| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Slab allocator functions that are independent of the allocator strategy |
| * |
| * (C) 2012 Christoph Lameter <[email protected]> |
| */ |
| #include <linux/slab.h> |
| |
| #include <linux/mm.h> |
| #include <linux/poison.h> |
| #include <linux/interrupt.h> |
| #include <linux/memory.h> |
| #include <linux/cache.h> |
| #include <linux/compiler.h> |
| #include <linux/kfence.h> |
| #include <linux/module.h> |
| #include <linux/cpu.h> |
| #include <linux/uaccess.h> |
| #include <linux/seq_file.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/swiotlb.h> |
| #include <linux/proc_fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/kmemleak.h> |
| #include <linux/kasan.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/page.h> |
| #include <linux/memcontrol.h> |
| #include <linux/stackdepot.h> |
| #include <trace/events/rcu.h> |
| |
| #include "../kernel/rcu/rcu.h" |
| #include "internal.h" |
| #include "slab.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/kmem.h> |
| |
| enum slab_state slab_state; |
| LIST_HEAD(slab_caches); |
| DEFINE_MUTEX(slab_mutex); |
| struct kmem_cache *kmem_cache; |
| |
| /* |
| * Set of flags that will prevent slab merging |
| */ |
| #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ |
| SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ |
| SLAB_FAILSLAB | SLAB_NO_MERGE) |
| |
| #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
| SLAB_CACHE_DMA32 | SLAB_ACCOUNT) |
| |
| /* |
| * Merge control. If this is set then no merging of slab caches will occur. |
| */ |
| static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); |
| |
| static int __init setup_slab_nomerge(char *str) |
| { |
| slab_nomerge = true; |
| return 1; |
| } |
| |
| static int __init setup_slab_merge(char *str) |
| { |
| slab_nomerge = false; |
| return 1; |
| } |
| |
| __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); |
| __setup_param("slub_merge", slub_merge, setup_slab_merge, 0); |
| |
| __setup("slab_nomerge", setup_slab_nomerge); |
| __setup("slab_merge", setup_slab_merge); |
| |
| /* |
| * Determine the size of a slab object |
| */ |
| unsigned int kmem_cache_size(struct kmem_cache *s) |
| { |
| return s->object_size; |
| } |
| EXPORT_SYMBOL(kmem_cache_size); |
| |
| #ifdef CONFIG_DEBUG_VM |
| |
| static bool kmem_cache_is_duplicate_name(const char *name) |
| { |
| struct kmem_cache *s; |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| if (!strcmp(s->name, name)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int kmem_cache_sanity_check(const char *name, unsigned int size) |
| { |
| if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { |
| pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
| return -EINVAL; |
| } |
| |
| /* Duplicate names will confuse slabtop, et al */ |
| WARN(kmem_cache_is_duplicate_name(name), |
| "kmem_cache of name '%s' already exists\n", name); |
| |
| WARN_ON(strchr(name, ' ')); /* It confuses parsers */ |
| return 0; |
| } |
| #else |
| static inline int kmem_cache_sanity_check(const char *name, unsigned int size) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Figure out what the alignment of the objects will be given a set of |
| * flags, a user specified alignment and the size of the objects. |
| */ |
| static unsigned int calculate_alignment(slab_flags_t flags, |
| unsigned int align, unsigned int size) |
| { |
| /* |
| * If the user wants hardware cache aligned objects then follow that |
| * suggestion if the object is sufficiently large. |
| * |
| * The hardware cache alignment cannot override the specified |
| * alignment though. If that is greater then use it. |
| */ |
| if (flags & SLAB_HWCACHE_ALIGN) { |
| unsigned int ralign; |
| |
| ralign = cache_line_size(); |
| while (size <= ralign / 2) |
| ralign /= 2; |
| align = max(align, ralign); |
| } |
| |
| align = max(align, arch_slab_minalign()); |
| |
| return ALIGN(align, sizeof(void *)); |
| } |
| |
| /* |
| * Find a mergeable slab cache |
| */ |
| int slab_unmergeable(struct kmem_cache *s) |
| { |
| if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) |
| return 1; |
| |
| if (s->ctor) |
| return 1; |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| if (s->usersize) |
| return 1; |
| #endif |
| |
| /* |
| * We may have set a slab to be unmergeable during bootstrap. |
| */ |
| if (s->refcount < 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, |
| slab_flags_t flags, const char *name, void (*ctor)(void *)) |
| { |
| struct kmem_cache *s; |
| |
| if (slab_nomerge) |
| return NULL; |
| |
| if (ctor) |
| return NULL; |
| |
| flags = kmem_cache_flags(flags, name); |
| |
| if (flags & SLAB_NEVER_MERGE) |
| return NULL; |
| |
| size = ALIGN(size, sizeof(void *)); |
| align = calculate_alignment(flags, align, size); |
| size = ALIGN(size, align); |
| |
| list_for_each_entry_reverse(s, &slab_caches, list) { |
| if (slab_unmergeable(s)) |
| continue; |
| |
| if (size > s->size) |
| continue; |
| |
| if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) |
| continue; |
| /* |
| * Check if alignment is compatible. |
| * Courtesy of Adrian Drzewiecki |
| */ |
| if ((s->size & ~(align - 1)) != s->size) |
| continue; |
| |
| if (s->size - size >= sizeof(void *)) |
| continue; |
| |
| return s; |
| } |
| return NULL; |
| } |
| |
| static struct kmem_cache *create_cache(const char *name, |
| unsigned int object_size, |
| struct kmem_cache_args *args, |
| slab_flags_t flags) |
| { |
| struct kmem_cache *s; |
| int err; |
| |
| /* If a custom freelist pointer is requested make sure it's sane. */ |
| err = -EINVAL; |
| if (args->use_freeptr_offset && |
| (args->freeptr_offset >= object_size || |
| !(flags & SLAB_TYPESAFE_BY_RCU) || |
| !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) |
| goto out; |
| |
| err = -ENOMEM; |
| s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); |
| if (!s) |
| goto out; |
| err = do_kmem_cache_create(s, name, object_size, args, flags); |
| if (err) |
| goto out_free_cache; |
| |
| s->refcount = 1; |
| list_add(&s->list, &slab_caches); |
| return s; |
| |
| out_free_cache: |
| kmem_cache_free(kmem_cache, s); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * __kmem_cache_create_args - Create a kmem cache. |
| * @name: A string which is used in /proc/slabinfo to identify this cache. |
| * @object_size: The size of objects to be created in this cache. |
| * @args: Additional arguments for the cache creation (see |
| * &struct kmem_cache_args). |
| * @flags: See the desriptions of individual flags. The common ones are listed |
| * in the description below. |
| * |
| * Not to be called directly, use the kmem_cache_create() wrapper with the same |
| * parameters. |
| * |
| * Commonly used @flags: |
| * |
| * &SLAB_ACCOUNT - Account allocations to memcg. |
| * |
| * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. |
| * |
| * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. |
| * |
| * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed |
| * by a grace period - see the full description before using. |
| * |
| * Context: Cannot be called within a interrupt, but can be interrupted. |
| * |
| * Return: a pointer to the cache on success, NULL on failure. |
| */ |
| struct kmem_cache *__kmem_cache_create_args(const char *name, |
| unsigned int object_size, |
| struct kmem_cache_args *args, |
| slab_flags_t flags) |
| { |
| struct kmem_cache *s = NULL; |
| const char *cache_name; |
| int err; |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| /* |
| * If no slab_debug was enabled globally, the static key is not yet |
| * enabled by setup_slub_debug(). Enable it if the cache is being |
| * created with any of the debugging flags passed explicitly. |
| * It's also possible that this is the first cache created with |
| * SLAB_STORE_USER and we should init stack_depot for it. |
| */ |
| if (flags & SLAB_DEBUG_FLAGS) |
| static_branch_enable(&slub_debug_enabled); |
| if (flags & SLAB_STORE_USER) |
