| /* |
| * Misc utility routines used by kernel or app-level. |
| * Contents are wifi-specific, used by any kernel or app-level |
| * software that might want wifi things as it grows. |
| * |
| * Copyright (C) 2024, Broadcom. |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * |
| * <<Broadcom-WL-IPTag/Dual:>> |
| */ |
| |
| |
| #include <typedefs.h> |
| #include <bcmutils.h> |
| #include <bcmdefs.h> |
| |
| #ifdef BCMDRIVER |
| #include <osl.h> |
| #define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base)) |
| #undef tolower |
| #define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c)) |
| #else |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <ctype.h> |
| #ifndef ASSERT |
| #define ASSERT(exp) |
| #endif |
| #ifndef ASSERT_FP |
| #define ASSERT_FP(exp) |
| #endif |
| #endif /* BCMDRIVER */ |
| |
| #include <bcmwifi_channels.h> |
| |
| #if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL) || defined(_CONSOLE)) |
| #include <bcmstdlib.h> /* For wlexe/Makefile.wlm_dll */ |
| #endif |
| |
| #include <802.11.h> |
| #include <802.11ac.h> |
| |
| /* Definitions for D11AC capable (80MHz+) Chanspec type */ |
| |
| /* Chanspec ASCII representation: |
| * |
| * [<band>'g']<channel>['/'<bandwidth>[<primary-sideband>] |
| * ['/'<1st-channel-segment>'-'<2nd-channel-segment>]] |
| * |
| * <band>: |
| * (optional) 2, 4, 5, 6 for 2.4GHz, 4GHz, 5GHz, and 6GHz respectively. |
| * Default value is 2g if channel <= 14, otherwise 5g. |
| * <channel>: |
| * channel number of the 20MHz channel, |
| * or primary 20 MHz channel of 40MHz, 80MHz, 160MHz, 80+80MHz, |
| * or 320MHz channels. |
| * <bandwidth>: |
| * (optional) 20, 40, 80, 160, 80+80, or 320. Default value is 20. |
| * <primary-sideband>: |
| * 'u' or 'l' (only for 2.4GHz band 40MHz) |
| * |
| * For 2.4GHz band 40MHz channels, the same primary channel may be the |
| * upper sideband for one 40MHz channel, and the lower sideband for an |
| * overlapping 40MHz channel. The {u: upper, l: lower} primary sideband |
| * indication disambiguates which 40MHz channel is being specified. |
| * |
| * For 40MHz in the 5GHz or 6GHz band and all channel bandwidths greater than |
| * 40MHz, the U/L specification is not necessary or allowed since the channels are |
| * non-overlapping and the primary 20MHz channel position is derived from its |
| * position in the wide bandwidth channel. |
| * <1st-channel-segment> |
| * <2nd-channel-segment>: |
| * Required for 80+80, otherwise not allowed. |
| * These fields specify the center channel of the first and the second 80MHz |
| * or 160MHz channels. |
| * |
| * In its simplest form, it is a 20MHz channel number, with the implied band |
| * of 2.4GHz if channel number <= 14, and 5GHz otherwise. |
| * |
| * To allow for backward compatibility with scripts, the old form for |
| * 40MHz channels is also allowed: <channel><primary-sideband> |
| * |
| * <channel>: |
| * primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz |
| * <primary-sideband>: |
| * "U" for upper, "L" for lower (or lower case "u" "l") |
| * |
| * 5 GHz Examples: |
| * Chanspec BW Center Ch Channel Range Primary Ch |
| * 5g8 20MHz 8 - - |
| * 52 20MHz 52 - - |
| * 52/40 40MHz 54 52-56 52 |
| * 56/40 40MHz 54 52-56 56 |
| * 52/80 80MHz 58 52-64 52 |
| * 56/80 80MHz 58 52-64 56 |
