cache_alloc_lru(...) alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__)) |
| |
| /** |
| * kmem_cache_charge - memcg charge an already allocated slab memory |
| * @objp: address of the slab object to memcg charge |
| * @gfpflags: describe the allocation context |
| * |
| * kmem_cache_charge allows charging a slab object to the current memcg, |
| * primarily in cases where charging at allocation time might not be possible |
| * because the target memcg is not known (i.e. softirq context) |
| * |
| * The objp should be pointer returned by the slab allocator functions like |
| * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge |
| * behavior can be controlled through gfpflags parameter, which affects how the |
| * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes |
| * that overcharging is requested instead of failure, but is not applied for the |
| * internal metadata allocation. |
| * |
| * There are several cases where it will return true even if the charging was |
| * not done: |
| * More specifically: |
| * |
| * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems. |
| * 2. Already charged slab objects. |
| * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc() |
| * without __GFP_ACCOUNT |
| * 4. Allocating internal metadata has failed |
| * |
| * Return: true if charge was successful otherwise false. |
| */ |
| bool kmem_cache_charge(void *objp, gfp_t gfpflags); |
| void kmem_cache_free(struct kmem_cache *s, void *objp); |
| |
| kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize, |
| void (*ctor)(void *)); |
| |
| /* |
| * Bulk allocation and freeing operations. These are accelerated in an |
| * allocator specific way to avoid taking locks repeatedly or building |
| * metadata structures unnecessarily. |
| * |
| * Note that interrupts must be enabled when calling these functions. |
| */ |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); |
| |
| int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p); |
| #define kmem_cache_alloc_bulk(...) alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__)) |
| |
| static __always_inline void kfree_bulk(size_t size, void **p) |
| { |
| kmem_cache_free_bulk(NULL, size, p); |
| } |
| |
| void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags, |
| int node) __assume_slab_alignment __malloc; |
| #define kmem_cache_alloc_node(...) alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__)) |
| |
| /* |
| * These macros allow declaring a kmem_buckets * parameter alongside size, which |
| * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call |
| * sites don't have to pass NULL. |
| */ |
| #ifdef CONFIG_SLAB_BUCKETS |
| #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size), kmem_buckets *(_b) |
| #define PASS_BUCKET_PARAMS(_size, _b) (_size), (_b) |
| #define PASS_BUCKET_PARAM(_b) (_b) |
| #else |
| #define DECL_BUCKET_PARAMS(_size, _b) size_t (_size) |
| #define PASS_BUCKET_PARAMS(_size, _b) (_size) |
| #define PASS_BUCKET_PARAM(_b) NULL |
| #endif |
| |
| /* |
| * The following functions are not to be used directly and are intended only |
| * for internal use from kmalloc() and kmalloc_node() |
| * with the exception of kunit tests |
| */ |
| |
| void *__kmalloc_noprof(size_t size, gfp_t flags) |
| __assume_kmalloc_alignment __alloc_size(1); |
| |
| void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) |
| __assume_kmalloc_alignment __alloc_size(1); |
| |
| void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size) |
| __assume_kmalloc_alignment __alloc_size(3); |
| |
| void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, |
| int node, size_t size) |
| __assume_kmalloc_alignment __alloc_size(4); |
| |
| void *__kmalloc_large_noprof(size_t size, gfp_t flags) |
| __assume_page_alignment __alloc_size(1); |
| |
| void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) |
| __assume_page_alignment __alloc_size(1); |
| |
| /** |
| * kmalloc - allocate kernel memory |
| * @size: how many bytes of memory are required. |
| * @flags: describe the allocation context |
| * |
| * kmalloc is the normal method of allocating memory |
| * for objects smaller than page size in the kernel. |
| * |
| * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN |
| * bytes. For @size of power of two bytes, the alignment is also guaranteed |
| * to be at least to the size. For other sizes, the alignment is guaranteed to |
| * be at least the largest power-of-two divisor of @size. |
| * |
| * The @flags argument may be one of the GFP flags defined at |
| * include/linux/gfp_types.h and described at |
| * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` |
| * |
| * The recommended usage of the @flags is described at |
| * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` |
| * |
| * Below is a brief outline of the most useful GFP flags |
| * |
| * %GFP_KERNEL |
| * Allocate normal kernel ram. May sleep. |
| * |
| * %GFP_NOWAIT |
| * Allocation will not sleep. |
| * |
| * %GFP_ATOMIC |
| * Allocation will not sleep. May use emergency pools. |
| * |
| * Also it is possible to set different flags by OR'ing |
| * in one or more of the following additional @flags: |
| * |
| * %__GFP_ZERO |
| * Zero the allocated memory before returning. Also see kzalloc(). |
| * |
| * %__GFP_HIGH |
| * This allocation has high priority and may use emergency pools. |
| * |
| * %__GFP_NOFAIL |
| * Indicate that this allocation is in no way allowed to fail |
| * (think twice before using). |
| * |
| * %__GFP_NORETRY |
| * If memory is not immediately available, |
| * then give up at once. |
| * |
| * %__GFP_NOWARN |
| * If allocation fails, don't issue any warnings. |
| * |
| * %__GFP_RETRY_MAYFAIL |
| * Try really hard to succeed the allocation but fail |
| * eventually. |
| */ |
| static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags) |
| { |
| if (__builtin_constant_p(size) && size) { |
| unsigned int index; |
| |
| if (size > KMALLOC_MAX_CACHE_SIZE) |
| return __kmalloc_large_noprof(size, flags); |
| |
| index = kmalloc_index(size); |
| return __kmalloc_cache_noprof( |
| kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], |
| flags, size); |
| } |
| return __kmalloc_noprof(size, flags); |
| } |
| #define kmalloc(...) alloc_hooks(kmalloc_noprof(__VA_ARGS__)) |
| |
| #define kmem_buckets_alloc(_b, _size, _flags) \ |
| alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) |
| |
| #define kmem_buckets_alloc_track_caller(_b, _size, _flags) \ |
| alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_)) |
| |
| static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node) |
| { |
| if (__builtin_constant_p(size) && size) { |
| unsigned int index; |
| |
| if (size > KMALLOC_MAX_CACHE_SIZE) |
| return __kmalloc_large_node_noprof(size, flags, node); |
| |
| index = kmalloc_index(size); |
| return __kmalloc_cache_node_noprof( |
| kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index], |
| flags, node, size); |
| } |
| return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node); |
| } |
| #define kmalloc_node(...) alloc_hooks(kmalloc_node_noprof(__VA_ARGS__)) |
| |
| /** |
| * kmalloc_array - allocate memory for an array. |
| * @n: number of elements. |
| * @size: element size. |
| * @flags: the type of memory to allocate (see kmalloc). |
| */ |
| static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags) |
| { |
| size_t bytes; |
| |
| if (unlikely(check_mul_overflow(n, size, &bytes))) |
| return NULL; |
| if (__builtin_constant_p(n) && __builtin_constant_p(size)) |
| return kmalloc_noprof(bytes, flags); |
| return kmalloc_noprof(bytes, flags); |
| } |
| #define kmalloc_array(...) alloc_hooks(kmalloc_array_noprof(__VA_ARGS__)) |
| |
| /** |
| * krealloc_array - reallocate memory for an array. |
| * @p: pointer to the memory chunk to reallocate |
| * @new_n: new number of elements to alloc |
| * @new_size: new size of a single member of the array |
| * @flags: the type of memory to allocate (see kmalloc) |
| * |
| * If __GFP_ZERO logic is requested, callers must ensure that, starting with the |
| * initial memory allocation, every subsequent call to this API for the same |
| * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that |
| * __GFP_ZERO is not fully honored by this API. |
| * |
| * See krealloc_noprof() for further details. |
| * |
| * In any case, the contents of the object pointed to are preserved up to the |
| * lesser of the new and old sizes. |
| */ |
| static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p, |
| size_t new_n, |
| size_t new_size, |
| gfp_t flags) |
| { |
| size_t bytes; |
| |
| if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) |
| return NULL; |
| |
| return krealloc_noprof(p, bytes, flags); |
| } |
| #define krealloc_array(...) alloc_hooks(krealloc_array_noprof(__VA_ARGS__)) |
| |
| /** |
| * kcalloc - allocate memory for an array. The memory is set to zero. |
| * @n: number of elements. |
| * @size: element size. |
| * @flags: the type of memory to allocate (see kmalloc). |
| */ |
| #define kcalloc(n, size, flags) kmalloc_array(n, size, (flags) | __GFP_ZERO) |
| |
| void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node, |
| unsigned long caller) __alloc_size(1); |
| #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \ |
| __kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller) |
| #define kmalloc_node_track_caller(...) \ |
| alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_)) |
| |
| /* |
| * kmalloc_track_caller is a special version of kmalloc that records the |
| * calling function of the routine calling it for slab leak tracking instead |
| * of just the calling function (confusing, eh?). |
| * It's useful when the call to kmalloc comes from a widely-used standard |
| * allocator where we care about the real place the memory allocation |
| * request comes from. |
| */ |
| #define kmalloc_track_caller(...) kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE) |
| |
| #define kmalloc_track_caller_noprof(...) \ |
| kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_) |
| |
| static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, |
| int node) |
| { |
| size_t bytes; |
| |
| if (unlikely(check_mul_overflow(n, size, &bytes))) |
| return NULL; |
| if (__builtin_constant_p(n) && __builtin_constant_p(size)) |
| return kmalloc_node_noprof(bytes, flags, node); |
| return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node); |
| } |
| #define kmalloc_array_node(...) alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__)) |
| |
| #define kcalloc_node(_n, _size, _flags, _node) \ |
| kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node) |
| |
| /* |
| * Shortcuts |
| */ |
| #define kmem_cache_zalloc(_k, _flags) kmem_cache_alloc(_k, (_flags)|__GFP_ZERO) |
| |
| /** |
| * kzalloc - allocate memory. The memory is set to zero. |
| * @size: how many bytes of memory are required. |
| * @flags: the type of memory to allocate (see kmalloc). |
| */ |
| static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags) |
| { |
| return kmalloc_noprof(size, flags | __GFP_ZERO); |
| } |
| #define kzalloc(...) alloc_hooks(kzalloc_noprof(__VA_ARGS__)) |
| #define kzalloc_node(_size, _flags, _node) kmalloc_node(_size, (_flags)|__GFP_ZERO, _node) |
| |
| void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1); |
| #define kvmalloc_node_noprof(size, flags, node) \ |
| __kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node) |
| #define kvmalloc_node(...) alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__)) |
| |
| #define kvmalloc(_size, _flags) kvmalloc_node(_size, _flags, NUMA_NO_NODE) |
| #define kvmalloc_noprof(_size, _flags) kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE) |
| #define kvzalloc(_size, _flags) kvmalloc(_size, (_flags)|__GFP_ZERO) |
| |
| #define kvzalloc_node(_size, _flags, _node) kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node) |
| #define kmem_buckets_valloc(_b, _size, _flags) \ |
| alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE)) |
| |
| static inline __alloc_size(1, 2) void * |
| kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node) |
| { |
| size_t bytes; |
| |
| if (unlikely(check_mul_overflow(n, size, &bytes))) |
| return NULL; |
| |
| return kvmalloc_node_noprof(bytes, flags, node); |
| } |
| |
| #define kvmalloc_array_noprof(...) kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE) |
| #define kvcalloc_node_noprof(_n,_s,_f,_node) kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node) |
| #define kvcalloc_noprof(...) kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE) |
| |
| #define kvmalloc_array(...) alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__)) |
| #define kvcalloc_node(...) alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__)) |
| #define kvcalloc(...) alloc_hooks(kvcalloc_noprof(__VA_ARGS__)) |
| |
| void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) |
| __realloc_size(2); |
| #define kvrealloc(...) alloc_hooks(kvrealloc_noprof(__VA_ARGS__)) |
| |
| extern void kvfree(const void *addr); |
| DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T)) |
| |
| extern void kvfree_sensitive(const void *addr, size_t len); |
| |
| unsigned int kmem_cache_size(struct kmem_cache *s); |
| |
| /** |
| * kmalloc_size_roundup - Report allocation bucket size for the given size |
| * |
| * @size: Number of bytes to round up from. |
| * |
| * This returns the number of bytes that would be available in a kmalloc() |
| * allocation of @size bytes. For example, a 126 byte request would be |
| * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly |
| * for the general-purpose kmalloc()-based allocations, and is not for the |
| * pre-sized kmem_cache_alloc()-based allocations.) |
| * |
| * Use this to kmalloc() the full bucket size ahead of time instead of using |
| * ksize() to query the size after an allocation. |
| */ |
| size_t kmalloc_size_roundup(size_t size); |
| |
| void __init kmem_cache_init_late(void); |
| void __init kvfree_rcu_init(void); |
| |
| #endif /* _LINUX_SLAB_H */ |