| stack_depot_init(); |
| #endif |
| |
| mutex_lock(&slab_mutex); |
| |
| err = kmem_cache_sanity_check(name, object_size); |
| if (err) { |
| goto out_unlock; |
| } |
| |
| /* Refuse requests with allocator specific flags */ |
| if (flags & ~SLAB_FLAGS_PERMITTED) { |
| err = -EINVAL; |
| goto out_unlock; |
| } |
| |
| /* |
| * Some allocators will constraint the set of valid flags to a subset |
| * of all flags. We expect them to define CACHE_CREATE_MASK in this |
| * case, and we'll just provide them with a sanitized version of the |
| * passed flags. |
| */ |
| flags &= CACHE_CREATE_MASK; |
| |
| /* Fail closed on bad usersize of useroffset values. */ |
| if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || |
| WARN_ON(!args->usersize && args->useroffset) || |
| WARN_ON(object_size < args->usersize || |
| object_size - args->usersize < args->useroffset)) |
| args->usersize = args->useroffset = 0; |
| |
| if (!args->usersize) |
| s = __kmem_cache_alias(name, object_size, args->align, flags, |
| args->ctor); |
| if (s) |
| goto out_unlock; |
| |
| cache_name = kstrdup_const(name, GFP_KERNEL); |
| if (!cache_name) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| args->align = calculate_alignment(flags, args->align, object_size); |
| s = create_cache(cache_name, object_size, args, flags); |
| if (IS_ERR(s)) { |
| err = PTR_ERR(s); |
| kfree_const(cache_name); |
| } |
| |
| out_unlock: |
| mutex_unlock(&slab_mutex); |
| |
| if (err) { |
| if (flags & SLAB_PANIC) |
| panic("%s: Failed to create slab '%s'. Error %d\n", |
| __func__, name, err); |
| else { |
| pr_warn("%s(%s) failed with error %d\n", |
| __func__, name, err); |
| dump_stack(); |
| } |
| return NULL; |
| } |
| return s; |
| } |
| EXPORT_SYMBOL(__kmem_cache_create_args); |
| |
| static struct kmem_cache *kmem_buckets_cache __ro_after_init; |
| |
| /** |
| * kmem_buckets_create - Create a set of caches that handle dynamic sized |
| * allocations via kmem_buckets_alloc() |
| * @name: A prefix string which is used in /proc/slabinfo to identify this |
| * cache. The individual caches with have their sizes as the suffix. |
| * @flags: SLAB flags (see kmem_cache_create() for details). |
| * @useroffset: Starting offset within an allocation that may be copied |
| * to/from userspace. |
| * @usersize: How many bytes, starting at @useroffset, may be copied |
| * to/from userspace. |
| * @ctor: A constructor for the objects, run when new allocations are made. |
| * |
| * Cannot be called within an interrupt, but can be interrupted. |
| * |
| * Return: a pointer to the cache on success, NULL on failure. When |
| * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and |
| * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). |
| * (i.e. callers only need to check for NULL on failure.) |
| */ |
| kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, |
| unsigned int useroffset, |
| unsigned int usersize, |
| void (*ctor)(void *)) |
| { |
| unsigned long mask = 0; |
| unsigned int idx; |
| kmem_buckets *b; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); |
| |
| /* |
| * When the separate buckets API is not built in, just return |
| * a non-NULL value for the kmem_buckets pointer, which will be |
| * unused when performing allocations. |
| */ |
| if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) |
| return ZERO_SIZE_PTR; |
| |
| if (WARN_ON(!kmem_buckets_cache)) |
| return NULL; |
| |
| b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); |
| if (WARN_ON(!b)) |
| return NULL; |
| |
| flags |= SLAB_NO_MERGE; |
| |
| for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { |
| char *short_size, *cache_name; |
| unsigned int cache_useroffset, cache_usersize; |
| unsigned int size, aligned_idx; |
| |
| if (!kmalloc_caches[KMALLOC_NORMAL][idx]) |
| continue; |
| |
| size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; |
| if (!size) |
| continue; |
| |
| short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); |
| if (WARN_ON(!short_size)) |
| goto fail; |
| |
| if (useroffset >= size) { |
| cache_useroffset = 0; |
| cache_usersize = 0; |
| } else { |
| cache_useroffset = useroffset; |
| cache_usersize = min(size - cache_useroffset, usersize); |
| } |
| |
| aligned_idx = __kmalloc_index(size, false); |
| if (!(*b)[aligned_idx]) { |
| cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); |
| if (WARN_ON(!cache_name)) |
| goto fail; |
| (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, |
| 0, flags, cache_useroffset, |
| cache_usersize, ctor); |
| kfree(cache_name); |
| if (WARN_ON(!(*b)[aligned_idx])) |
| goto fail; |
| set_bit(aligned_idx, &mask); |
| } |
| if (idx != aligned_idx) |
| (*b)[idx] = (*b)[aligned_idx]; |
| } |
| |
| return b; |
| |
| fail: |
| for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) |
| kmem_cache_destroy((*b)[idx]); |
| kmem_cache_free(kmem_buckets_cache, b); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(kmem_buckets_create); |
| |
| /* |
| * For a given kmem_cache, kmem_cache_destroy() should only be called |
| * once or there will be a use-after-free problem. The actual deletion |
| * and release of the kobject does not need slab_mutex or cpu_hotplug_lock |
| * protection. So they are now done without holding those locks. |
| */ |
| static void kmem_cache_release(struct kmem_cache *s) |
| { |
| kfence_shutdown_cache(s); |
| if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) |
| sysfs_slab_release(s); |
| else |
| slab_kmem_cache_release(s); |
| } |
| |
| void slab_kmem_cache_release(struct kmem_cache *s) |
| { |
| __kmem_cache_release(s); |
| kfree_const(s->name); |
| kmem_cache_free(kmem_cache, s); |
| } |
| |
| void kmem_cache_destroy(struct kmem_cache *s) |
| { |
| int err; |
| |
| if (unlikely(!s) || !kasan_check_byte(s)) |
| return; |
| |
| /* in-flight kfree_rcu()'s may include objects from our cache */ |
| kvfree_rcu_barrier(); |
| |
| if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && |
| (s->flags & SLAB_TYPESAFE_BY_RCU)) { |
| /* |
| * Under CONFIG_SLUB_RCU_DEBUG, when objects in a |
| * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally |
| * defer their freeing with call_rcu(). |
| * Wait for such call_rcu() invocations here before actually |
| * destroying the cache. |
| * |
| * It doesn't matter that we haven't looked at the slab refcount |
| * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so |
| * the refcount should be 1 here. |
| */ |
| rcu_barrier(); |
| } |
| |
| cpus_read_lock(); |
| mutex_lock(&slab_mutex); |
| |
| s->refcount--; |
| if (s->refcount) { |
| mutex_unlock(&slab_mutex); |
| cpus_read_unlock(); |
| return; |
| } |
| |
| /* free asan quarantined objects */ |
| kasan_cache_shutdown(s); |
| |
| err = __kmem_cache_shutdown(s); |
| if (!slab_in_kunit_test()) |
| WARN(err, "%s %s: Slab cache still has objects when called from %pS", |
| __func__, s->name, (void *)_RET_IP_); |
| |
| list_del(&s->list); |
| |
| mutex_unlock(&slab_mutex); |
| cpus_read_unlock(); |
| |
| if (slab_state >= FULL) |
| sysfs_slab_unlink(s); |
| debugfs_slab_release(s); |
| |
| if (err) |
| return; |
| |
| if (s->flags & SLAB_TYPESAFE_BY_RCU) |
| rcu_barrier(); |
| |
| kmem_cache_release(s); |
| } |
| EXPORT_SYMBOL(kmem_cache_destroy); |
| |
| /** |
| * kmem_cache_shrink - Shrink a cache. |
| * @cachep: The cache to shrink. |
| * |
| * Releases as many slabs as possible for a cache. |
| * To help debugging, a zero exit status indicates all slabs were released. |
| * |
| * Return: %0 if all slabs were released, non-zero otherwise |
| */ |
| int kmem_cache_shrink(struct kmem_cache *cachep) |
| { |
| kasan_cache_shrink(cachep); |
| |
| return __kmem_cache_shrink(cachep); |
| } |
| EXPORT_SYMBOL(kmem_cache_shrink); |
| |
| bool slab_is_available(void) |
| { |
| return slab_state >= UP; |
| } |
| |
| #ifdef CONFIG_PRINTK |
| static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) |
| { |
| if (__kfence_obj_info(kpp, object, slab)) |
| return; |
| __kmem_obj_info(kpp, object, slab); |