| * 60/80 80MHz 58 52-64 60 |
| * 64/80 80MHz 58 52-64 64 |
| * 52/160 160MHz 50 36-64 52 |
| * 36/160 160MGz 50 36-64 36 |
| * 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36 |
| * |
| * 2 GHz Examples: |
| * Chanspec BW Center Ch Channel Range Primary Ch |
| * 2g8 20MHz 8 - - |
| * 8 20MHz 8 - - |
| * 6 20MHz 6 - - |
| * 6/40l 40MHz 8 6-10 6 |
| * 6l 40MHz 8 6-10 6 |
| * 6/40u 40MHz 4 2-6 6 |
| * 6u 40MHz 4 2-6 6 |
| */ |
| |
| /* bandwidth ASCII string */ |
| static const char *wf_chspec_bw_str[] = |
| { |
| "320", |
| "160+160", /* NA */ |
| "20", |
| "40", |
| "80", |
| "160", |
| "80+80" |
| }; |
| |
| static const uint16 wf_chspec_bw_mhz[] = { |
| 320, 320, 20, 40, 80, 160, 160 |
| }; |
| #define WF_NUM_BW ARRAYSIZE(wf_chspec_bw_mhz) |
| |
| /* 40MHz channels in 5GHz band */ |
| static const uint8 wf_5g_40m_chans[] = { |
| 38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159, 167, 175 |
| }; |
| #define WF_NUM_5G_40M_CHANS ARRAYSIZE(wf_5g_40m_chans) |
| |
| /* 80MHz channels in 5GHz band */ |
| static const uint8 wf_5g_80m_chans[] = { |
| 42, 58, 106, 122, 138, 155, 171 |
| }; |
| #define WF_NUM_5G_80M_CHANS ARRAYSIZE(wf_5g_80m_chans) |
| |
| /* 160MHz channels in 5GHz band */ |
| static const uint8 wf_5g_160m_chans[] = { |
| 50, 114, 163 |
| }; |
| #define WF_NUM_5G_160M_CHANS ARRAYSIZE(wf_5g_160m_chans) |
| |
| /* 320Mhz Center chan to Chan Id map */ |
| static const int8 map_320m_cc_chanid[] = { |
| 0, /* CC 31 */ |
| 1, /* CC 95 */ |
| 2, /* CC 159 */ |
| }; |
| |
| typedef struct { |
| uint8 start; |
| uint8 end; |
| uint8 center; |
| uint8 pad; |
| } wf_6g_320m_chan_range_t; |
| |
| static const wf_6g_320m_chan_range_t wf_6g_320m_ch_set[] = |
| { |
| {1, 61, 31, 0}, {65, 125, 95, 0}, {129, 189, 159, 0} |
| }; |
| |
| static const wf_6g_320m_chan_range_t wf_6g_320m_ch_ol_set[] = |
| { |
| {33, 93, 63, 0}, {97, 157, 127, 0}, {161, 221, 191, 0} |
| }; |
| |
| static const uint ch_per_blk_map[] = { |
| 64, /* WL_CHANSPEC_BW_320 */ |
| 64, /* WL_CHANSPEC_BW_320 */ |
| 4, /* WL_CHANSPEC_BW_20 */ |
| 8, /* WL_CHANSPEC_BW_40 */ |
| 16, /* WL_CHANSPEC_BW_80 */ |
| 32, /* WL_CHANSPEC_BW_160 */ |
| 32, /* WL_CHANSPEC_BW_160 */ |
| }; |
| |
| /* Define the conditional macro to help with reducing the code size bloat |
| * in other branches and in trunk targets that don't need 11BE features... |
| */ |
| #define WFC_2VALS_EQ(var, val) ((var) == (val)) |
| |
| /* compare bandwidth unconditionally for 320Mhz related stuff */ |
| #if defined(WL11BE) || defined(BCMWIFI_BW320MHZ) |
| #define WFC_BW_EQ(bw, val) WFC_2VALS_EQ(bw, val) |
| #else |
| #define WFC_BW_EQ(bw, val) (FALSE) |
| #endif /* WL11BE || WL_BW320MHZ */ |
| |
| /* compare bandwidth based on WFC_NON_CONT_CHAN */ |
| #ifdef WFC_NON_CONT_CHAN |
| #define WFC_NCBW_EQ(bw, val) WFC_2VALS_EQ(bw, val) |
| #else |
| #define WFC_NCBW_EQ(bw, val) (FALSE) |
| #endif |
| |
| static void wf_chanspec_iter_firstchan(wf_chanspec_iter_t *iter); |
| static chanspec_bw_t wf_iter_next_bw(chanspec_bw_t bw); |
| static bool wf_chanspec_iter_next_2g(wf_chanspec_iter_t *iter); |
| static bool wf_chanspec_iter_next_5g(wf_chanspec_iter_t *iter); |
| static int wf_chanspec_iter_next_5g_range(wf_chanspec_iter_t *iter, chanspec_bw_t bw); |
| static bool wf_chanspec_iter_6g_range_init(wf_chanspec_iter_t *iter, chanspec_bw_t bw); |