| } |
| |
| /** |
| * kmem_dump_obj - Print available slab provenance information |
| * @object: slab object for which to find provenance information. |
| * |
| * This function uses pr_cont(), so that the caller is expected to have |
| * printed out whatever preamble is appropriate. The provenance information |
| * depends on the type of object and on how much debugging is enabled. |
| * For a slab-cache object, the fact that it is a slab object is printed, |
| * and, if available, the slab name, return address, and stack trace from |
| * the allocation and last free path of that object. |
| * |
| * Return: %true if the pointer is to a not-yet-freed object from |
| * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer |
| * is to an already-freed object, and %false otherwise. |
| */ |
| bool kmem_dump_obj(void *object) |
| { |
| char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; |
| int i; |
| struct slab *slab; |
| unsigned long ptroffset; |
| struct kmem_obj_info kp = { }; |
| |
| /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ |
| if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) |
| return false; |
| slab = virt_to_slab(object); |
| if (!slab) |
| return false; |
| |
| kmem_obj_info(&kp, object, slab); |
| if (kp.kp_slab_cache) |
| pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); |
| else |
| pr_cont(" slab%s", cp); |
| if (is_kfence_address(object)) |
| pr_cont(" (kfence)"); |
| if (kp.kp_objp) |
| pr_cont(" start %px", kp.kp_objp); |
| if (kp.kp_data_offset) |
| pr_cont(" data offset %lu", kp.kp_data_offset); |
| if (kp.kp_objp) { |
| ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; |
| pr_cont(" pointer offset %lu", ptroffset); |
| } |
| if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) |
| pr_cont(" size %u", kp.kp_slab_cache->object_size); |
| if (kp.kp_ret) |
| pr_cont(" allocated at %pS\n", kp.kp_ret); |
| else |
| pr_cont("\n"); |
| for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { |
| if (!kp.kp_stack[i]) |
| break; |
| pr_info(" %pS\n", kp.kp_stack[i]); |
| } |
| |
| if (kp.kp_free_stack[0]) |
| pr_cont(" Free path:\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { |
| if (!kp.kp_free_stack[i]) |
| break; |
| pr_info(" %pS\n", kp.kp_free_stack[i]); |
| } |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(kmem_dump_obj); |
| #endif |
| |
| /* Create a cache during boot when no slab services are available yet */ |
| void __init create_boot_cache(struct kmem_cache *s, const char *name, |
| unsigned int size, slab_flags_t flags, |
| unsigned int useroffset, unsigned int usersize) |
| { |
| int err; |
| unsigned int align = ARCH_KMALLOC_MINALIGN; |
| struct kmem_cache_args kmem_args = {}; |
| |
| /* |
| * kmalloc caches guarantee alignment of at least the largest |
| * power-of-two divisor of the size. For power-of-two sizes, |
| * it is the size itself. |
| */ |
| if (flags & SLAB_KMALLOC) |
| align = max(align, 1U << (ffs(size) - 1)); |
| kmem_args.align = calculate_alignment(flags, align, size); |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| kmem_args.useroffset = useroffset; |
| kmem_args.usersize = usersize; |
| #endif |
| |
| err = do_kmem_cache_create(s, name, size, &kmem_args, flags); |
| |
| if (err) |
| panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", |
| name, size, err); |
| |
| s->refcount = -1; /* Exempt from merging for now */ |
| } |
| |
| static struct kmem_cache *__init create_kmalloc_cache(const char *name, |
| unsigned int size, |
| slab_flags_t flags) |
| { |
| struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| |
| if (!s) |
| panic("Out of memory when creating slab %s\n", name); |
| |
| create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); |
| list_add(&s->list, &slab_caches); |
| s->refcount = 1; |
| return s; |
| } |
| |
| kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = |
| { /* initialization for https://llvm.org/pr42570 */ }; |
| EXPORT_SYMBOL(kmalloc_caches); |
| |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| unsigned long random_kmalloc_seed __ro_after_init; |
| EXPORT_SYMBOL(random_kmalloc_seed); |
| #endif |
| |
| /* |
| * Conversion table for small slabs sizes / 8 to the index in the |
| * kmalloc array. This is necessary for slabs < 192 since we have non power |
| * of two cache sizes there. The size of larger slabs can be determined using |
| * fls. |
| */ |
| u8 kmalloc_size_index[24] __ro_after_init = { |
| 3, /* 8 */ |
| 4, /* 16 */ |
| 5, /* 24 */ |
| 5, /* 32 */ |
| 6, /* 40 */ |
| 6, /* 48 */ |
| 6, /* 56 */ |
| 6, /* 64 */ |
| 1, /* 72 */ |
| 1, /* 80 */ |
| 1, /* 88 */ |
| 1, /* 96 */ |
| 7, /* 104 */ |
| 7, /* 112 */ |
| 7, /* 120 */ |
| 7, /* 128 */ |
| 2, /* 136 */ |
| 2, /* 144 */ |
| 2, /* 152 */ |
| 2, /* 160 */ |
| 2, /* 168 */ |
| 2, /* 176 */ |
| 2, /* 184 */ |
| 2 /* 192 */ |
| }; |
| |
| size_t kmalloc_size_roundup(size_t size) |
| { |
| if (size && size <= KMALLOC_MAX_CACHE_SIZE) { |
| /* |
| * The flags don't matter since size_index is common to all. |
| * Neither does the caller for just getting ->object_size. |
| */ |
| return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; |
| } |
| |
| /* Above the smaller buckets, size is a multiple of page size. */ |
| if (size && size <= KMALLOC_MAX_SIZE) |
| return PAGE_SIZE << get_order(size); |
| |
| /* |
| * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR |
| * and very large size - kmalloc() may fail. |
| */ |
| return size; |
| |
| } |
| EXPORT_SYMBOL(kmalloc_size_roundup); |
| |
| #ifdef CONFIG_ZONE_DMA |
| #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, |
| #else |
| #define KMALLOC_DMA_NAME(sz) |
| #endif |
| |
| #ifdef CONFIG_MEMCG |
| #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, |
| #else |
| #define KMALLOC_CGROUP_NAME(sz) |
| #endif |
| |
| #ifndef CONFIG_SLUB_TINY |
| #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, |
| #else |
| #define KMALLOC_RCL_NAME(sz) |
| #endif |
| |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| #define __KMALLOC_RANDOM_CONCAT(a, b) a ## b |
| #define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) |
| #define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, |
| #define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, |
| #define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, |
| #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, |
| #define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, |
| #define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, |
| #define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, |
| #define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, |
| #define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, |
| #define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, |
| #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, |
| #define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, |
| #define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, |
| #define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, |
| #define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, |
| #else // CONFIG_RANDOM_KMALLOC_CACHES |
| #define KMALLOC_RANDOM_NAME(N, sz) |
| #endif |
| |
| #define INIT_KMALLOC_INFO(__size, __short_size) \ |
| { \ |
| .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ |
| KMALLOC_RCL_NAME(__short_size) \ |
| KMALLOC_CGROUP_NAME(__short_size) \ |
| KMALLOC_DMA_NAME(__short_size) \ |
| KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ |
| .size = __size, \ |
| } |
| |
| /* |
| * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. |
| * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is |
| * kmalloc-2M. |
| */ |
| const struct kmalloc_info_struct kmalloc_info[] __initconst = { |
| INIT_KMALLOC_INFO(0, 0), |
| INIT_KMALLOC_INFO(96, 96), |
| INIT_KMALLOC_INFO(192, 192), |
| INIT_KMALLOC_INFO(8, 8), |
| INIT_KMALLOC_INFO(16, 16), |
| INIT_KMALLOC_INFO(32, 32), |
| INIT_KMALLOC_INFO(64, 64), |
| INIT_KMALLOC_INFO(128, 128), |