| static bool wf_chanspec_iter_next_6g(wf_chanspec_iter_t *iter); |
| static uint wf_6g_get_center_chan_from_primary(uint primary_channel, chanspec_bw_t bw, |
| bool overlapped320); |
| |
| /** |
| * Return the chanspec bandwidth in MHz |
| * Bandwidth of 160 MHz will be returned for 80+80MHz chanspecs. |
| * |
| * @param chspec chanspec_t |
| * |
| * @return bandwidth of chspec in MHz units |
| */ |
| uint |
| wf_bw_chspec_to_mhz(chanspec_t chspec) |
| { |
| uint bwidx = WL_CHSPEC_BW(chspec); |
| return (bwidx >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bwidx]); |
| } |
| |
| /* bw in MHz, return the channel count from the center channel to the |
| * the channel at the edge of the band |
| */ |
| static uint |
| center_chan_to_edge(chanspec_bw_t bw) |
| { |
| uint delta = 0; |
| |
| /* edge channels separated by BW - 10MHz on each side |
| * delta from cf to edge is half of that, |
| */ |
| if (bw == WL_CHANSPEC_BW_40) { |
| /* 10 MHz */ |
| delta = 2; |
| } else if (bw == WL_CHANSPEC_BW_80) { |
| /* 30 MHz */ |
| delta = 6; |
| } else if (bw == WL_CHANSPEC_BW_160) { |
| /* 70 MHz */ |
| delta = 14; |
| } else if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| /* 150 MHz */ |
| delta = 30; |
| } |
| return delta; |
| } |
| |
| /* return channel number of the low edge of the band |
| * given the center channel and BW |
| */ |
| static uint |
| channel_low_edge(uint center_ch, chanspec_bw_t bw) |
| { |
| return (center_ch - center_chan_to_edge(bw)); |
| } |
| |
| /* return side band number given center channel and primary20 channel |
| * return -1 on error |
| */ |
| static int |
| channel_to_sb(uint center_ch, uint primary_ch, chanspec_bw_t bw) |
| { |
| uint lowest = channel_low_edge(center_ch, bw); |
| uint sb; |
| |
| if (primary_ch < lowest || |
| (primary_ch - lowest) % 4) { |
| /* bad primary channel lower than the low edge of the channel, |
| * or not mult 4. |
| */ |
| return -1; |
| } |
| |
| sb = ((primary_ch - lowest) / 4); |
| |
| /* sb must be a index to a 20MHz channel in range */ |
| if ((bw == WL_CHANSPEC_BW_20 && sb >= 1) || |
| (bw == WL_CHANSPEC_BW_40 && sb >= 2) || |
| (bw == WL_CHANSPEC_BW_80 && sb >= 4) || |
| (bw == WL_CHANSPEC_BW_160 && sb >= 8) || |
| (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320) && sb >= 16)) { |
| /* primary_ch must have been too high for the center_ch */ |
| return -1; |
| } |
| |
| return sb; |
| } |
| |
| /* return primary20 channel given center channel and side band */ |
| static uint |
| channel_to_primary20_chan(uint center_ch, chanspec_bw_t bw, uint sb) |
| { |
| return (channel_low_edge(center_ch, bw) + sb * 4); |
| } |
| |
| /* return index of 80MHz channel from channel number |
| * return -1 on error |
| */ |
| static int |
| channel_80mhz_to_id(uint ch) |
| { |
| uint i; |
| for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) { |
| if (ch == wf_5g_80m_chans[i]) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /* return index of the 6G 80MHz channel from channel number |
| * return -1 on error |
| */ |
| static int |
| channel_6g_80mhz_to_id(uint ch) |
| { |
| /* The 6GHz center channels start at 7, and have a spacing of 16 */ |
| if (ch >= CH_MIN_6G_80M_CHANNEL && |
| ch <= CH_MAX_6G_80M_CHANNEL && |