| INIT_KMALLOC_INFO(256, 256), |
| INIT_KMALLOC_INFO(512, 512), |
| INIT_KMALLOC_INFO(1024, 1k), |
| INIT_KMALLOC_INFO(2048, 2k), |
| INIT_KMALLOC_INFO(4096, 4k), |
| INIT_KMALLOC_INFO(8192, 8k), |
| INIT_KMALLOC_INFO(16384, 16k), |
| INIT_KMALLOC_INFO(32768, 32k), |
| INIT_KMALLOC_INFO(65536, 64k), |
| INIT_KMALLOC_INFO(131072, 128k), |
| INIT_KMALLOC_INFO(262144, 256k), |
| INIT_KMALLOC_INFO(524288, 512k), |
| INIT_KMALLOC_INFO(1048576, 1M), |
| INIT_KMALLOC_INFO(2097152, 2M) |
| }; |
| |
| /* |
| * Patch up the size_index table if we have strange large alignment |
| * requirements for the kmalloc array. This is only the case for |
| * MIPS it seems. The standard arches will not generate any code here. |
| * |
| * Largest permitted alignment is 256 bytes due to the way we |
| * handle the index determination for the smaller caches. |
| * |
| * Make sure that nothing crazy happens if someone starts tinkering |
| * around with ARCH_KMALLOC_MINALIGN |
| */ |
| void __init setup_kmalloc_cache_index_table(void) |
| { |
| unsigned int i; |
| |
| BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
| !is_power_of_2(KMALLOC_MIN_SIZE)); |
| |
| for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { |
| unsigned int elem = size_index_elem(i); |
| |
| if (elem >= ARRAY_SIZE(kmalloc_size_index)) |
| break; |
| kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; |
| } |
| |
| if (KMALLOC_MIN_SIZE >= 64) { |
| /* |
| * The 96 byte sized cache is not used if the alignment |
| * is 64 byte. |
| */ |
| for (i = 64 + 8; i <= 96; i += 8) |
| kmalloc_size_index[size_index_elem(i)] = 7; |
| |
| } |
| |
| if (KMALLOC_MIN_SIZE >= 128) { |
| /* |
| * The 192 byte sized cache is not used if the alignment |
| * is 128 byte. Redirect kmalloc to use the 256 byte cache |
| * instead. |
| */ |
| for (i = 128 + 8; i <= 192; i += 8) |
| kmalloc_size_index[size_index_elem(i)] = 8; |
| } |
| } |
| |
| static unsigned int __kmalloc_minalign(void) |
| { |
| unsigned int minalign = dma_get_cache_alignment(); |
| |
| if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && |
| is_swiotlb_allocated()) |
| minalign = ARCH_KMALLOC_MINALIGN; |
| |
| return max(minalign, arch_slab_minalign()); |
| } |
| |
| static void __init |
| new_kmalloc_cache(int idx, enum kmalloc_cache_type type) |
| { |
| slab_flags_t flags = 0; |
| unsigned int minalign = __kmalloc_minalign(); |
| unsigned int aligned_size = kmalloc_info[idx].size; |
| int aligned_idx = idx; |
| |
| if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { |
| flags |= SLAB_RECLAIM_ACCOUNT; |
| } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { |
| if (mem_cgroup_kmem_disabled()) { |
| kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; |
| return; |
| } |
| flags |= SLAB_ACCOUNT; |
| } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { |
| flags |= SLAB_CACHE_DMA; |
| } |
| |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) |
| flags |= SLAB_NO_MERGE; |
| #endif |
| |
| /* |
| * If CONFIG_MEMCG is enabled, disable cache merging for |
| * KMALLOC_NORMAL caches. |
| */ |
| if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) |
| flags |= SLAB_NO_MERGE; |
| |
| if (minalign > ARCH_KMALLOC_MINALIGN) { |
| aligned_size = ALIGN(aligned_size, minalign); |
| aligned_idx = __kmalloc_index(aligned_size, false); |
| } |
| |
| if (!kmalloc_caches[type][aligned_idx]) |
| kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( |
| kmalloc_info[aligned_idx].name[type], |
| aligned_size, flags); |
| if (idx != aligned_idx) |
| kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; |
| } |
| |
| /* |
| * Create the kmalloc array. Some of the regular kmalloc arrays |
| * may already have been created because they were needed to |
| * enable allocations for slab creation. |
| */ |
| void __init create_kmalloc_caches(void) |
| { |
| int i; |
| enum kmalloc_cache_type type; |
| |
| /* |
| * Including KMALLOC_CGROUP if CONFIG_MEMCG defined |
| */ |
| for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { |
| /* Caches that are NOT of the two-to-the-power-of size. */ |
| if (KMALLOC_MIN_SIZE <= 32) |
| new_kmalloc_cache(1, type); |
| if (KMALLOC_MIN_SIZE <= 64) |
| new_kmalloc_cache(2, type); |
| |
| /* Caches that are of the two-to-the-power-of size. */ |
| for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) |
| new_kmalloc_cache(i, type); |
| } |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES |
| random_kmalloc_seed = get_random_u64(); |
| #endif |
| |
| /* Kmalloc array is now usable */ |
| slab_state = UP; |
| |
| if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) |
| kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", |
| sizeof(kmem_buckets), |
| 0, SLAB_NO_MERGE, NULL); |
| } |
| |
| /** |
| * __ksize -- Report full size of underlying allocation |
| * @object: pointer to the object |
| * |
| * This should only be used internally to query the true size of allocations. |
| * It is not meant to be a way to discover the usable size of an allocation |
| * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond |
| * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, |
| * and/or FORTIFY_SOURCE. |
| * |
| * Return: size of the actual memory used by @object in bytes |
| */ |
| size_t __ksize(const void *object) |
| { |
| struct folio *folio; |
| |
| if (unlikely(object == ZERO_SIZE_PTR)) |
| return 0; |
| |
| folio = virt_to_folio(object); |
| |
| if (unlikely(!folio_test_slab(folio))) { |
| if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) |
| return 0; |
| if (WARN_ON(object != folio_address(folio))) |
| return 0; |
| return folio_size(folio); |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| skip_orig_size_check(folio_slab(folio)->slab_cache, object); |
| #endif |
| |
| return slab_ksize(folio_slab(folio)->slab_cache); |
| } |
| |
| gfp_t kmalloc_fix_flags(gfp_t flags) |
| { |
| gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
| |
| flags &= ~GFP_SLAB_BUG_MASK; |
| pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", |
| invalid_mask, &invalid_mask, flags, &flags); |
| dump_stack(); |
| |
| return flags; |
| } |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| /* Randomize a generic freelist */ |
| static void freelist_randomize(unsigned int *list, |
| unsigned int count) |
| { |
| unsigned int rand; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) |
| list[i] = i; |
| |
| /* Fisher-Yates shuffle */ |
| for (i = count - 1; i > 0; i--) { |
| rand = get_random_u32_below(i + 1); |
| swap(list[i], list[rand]); |
| } |
| } |
| |
| /* Create a random sequence per cache */ |
| int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, |
| gfp_t gfp) |
| { |
| |
| if (count < 2 || cachep->random_seq) |
| return 0; |
| |
| cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); |
| if (!cachep->random_seq) |
| return -ENOMEM; |
| |
| freelist_randomize(cachep->random_seq, count); |
| return 0; |
| } |
| |
| /* Destroy the per-cache random freelist sequence */ |
| void cache_random_seq_destroy(struct kmem_cache *cachep) |
| { |
| kfree(cachep->random_seq); |
| cachep->random_seq = NULL; |
| } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| #define SLABINFO_RIGHTS (0400) |
| |
| static void print_slabinfo_header(struct seq_file *m) |
| { |
| /* |
| * Output format version, so at least we can change it |
| * without _too_ many complaints. |
| */ |
| seq_puts(m, "slabinfo - version: 2.1\n"); |
| seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); |
| seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); |
| seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
| seq_putc(m, '\n'); |
| } |
| |
| static void *slab_start(struct seq_file *m, loff_t *pos) |
| { |
| mutex_lock(&slab_mutex); |
| return seq_list_start(&slab_caches, *pos); |
| } |
| |
| static void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
| { |
| return seq_list_next(p, &slab_caches, pos); |
| } |
| |
| static void slab_stop(struct seq_file *m, void *p) |