| ((ch - CH_MIN_6G_80M_CHANNEL) % 16) == 0) { // even multiple of 16 |
| return (ch - CH_MIN_6G_80M_CHANNEL) / 16; |
| } |
| |
| return -1; |
| } |
| |
| /* return index of the 5G 160MHz channel from channel number |
| * return -1 on error |
| */ |
| int |
| channel_5g_160mhz_to_id(uint ch) |
| { |
| uint i; |
| for (i = 0; i < WF_NUM_5G_160M_CHANS; i ++) { |
| if (ch == wf_5g_160m_chans[i]) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| /* return index of the 6G 160MHz channel from channel number |
| * return -1 on error |
| */ |
| int |
| channel_6g_160mhz_to_id(uint ch) |
| { |
| /* The 6GHz center channels start at 15, and have a spacing of 32 */ |
| if (ch >= CH_MIN_6G_160M_CHANNEL && |
| ch <= CH_MAX_6G_160M_CHANNEL && |
| ((ch - CH_MIN_6G_160M_CHANNEL) % 32) == 0) { |
| return (ch - CH_MIN_6G_160M_CHANNEL) / 32; |
| } |
| |
| return -1; |
| } |
| |
| |
| /* return index of the 6G 320MHz channel from channel number |
| * return -1 on error |
| */ |
| int |
| channel_6g_320mhz_to_id(uint ch) |
| { |
| int id; |
| /* The 6GHz center channels start at 31, and have a spacing of 64 */ |
| if (ch >= CH_MIN_6G_320M_CHANNEL && |
| ch <= CH_MAX_6G_320M_CHANNEL && |
| ((((ch - CH_MIN_6G_320M_CHANNEL) % |
| CH_6G_320M_CNTR_FREQ_SPACING) == 0) || |
| (ch >= CH_MIN_6G_320M_OL_CHANNEL && |
| ((ch - CH_MIN_6G_320M_OL_CHANNEL) % CH_6G_320M_CNTR_FREQ_SPACING == 0)))) { |
| |
| uint8 pos = ch / CH_6G_320M_CNTR_FREQ_SPACING; |
| if (pos < ARRAYSIZE(map_320m_cc_chanid)) { |
| id = map_320m_cc_chanid[pos]; |
| if ((ch - CH_MIN_6G_320M_CHANNEL) % CH_6G_320M_CNTR_FREQ_SPACING == 0) { |
| return id; |
| } else { |
| return (id + 4); |
| } |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * This function returns the the 5GHz 80MHz center channel for the given chanspec 80MHz ID |
| * |
| * @param chan_80MHz_id 80MHz chanspec ID |
| * |
| * @return Return the center channel number, or 0 on error. |
| * |
| */ |
| static uint8 |
| wf_chspec_5G_id80_to_ch(uint8 chan_80MHz_id) |
| { |
| if (chan_80MHz_id < WF_NUM_5G_80M_CHANS) { |
| return wf_5g_80m_chans[chan_80MHz_id]; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * This function returns the the 6GHz 80MHz center channel for the given chanspec 80MHz ID |
| * |
| * @param chan_80MHz_id 80MHz chanspec ID |
| * |
| * @return Return the center channel number, or 0 on error. |
| * |
| */ |
| static uint8 |
| wf_chspec_6G_id80_to_ch(uint8 chan_80MHz_id) |
| { |
| uint8 ch = 0; |
| |
| if (chan_80MHz_id < WF_NUM_6G_80M_CHANS) { |
| /* The 6GHz center channels have a spacing of 16 |
| * starting from the first 80MHz center |
| */ |
| ch = CH_MIN_6G_80M_CHANNEL + (chan_80MHz_id * 16); |
| } |
| |
| return ch; |
| } |
| |
| /** |
| * Convert chanspec to ascii string, or formats hex of an invalid chanspec. |
| * |
| * @param chspec chanspec to format |
| * @param buf pointer to buf with room for at least CHANSPEC_STR_LEN bytes |
| * |
| * @return Returns pointer to passed in buf. The buffer will have the ascii |
| * representation of the given chspec, or "invalid 0xHHHH" where |
| * 0xHHHH is the hex representation of the invalid chanspec. |
| * |
| * @see CHANSPEC_STR_LEN |
| * |
| * Wrapper function for wf_chspec_ntoa. In case of an error it puts |
| * the original chanspec in the output buffer, prepended with "invalid". |