| { |
| mutex_unlock(&slab_mutex); |
| } |
| |
| static void cache_show(struct kmem_cache *s, struct seq_file *m) |
| { |
| struct slabinfo sinfo; |
| |
| memset(&sinfo, 0, sizeof(sinfo)); |
| get_slabinfo(s, &sinfo); |
| |
| seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
| s->name, sinfo.active_objs, sinfo.num_objs, s->size, |
| sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
| |
| seq_printf(m, " : tunables %4u %4u %4u", |
| sinfo.limit, sinfo.batchcount, sinfo.shared); |
| seq_printf(m, " : slabdata %6lu %6lu %6lu", |
| sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); |
| seq_putc(m, '\n'); |
| } |
| |
| static int slab_show(struct seq_file *m, void *p) |
| { |
| struct kmem_cache *s = list_entry(p, struct kmem_cache, list); |
| |
| if (p == slab_caches.next) |
| print_slabinfo_header(m); |
| cache_show(s, m); |
| return 0; |
| } |
| |
| void dump_unreclaimable_slab(void) |
| { |
| struct kmem_cache *s; |
| struct slabinfo sinfo; |
| |
| /* |
| * Here acquiring slab_mutex is risky since we don't prefer to get |
| * sleep in oom path. But, without mutex hold, it may introduce a |
| * risk of crash. |
| * Use mutex_trylock to protect the list traverse, dump nothing |
| * without acquiring the mutex. |
| */ |
| if (!mutex_trylock(&slab_mutex)) { |
| pr_warn("excessive unreclaimable slab but cannot dump stats\n"); |
| return; |
| } |
| |
| pr_info("Unreclaimable slab info:\n"); |
| pr_info("Name Used Total\n"); |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| continue; |
| |
| get_slabinfo(s, &sinfo); |
| |
| if (sinfo.num_objs > 0) |
| pr_info("%-17s %10luKB %10luKB\n", s->name, |
| (sinfo.active_objs * s->size) / 1024, |
| (sinfo.num_objs * s->size) / 1024); |
| } |
| mutex_unlock(&slab_mutex); |
| } |
| |
| /* |
| * slabinfo_op - iterator that generates /proc/slabinfo |
| * |
| * Output layout: |
| * cache-name |
| * num-active-objs |
| * total-objs |
| * object size |
| * num-active-slabs |
| * total-slabs |
| * num-pages-per-slab |
| * + further values on SMP and with statistics enabled |
| */ |
| static const struct seq_operations slabinfo_op = { |
| .start = slab_start, |
| .next = slab_next, |
| .stop = slab_stop, |
| .show = slab_show, |
| }; |
| |
| static int slabinfo_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &slabinfo_op); |
| } |
| |
| static const struct proc_ops slabinfo_proc_ops = { |
| .proc_flags = PROC_ENTRY_PERMANENT, |
| .proc_open = slabinfo_open, |
| .proc_read = seq_read, |
| .proc_lseek = seq_lseek, |
| .proc_release = seq_release, |
| }; |
| |
| static int __init slab_proc_init(void) |
| { |
| proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); |
| return 0; |
| } |
| module_init(slab_proc_init); |
| |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| /** |
| * kfree_sensitive - Clear sensitive information in memory before freeing |
| * @p: object to free memory of |
| * |
| * The memory of the object @p points to is zeroed before freed. |
| * If @p is %NULL, kfree_sensitive() does nothing. |
| * |
| * Note: this function zeroes the whole allocated buffer which can be a good |
| * deal bigger than the requested buffer size passed to kmalloc(). So be |
| * careful when using this function in performance sensitive code. |
| */ |
| void kfree_sensitive(const void *p) |
| { |
| size_t ks; |
| void *mem = (void *)p; |
| |
| ks = ksize(mem); |
| if (ks) { |
| kasan_unpoison_range(mem, ks); |
| memzero_explicit(mem, ks); |
| } |
| kfree(mem); |
| } |
| EXPORT_SYMBOL(kfree_sensitive); |
| |
| size_t ksize(const void *objp) |
| { |
| /* |
| * We need to first check that the pointer to the object is valid. |
| * The KASAN report printed from ksize() is more useful, then when |
| * it's printed later when the behaviour could be undefined due to |
| * a potential use-after-free or double-free. |
| * |
| * We use kasan_check_byte(), which is supported for the hardware |
| * tag-based KASAN mode, unlike kasan_check_read/write(). |
| * |
| * If the pointed to memory is invalid, we return 0 to avoid users of |
| * ksize() writing to and potentially corrupting the memory region. |
| * |
| * We want to perform the check before __ksize(), to avoid potentially |
| * crashing in __ksize() due to accessing invalid metadata. |
| */ |
| if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) |
| return 0; |
| |
| return kfence_ksize(objp) ?: __ksize(objp); |
| } |
| EXPORT_SYMBOL(ksize); |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| #include <linux/btf.h> |
| |
| __bpf_kfunc_start_defs(); |
| |
| __bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) |
| { |
| struct slab *slab; |
| |
| if (!virt_addr_valid((void *)(long)addr)) |
| return NULL; |
| |
| slab = virt_to_slab((void *)(long)addr); |
| return slab ? slab->slab_cache : NULL; |
| } |
| |
| __bpf_kfunc_end_defs(); |
| #endif /* CONFIG_BPF_SYSCALL */ |
| |
| /* Tracepoints definitions. */ |
| EXPORT_TRACEPOINT_SYMBOL(kmalloc); |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); |
| EXPORT_TRACEPOINT_SYMBOL(kfree); |
| EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |
| |
| /* |
| * This rcu parameter is runtime-read-only. It reflects |
| * a minimum allowed number of objects which can be cached |
| * per-CPU. Object size is equal to one page. This value |
| * can be changed at boot time. |
| */ |
| static int rcu_min_cached_objs = 5; |
| module_param(rcu_min_cached_objs, int, 0444); |
| |
| // A page shrinker can ask for pages to be freed to make them |
| // available for other parts of the system. This usually happens |
| // under low memory conditions, and in that case we should also |
| // defer page-cache filling for a short time period. |
| // |
| // The default value is 5 seconds, which is long enough to reduce |
| // interference with the shrinker while it asks other systems to |
| // drain their caches. |
| static int rcu_delay_page_cache_fill_msec = 5000; |
| module_param(rcu_delay_page_cache_fill_msec, int, 0444); |
| |
| /* Maximum number of jiffies to wait before draining a batch. */ |
| #define KFREE_DRAIN_JIFFIES (5 * HZ) |
| #define KFREE_N_BATCHES 2 |
| #define FREE_N_CHANNELS 2 |
| |
| /** |
| * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers |
| * @list: List node. All blocks are linked between each other |
| * @gp_snap: Snapshot of RCU state for objects placed to this bulk |
| * @nr_records: Number of active pointers in the array |
| * @records: Array of the kvfree_rcu() pointers |
| */ |
| struct kvfree_rcu_bulk_data { |
| struct list_head list; |
| struct rcu_gp_oldstate gp_snap; |
| unsigned long nr_records; |
| void *records[] __counted_by(nr_records); |
| }; |
| |
| /* |
| * This macro defines how many entries the "records" array |
| * will contain. It is based on the fact that the size of |
| * kvfree_rcu_bulk_data structure becomes exactly one page. |
| */ |
| #define KVFREE_BULK_MAX_ENTR \ |
| ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) |
| |
| /** |
| * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests |
| * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period |
| * @head_free: List of kfree_rcu() objects waiting for a grace period |
| * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. |
| * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period |
| * @krcp: Pointer to @kfree_rcu_cpu structure |
| */ |
| |
| struct kfree_rcu_cpu_work { |
| struct rcu_work rcu_work; |
| struct rcu_head *head_free; |
| struct rcu_gp_oldstate head_free_gp_snap; |
| struct list_head bulk_head_free[FREE_N_CHANNELS]; |
| struct kfree_rcu_cpu *krcp; |
| }; |
| |
| /** |
| * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period |
| * @head: List of kfree_rcu() objects not yet waiting for a grace period |
| * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" |
| * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period |
| * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period |
| * @lock: Synchronize access to this structure |
| * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES |
| * @initialized: The @rcu_work fields have been initialized |
| * @head_count: Number of objects in rcu_head singular list |
| * @bulk_count: Number of objects in bulk-list |
| * @bkvcache: |
| * A simple cache list that contains objects for reuse purpose. |
| * In order to save some per-cpu space the list is singular. |
| * Even though it is lockless an access has to be protected by the |
| * per-cpu lock. |
| * @page_cache_work: A work to refill the cache when it is empty |
| * @backoff_page_cache_fill: Delay cache refills |
| * @work_in_progress: Indicates that page_cache_work is running |
| * @hrtimer: A hrtimer for scheduling a page_cache_work |
| * @nr_bkv_objs: number of allocated objects at @bkvcache. |
| * |
| * This is a per-CPU structure. The reason that it is not included in |
| * the rcu_data structure is to permit this code to be extracted from |
| * the RCU files. Such extraction could allow further optimization of |
| * the interactions with the slab allocators. |
| */ |
| struct kfree_rcu_cpu { |
| // Objects queued on a linked list |
| // through their rcu_head structures. |
| struct rcu_head *head; |
| unsigned long head_gp_snap; |
| atomic_t head_count; |
| |
| // Objects queued on a bulk-list. |
| struct list_head bulk_head[FREE_N_CHANNELS]; |
| atomic_t bulk_count[FREE_N_CHANNELS]; |
| |
| struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; |
| raw_spinlock_t lock; |
| struct delayed_work monitor_work; |
| bool initialized; |
| |
| struct delayed_work page_cache_work; |
| atomic_t backoff_page_cache_fill; |
| atomic_t work_in_progress; |
| struct hrtimer hrtimer; |
| |
| struct llist_head bkvcache; |
| int nr_bkv_objs; |
| }; |
| |
| static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), |
| }; |
| |
| static __always_inline void |
| debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) |
| { |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| int i; |
| |
| for (i = 0; i < bhead->nr_records; i++) |
| debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); |
| #endif |
| } |
| |
| static inline struct kfree_rcu_cpu * |
| krc_this_cpu_lock(unsigned long *flags) |
| { |
| struct kfree_rcu_cpu *krcp; |
| |
| local_irq_save(*flags); // For safely calling this_cpu_ptr(). |
| krcp = this_cpu_ptr(&krc); |
| raw_spin_lock(&krcp->lock); |
| |
| return krcp; |
| } |
| |
| static inline void |
| krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) |
| { |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| } |
| |
| static inline struct kvfree_rcu_bulk_data * |
| get_cached_bnode(struct kfree_rcu_cpu *krcp) |
| { |
| if (!krcp->nr_bkv_objs) |
| return NULL; |
| |
| WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); |
| return (struct kvfree_rcu_bulk_data *) |
| llist_del_first(&krcp->bkvcache); |
| } |
| |
| static inline bool |
| put_cached_bnode(struct kfree_rcu_cpu *krcp, |
| struct kvfree_rcu_bulk_data *bnode) |
| { |
| // Check the limit. |
| if (krcp->nr_bkv_objs >= rcu_min_cached_objs) |
| return false; |
| |
| llist_add((struct llist_node *) bnode, &krcp->bkvcache); |
| WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); |
| return true; |
| } |
| |
| static int |
| drain_page_cache(struct kfree_rcu_cpu *krcp) |
| { |
| unsigned long flags; |
| struct llist_node *page_list, *pos, *n; |
| int freed = 0; |
| |
| if (!rcu_min_cached_objs) |
| return 0; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| page_list = llist_del_all(&krcp->bkvcache); |
| WRITE_ONCE(krcp->nr_bkv_objs, 0); |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| |
| llist_for_each_safe(pos, n, page_list) { |
| free_page((unsigned long)pos); |
| freed++; |
| } |
| |
| return freed; |
| } |
| |
| static void |
| kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, |
| struct kvfree_rcu_bulk_data *bnode, int idx) |
| { |
| unsigned long flags; |
| int i; |
| |
| if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { |
| debug_rcu_bhead_unqueue(bnode); |
| rcu_lock_acquire(&rcu_callback_map); |
| if (idx == 0) { // kmalloc() / kfree(). |
| trace_rcu_invoke_kfree_bulk_callback( |
| "slab", bnode->nr_records, |
| bnode->records); |
| |
| kfree_bulk(bnode->nr_records, bnode->records); |
| } else { // vmalloc() / vfree(). |
| for (i = 0; i < bnode->nr_records; i++) { |
| trace_rcu_invoke_kvfree_callback( |
| "slab", bnode->records[i], 0); |
| |
| vfree(bnode->records[i]); |
| } |
| } |
| rcu_lock_release(&rcu_callback_map); |
| } |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| if (put_cached_bnode(krcp, bnode)) |
| bnode = NULL; |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| |
| if (bnode) |
| free_page((unsigned long) bnode); |
| |
| cond_resched_tasks_rcu_qs(); |
| } |
| |
| static void |
| kvfree_rcu_list(struct rcu_head *head) |
| { |
| struct rcu_head *next; |
| |
| for (; head; head = next) { |
| void *ptr = (void *) head->func; |
| unsigned long offset = (void *) head - ptr; |
| |
| next = head->next; |
| debug_rcu_head_unqueue((struct rcu_head *)ptr); |
| rcu_lock_acquire(&rcu_callback_map); |
| trace_rcu_invoke_kvfree_callback("slab", head, offset); |
| |
| if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) |
| kvfree(ptr); |
| |
| rcu_lock_release(&rcu_callback_map); |
| cond_resched_tasks_rcu_qs(); |
| } |
| } |
| |
| /* |
| * This function is invoked in workqueue context after a grace period. |
| * It frees all the objects queued on ->bulk_head_free or ->head_free. |
| */ |
| static void kfree_rcu_work(struct work_struct *work) |
| { |
| unsigned long flags; |
| struct kvfree_rcu_bulk_data *bnode, *n; |
| struct list_head bulk_head[FREE_N_CHANNELS]; |
| struct rcu_head *head; |
| struct kfree_rcu_cpu *krcp; |
| struct kfree_rcu_cpu_work *krwp; |
| struct rcu_gp_oldstate head_gp_snap; |
| int i; |
| |
| krwp = container_of(to_rcu_work(work), |
| struct kfree_rcu_cpu_work, rcu_work); |
| krcp = krwp->krcp; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| // Channels 1 and 2. |
| for (i = 0; i < FREE_N_CHANNELS; i++) |
| list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); |
| |
| // Channel 3. |
| head = krwp->head_free; |
| krwp->head_free = NULL; |
| head_gp_snap = krwp->head_free_gp_snap; |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| |
| // Handle the first two channels. |
| for (i = 0; i < FREE_N_CHANNELS; i++) { |
| // Start from the tail page, so a GP is likely passed for it. |
| list_for_each_entry_safe(bnode, n, &bulk_head[i], list) |
| kvfree_rcu_bulk(krcp, bnode, i); |
| } |
| |
| /* |
| * This is used when the "bulk" path can not be used for the |
| * double-argument of kvfree_rcu(). This happens when the |
| * page-cache is empty, which means that objects are instead |
| * queued on a linked list through their rcu_head structures. |
| * This list is named "Channel 3". |
| */ |
| if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) |
| kvfree_rcu_list(head); |
| } |
| |
| static bool |
| need_offload_krc(struct kfree_rcu_cpu *krcp) |
| { |
| int i; |
| |
| for (i = 0; i < FREE_N_CHANNELS; i++) |
| if (!list_empty(&krcp->bulk_head[i])) |
| return true; |
| |
| return !!READ_ONCE(krcp->head); |
| } |
| |
| static bool |
| need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) |
| { |
| int i; |
| |
| for (i = 0; i < FREE_N_CHANNELS; i++) |
| if (!list_empty(&krwp->bulk_head_free[i])) |
| return true; |
| |
| return !!krwp->head_free; |
| } |
| |
| static int krc_count(struct kfree_rcu_cpu *krcp) |
| { |
| int sum = atomic_read(&krcp->head_count); |
| int i; |
| |
| for (i = 0; i < FREE_N_CHANNELS; i++) |
| sum += atomic_read(&krcp->bulk_count[i]); |
| |
| return sum; |
| } |
| |
| static void |
| __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) |
| { |
| long delay, delay_left; |
| |
| delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; |
| if (delayed_work_pending(&krcp->monitor_work)) { |
| delay_left = krcp->monitor_work.timer.expires - jiffies; |
| if (delay < delay_left) |