| * Can be directly used in print routines as it takes care of null |
| */ |
| char * |
| wf_chspec_ntoa_ex(chanspec_t chspec, char *buf) |
| { |
| if (wf_chspec_ntoa(chspec, buf) == NULL) |
| snprintf(buf, CHANSPEC_STR_LEN, "invalid 0x%04x", chspec); |
| return buf; |
| } |
| |
| /** |
| * Convert chanspec to ascii string, or return NULL on error. |
| * |
| * @param chspec chanspec to format |
| * @param buf pointer to buf with room for at least CHANSPEC_STR_LEN bytes |
| * |
| * @return Returns pointer to passed in buf or NULL on error. On sucess, the buffer |
| * will have the ascii representation of the given chspec. |
| * |
| * @see CHANSPEC_STR_LEN |
| * |
| * Given a chanspec and a string buffer, format the chanspec as a |
| * string, and return the original pointer buf. |
| * Min buffer length must be CHANSPEC_STR_LEN. |
| * On error return NULL. |
| */ |
| char * |
| wf_chspec_ntoa(chanspec_t chspec, char *buf) |
| { |
| const char *band; |
| uint pri_chan; |
| |
| if (wf_chspec_malformed(chspec)) |
| return NULL; |
| |
| band = ""; |
| |
| /* primary20 channel */ |
| pri_chan = wf_chspec_primary20_chan(chspec); |
| |
| /* check for non-default band spec */ |
| if (CHSPEC_IS2G(chspec) && pri_chan > CH_MAX_2G_CHANNEL) { |
| band = "2g"; |
| } else if (CHSPEC_IS5G(chspec) && pri_chan <= CH_MAX_2G_CHANNEL) { |
| band = "5g"; |
| } else if (CHSPEC_IS6G(chspec)) { |
| band = "6g"; |
| } |
| |
| /* bandwidth and primary20 sideband */ |
| if (CHSPEC_IS20(chspec)) { |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, pri_chan); |
| } else if (CHSPEC_IS8080(chspec)) { |
| /* 80+80 */ |
| uint ch0; |
| uint ch1; |
| |
| /* get the center channels for each frequency segment */ |
| if (CHSPEC_IS5G(chspec)) { |
| ch0 = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| ch1 = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN1(chspec)); |
| } else if (CHSPEC_IS6G(chspec)) { |
| ch0 = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| ch1 = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN1(chspec)); |
| } else { |
| return NULL; |
| } |
| |
| /* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */ |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/80+80/%d-%d", band, pri_chan, ch0, ch1); |
| } else if (CHSPEC_IS320(chspec)) { |
| /* 320 */ |
| const char *bw; |
| const char *ol = ""; |
| |
| bw = wf_chspec_to_bw_str(chspec); |
| ol = WL_CHSPEC_320_CNTR_FREQ_OVERLAPPED(chspec) ? "o" : ""; |
| |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, pri_chan, bw, ol); |
| } else { |
| const char *bw; |
| const char *sb = ""; |
| |
| bw = wf_chspec_to_bw_str(chspec); |
| |
| #ifdef CHANSPEC_NEW_40MHZ_FORMAT |
| /* primary20 sideband string if needed for 2g 40MHz */ |
| if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) { |
| sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; |
| } |
| |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, pri_chan, bw, sb); |
| #else |
| /* primary20 sideband string instead of BW for 40MHz */ |
| if (CHSPEC_IS40(chspec) && !CHSPEC_IS6G(chspec)) { |
| sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, pri_chan, sb); |
| } else { |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, pri_chan, bw); |
| } |
| #endif /* CHANSPEC_NEW_40MHZ_FORMAT */ |
| } |
| |
| return (buf); |
| } |
| |
| static int |