| mod_delayed_work(system_unbound_wq, &krcp->monitor_work, delay); |
| return; |
| } |
| queue_delayed_work(system_unbound_wq, &krcp->monitor_work, delay); |
| } |
| |
| static void |
| schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| __schedule_delayed_monitor_work(krcp); |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| } |
| |
| static void |
| kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) |
| { |
| struct list_head bulk_ready[FREE_N_CHANNELS]; |
| struct kvfree_rcu_bulk_data *bnode, *n; |
| struct rcu_head *head_ready = NULL; |
| unsigned long flags; |
| int i; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| for (i = 0; i < FREE_N_CHANNELS; i++) { |
| INIT_LIST_HEAD(&bulk_ready[i]); |
| |
| list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { |
| if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) |
| break; |
| |
| atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); |
| list_move(&bnode->list, &bulk_ready[i]); |
| } |
| } |
| |
| if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { |
| head_ready = krcp->head; |
| atomic_set(&krcp->head_count, 0); |
| WRITE_ONCE(krcp->head, NULL); |
| } |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| |
| for (i = 0; i < FREE_N_CHANNELS; i++) { |
| list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) |
| kvfree_rcu_bulk(krcp, bnode, i); |
| } |
| |
| if (head_ready) |
| kvfree_rcu_list(head_ready); |
| } |
| |
| /* |
| * Return: %true if a work is queued, %false otherwise. |
| */ |
| static bool |
| kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) |
| { |
| unsigned long flags; |
| bool queued = false; |
| int i, j; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| |
| // Attempt to start a new batch. |
| for (i = 0; i < KFREE_N_BATCHES; i++) { |
| struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); |
| |
| // Try to detach bulk_head or head and attach it, only when |
| // all channels are free. Any channel is not free means at krwp |
| // there is on-going rcu work to handle krwp's free business. |
| if (need_wait_for_krwp_work(krwp)) |
| continue; |
| |
| // kvfree_rcu_drain_ready() might handle this krcp, if so give up. |
| if (need_offload_krc(krcp)) { |
| // Channel 1 corresponds to the SLAB-pointer bulk path. |
| // Channel 2 corresponds to vmalloc-pointer bulk path. |
| for (j = 0; j < FREE_N_CHANNELS; j++) { |
| if (list_empty(&krwp->bulk_head_free[j])) { |
| atomic_set(&krcp->bulk_count[j], 0); |
| list_replace_init(&krcp->bulk_head[j], |
| &krwp->bulk_head_free[j]); |
| } |
| } |
| |
| // Channel 3 corresponds to both SLAB and vmalloc |
| // objects queued on the linked list. |
| if (!krwp->head_free) { |
| krwp->head_free = krcp->head; |
| get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); |
| atomic_set(&krcp->head_count, 0); |
| WRITE_ONCE(krcp->head, NULL); |
| } |
| |
| // One work is per one batch, so there are three |
| // "free channels", the batch can handle. Break |
| // the loop since it is done with this CPU thus |
| // queuing an RCU work is _always_ success here. |
| queued = queue_rcu_work(system_unbound_wq, &krwp->rcu_work); |
| WARN_ON_ONCE(!queued); |
| break; |
| } |
| } |
| |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| return queued; |
| } |
| |
| /* |
| * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. |
| */ |
| static void kfree_rcu_monitor(struct work_struct *work) |
| { |
| struct kfree_rcu_cpu *krcp = container_of(work, |
| struct kfree_rcu_cpu, monitor_work.work); |
| |
| // Drain ready for reclaim. |
| kvfree_rcu_drain_ready(krcp); |
| |
| // Queue a batch for a rest. |
| kvfree_rcu_queue_batch(krcp); |
| |
| // If there is nothing to detach, it means that our job is |
| // successfully done here. In case of having at least one |
| // of the channels that is still busy we should rearm the |
| // work to repeat an attempt. Because previous batches are |
| // still in progress. |
| if (need_offload_krc(krcp)) |
| schedule_delayed_monitor_work(krcp); |
| } |
| |
| static void fill_page_cache_func(struct work_struct *work) |
| { |
| struct kvfree_rcu_bulk_data *bnode; |
| struct kfree_rcu_cpu *krcp = |
| container_of(work, struct kfree_rcu_cpu, |
| page_cache_work.work); |
| unsigned long flags; |
| int nr_pages; |
| bool pushed; |
| int i; |
| |
| nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? |
| 1 : rcu_min_cached_objs; |
| |
| for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { |
| bnode = (struct kvfree_rcu_bulk_data *) |
| __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| |
| if (!bnode) |
| break; |
| |
| raw_spin_lock_irqsave(&krcp->lock, flags); |
| pushed = put_cached_bnode(krcp, bnode); |
| raw_spin_unlock_irqrestore(&krcp->lock, flags); |
| |
| if (!pushed) { |
| free_page((unsigned long) bnode); |
| break; |
| } |
| } |
| |
| atomic_set(&krcp->work_in_progress, 0); |
| atomic_set(&krcp->backoff_page_cache_fill, 0); |
| } |
| |
| // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() |
| // state specified by flags. If can_alloc is true, the caller must |
| // be schedulable and not be holding any locks or mutexes that might be |
| // acquired by the memory allocator or anything that it might invoke. |
| // Returns true if ptr was successfully recorded, else the caller must |
| // use a fallback. |
| static inline bool |
| add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, |
| unsigned long *flags, void *ptr, bool can_alloc) |
| { |
| struct kvfree_rcu_bulk_data *bnode; |
| int idx; |
| |
| *krcp = krc_this_cpu_lock(flags); |
| if (unlikely(!(*krcp)->initialized)) |
| return false; |
| |
| idx = !!is_vmalloc_addr(ptr); |
| bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], |
| struct kvfree_rcu_bulk_data, list); |
| |
| /* Check if a new block is required. */ |
| if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { |
| bnode = get_cached_bnode(*krcp); |
| if (!bnode && can_alloc) { |
| krc_this_cpu_unlock(*krcp, *flags); |
| |
| // __GFP_NORETRY - allows a light-weight direct reclaim |
| // what is OK from minimizing of fallback hitting point of |
| // view. Apart of that it forbids any OOM invoking what is |
| // also beneficial since we are about to release memory soon. |
| // |
| // __GFP_NOMEMALLOC - prevents from consuming of all the |
| // memory reserves. Please note we have a fallback path. |
| // |
| // __GFP_NOWARN - it is supposed that an allocation can |
| // be failed under low memory or high memory pressure |
| // scenarios. |
| bnode = (struct kvfree_rcu_bulk_data *) |
| __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| raw_spin_lock_irqsave(&(*krcp)->lock, *flags); |
| } |
| |
| if (!bnode) |
| return false; |
| |
| // Initialize the new block and attach it. |
| bnode->nr_records = 0; |
| list_add(&bnode->list, &(*krcp)->bulk_head[idx]); |
| } |
| |
| // Finally insert and update the GP for this page. |
| bnode->nr_records++; |
| bnode->records[bnode->nr_records - 1] = ptr; |
| get_state_synchronize_rcu_full(&bnode->gp_snap); |
| atomic_inc(&(*krcp)->bulk_count[idx]); |
| |
| return true; |
| } |
| |
| #if !defined(CONFIG_TINY_RCU) |
| |
| static enum hrtimer_restart |
| schedule_page_work_fn(struct hrtimer *t) |
| { |
| struct kfree_rcu_cpu *krcp = |
| container_of(t, struct kfree_rcu_cpu, hrtimer); |
| |
| queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); |
| return HRTIMER_NORESTART; |
| } |
| |
| static void |
| run_page_cache_worker(struct kfree_rcu_cpu *krcp) |
| { |
| // If cache disabled, bail out. |
| if (!rcu_min_cached_objs) |
| return; |
| |
| if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && |
| !atomic_xchg(&krcp->work_in_progress, 1)) { |
| if (atomic_read(&krcp->backoff_page_cache_fill)) { |
| queue_delayed_work(system_unbound_wq, |
| &krcp->page_cache_work, |
| msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); |
| } else { |
| hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| krcp->hrtimer.function = schedule_page_work_fn; |
| hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); |
| } |
| } |
| } |
| |
| void __init kfree_rcu_scheduler_running(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| |
| if (need_offload_krc(krcp)) |
| schedule_delayed_monitor_work(krcp); |
| } |
| } |
| |
| /* |
| * Queue a request for lazy invocation of the appropriate free routine |
| * after a grace period. Please note that three paths are maintained, |
| * two for the common case using arrays of pointers and a third one that |
| * is used only when the main paths cannot be used, for example, due to |
| * memory pressure. |
| * |
| * Each kvfree_call_rcu() request is added to a batch. The batch will be drained |
| * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will |
| * be free'd in workqueue context. This allows us to: batch requests together to |
| * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. |
| */ |
| void kvfree_call_rcu(struct rcu_head *head, void *ptr) |
| { |
| unsigned long flags; |
| struct kfree_rcu_cpu *krcp; |
| bool success; |
| |
| /* |
| * Please note there is a limitation for the head-less |
| * variant, that is why there is a clear rule for such |
| * objects: it can be used from might_sleep() context |
| * only. For other places please embed an rcu_head to |
| * your data. |
| */ |
| if (!head) |
| might_sleep(); |
| |
| // Queue the object but don't yet schedule the batch. |
| if (debug_rcu_head_queue(ptr)) { |
| // Probable double kfree_rcu(), just leak. |
| WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", |
| __func__, head); |
| |
| // Mark as success and leave. |
| return; |
| } |
| |
| kasan_record_aux_stack(ptr); |
| success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); |
| if (!success) { |
| run_page_cache_worker(krcp); |
| |
| if (head == NULL) |
| // Inline if kvfree_rcu(one_arg) call. |
| goto unlock_return; |
| |
| head->func = ptr; |
| head->next = krcp->head; |
| WRITE_ONCE(krcp->head, head); |
| atomic_inc(&krcp->head_count); |
| |
| // Take a snapshot for this krcp. |
| krcp->head_gp_snap = get_state_synchronize_rcu(); |
| success = true; |
| } |
| |
| /* |
| * The kvfree_rcu() caller considers the pointer freed at this point |
| * and likely removes any references to it. Since the actual slab |
| * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore |
| * this object (no scanning or false positives reporting). |
| */ |
| kmemleak_ignore(ptr); |
| |
| // Set timer to drain after KFREE_DRAIN_JIFFIES. |
| if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) |
| __schedule_delayed_monitor_work(krcp); |
| |
| unlock_return: |
| krc_this_cpu_unlock(krcp, flags); |
| |
| /* |
| * Inline kvfree() after synchronize_rcu(). We can do |
| * it from might_sleep() context only, so the current |
| * CPU can pass the QS state. |
| */ |
| if (!success) { |
| debug_rcu_head_unqueue((struct rcu_head *) ptr); |
| synchronize_rcu(); |
| kvfree(ptr); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvfree_call_rcu); |
| |
| /** |
| * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. |
| * |
| * Note that a single argument of kvfree_rcu() call has a slow path that |
| * triggers synchronize_rcu() following by freeing a pointer. It is done |
| * before the return from the function. Therefore for any single-argument |
| * call that will result in a kfree() to a cache that is to be destroyed |
| * during module exit, it is developer's responsibility to ensure that all |
| * such calls have returned before the call to kmem_cache_destroy(). |
| */ |
| void kvfree_rcu_barrier(void) |
| { |
| struct kfree_rcu_cpu_work *krwp; |
| struct kfree_rcu_cpu *krcp; |
| bool queued; |
| int i, cpu; |
| |
| /* |
| * Firstly we detach objects and queue them over an RCU-batch |
| * for all CPUs. Finally queued works are flushed for each CPU. |
| * |
| * Please note. If there are outstanding batches for a particular |
| * CPU, those have to be finished first following by queuing a new. |
| */ |
| for_each_possible_cpu(cpu) { |
| krcp = per_cpu_ptr(&krc, cpu); |
| |
| /* |
| * Check if this CPU has any objects which have been queued for a |
| * new GP completion. If not(means nothing to detach), we are done |
| * with it. If any batch is pending/running for this "krcp", below |
| * per-cpu flush_rcu_work() waits its completion(see last step). |
| */ |
| if (!need_offload_krc(krcp)) |
| continue; |
| |
| while (1) { |
| /* |
| * If we are not able to queue a new RCU work it means: |
| * - batches for this CPU are still in flight which should |
| * be flushed first and then repeat; |
| * - no objects to detach, because of concurrency. |
| */ |
| queued = kvfree_rcu_queue_batch(krcp); |
| |
| /* |
| * Bail out, if there is no need to offload this "krcp" |
| * anymore. As noted earlier it can run concurrently. |
| */ |
| if (queued || !need_offload_krc(krcp)) |
| break; |
| |
| /* There are ongoing batches. */ |
| for (i = 0; i < KFREE_N_BATCHES; i++) { |
| krwp = &(krcp->krw_arr[i]); |
| flush_rcu_work(&krwp->rcu_work); |
| } |
| } |
| } |
| |
| /* |
| * Now we guarantee that all objects are flushed. |
| */ |
| for_each_possible_cpu(cpu) { |
| krcp = per_cpu_ptr(&krc, cpu); |
| |
| /* |
| * A monitor work can drain ready to reclaim objects |
| * directly. Wait its completion if running or pending. |
| */ |
| cancel_delayed_work_sync(&krcp->monitor_work); |
| |
| for (i = 0; i < KFREE_N_BATCHES; i++) { |
| krwp = &(krcp->krw_arr[i]); |
| flush_rcu_work(&krwp->rcu_work); |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); |
| |
| #endif /* #if !defined(CONFIG_TINY_RCU) */ |
| |
| static unsigned long |
| kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| int cpu; |
| unsigned long count = 0; |
| |
| /* Snapshot count of all CPUs */ |
| for_each_possible_cpu(cpu) { |
| struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| |
| count += krc_count(krcp); |
| count += READ_ONCE(krcp->nr_bkv_objs); |
| atomic_set(&krcp->backoff_page_cache_fill, 1); |
| } |
| |
| return count == 0 ? SHRINK_EMPTY : count; |
| } |
| |
| static unsigned long |
| kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| int cpu, freed = 0; |
| |
| for_each_possible_cpu(cpu) { |
| int count; |
| struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| |
| count = krc_count(krcp); |
| count += drain_page_cache(krcp); |
| kfree_rcu_monitor(&krcp->monitor_work.work); |
| |
| sc->nr_to_scan -= count; |
| freed += count; |
| |
| if (sc->nr_to_scan <= 0) |
| break; |
| } |
| |
| return freed == 0 ? SHRINK_STOP : freed; |
| } |
| |
| void __init kvfree_rcu_init(void) |
| { |
| int cpu; |
| int i, j; |
| struct shrinker *kfree_rcu_shrinker; |
| |
| /* Clamp it to [0:100] seconds interval. */ |
| if (rcu_delay_page_cache_fill_msec < 0 || |
| rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { |
| |
| rcu_delay_page_cache_fill_msec = |
| clamp(rcu_delay_page_cache_fill_msec, 0, |
| (int) (100 * MSEC_PER_SEC)); |
| |
| pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", |
| rcu_delay_page_cache_fill_msec); |
| } |
| |
| for_each_possible_cpu(cpu) { |
| struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); |
| |
| for (i = 0; i < KFREE_N_BATCHES; i++) { |
| INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); |
| krcp->krw_arr[i].krcp = krcp; |
| |
| for (j = 0; j < FREE_N_CHANNELS; j++) |
| INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); |
| } |
| |
| for (i = 0; i < FREE_N_CHANNELS; i++) |
| INIT_LIST_HEAD(&krcp->bulk_head[i]); |
| |
| INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); |
| INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); |
| krcp->initialized = true; |
| } |
| |
| kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); |
| if (!kfree_rcu_shrinker) { |
| pr_err("Failed to allocate kfree_rcu() shrinker!\n"); |
| return; |
| } |
| |
| kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; |
| kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; |
| |
| shrinker_register(kfree_rcu_shrinker); |
| } |