| read_uint(const char **p, unsigned int *num) |
| { |
| unsigned long val; |
| char *endp = NULL; |
| |
| val = strtoul(*p, &endp, 10); |
| /* if endp is the initial pointer value, then a number was not read */ |
| if (endp == *p) |
| return 0; |
| |
| /* advance the buffer pointer to the end of the integer string */ |
| *p = endp; |
| /* return the parsed integer */ |
| *num = (unsigned int)val; |
| |
| return 1; |
| } |
| |
| /** |
| * Convert ascii string to chanspec |
| * |
| * @param a pointer to input string |
| * |
| * @return Return > 0 if successful or 0 otherwise |
| */ |
| chanspec_t |
| wf_chspec_aton(const char *a) |
| { |
| chanspec_t chspec; |
| chanspec_band_t chspec_band; |
| chanspec_subband_t chspec_sb; |
| chanspec_bw_t chspec_bw; |
| uint bw; |
| uint num, pri_ch; |
| char c, sb_ul = '\0', overlap = '\0'; |
| |
| bw = 20; |
| chspec_sb = 0; |
| |
| /* parse channel num or band */ |
| if (!read_uint(&a, &num)) |
| return 0; |
| /* if we are looking at a 'g', then the first number was a band */ |
| c = tolower((int)a[0]); |
| if (c == 'g') { |
| a++; /* consume the char */ |
| |
| /* band must be "2", "5", or "6" */ |
| if (num == 2) |
| chspec_band = WL_CHANSPEC_BAND_2G; |
| else if (num == 5) |
| chspec_band = WL_CHANSPEC_BAND_5G; |
| else if (num == 6) |
| chspec_band = WL_CHANSPEC_BAND_6G; |
| else |
| return 0; |
| |
| /* read the channel number */ |
| if (!read_uint(&a, &pri_ch)) |
| return 0; |
| |
| c = tolower((int)a[0]); |
| } else { |
| /* first number is channel, use default for band */ |
| pri_ch = num; |
| chspec_band = ((pri_ch <= CH_MAX_2G_CHANNEL) ? |
| WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); |
| } |
| |
| if (c == '\0') { |
| /* default BW of 20MHz */ |
| chspec_bw = WL_CHANSPEC_BW_20; |
| goto done_read; |
| } |
| |
| a ++; /* consume the 'u','l', or '/' */ |
| |
| /* check 'u'/'l' */ |
| if (c == 'u' || c == 'l') { |
| sb_ul = c; |
| chspec_bw = WL_CHANSPEC_BW_40; |
| goto done_read; |
| } |
| |
| /* next letter must be '/' */ |
| if (c != '/') |
| return 0; |
| |
| /* read bandwidth */ |
| if (!read_uint(&a, &bw)) |
| return 0; |
| |
| /* convert to chspec value */ |
| if (bw == 20) { |
| chspec_bw = WL_CHANSPEC_BW_20; |
| } else if (bw == 40) { |
| chspec_bw = WL_CHANSPEC_BW_40; |
| } else if (bw == 80) { |
| chspec_bw = WL_CHANSPEC_BW_80; |
| } else if (bw == 160) { |
| chspec_bw = WL_CHANSPEC_BW_160; |
| } else if (WFC_BW_EQ(bw, 320)) { |
| chspec_bw = WL_CHANSPEC_BW_320; |
| } else { |
| return 0; |
| } |
| |
| /* So far we have <band>g<chan>/<bw> |
| * Can now be followed by u/l if bw = 40, |
| */ |
| |
| c = tolower((int)a[0]); |
| |
| /* if we have a 2g/40 channel, we should have a l/u spec now */ |
| if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) { |
| if (c == 'u' || c == 'l') { |
| a ++; /* consume the u/l char */ |
| sb_ul = c; |
| goto done_read; |
| } |
| } |
| |
| /* check for 80+80 */ |
| if (c == '+') { |
| return 0; |
| } |
| |
| /* if we have a 6g/320 channel, we should have a 'o' spec now for |
| * overlapped { 63, 127, 191 } channel. |
| */ |
| if (chspec_band == WL_CHANSPEC_BAND_6G && bw == 320) { |
| if (c == 'o') { |
| a ++; /* consume the 'o' char */ |
| overlap = c; |
| goto done_read; |
| } |
| } |
| done_read: |
| /* skip trailing white space */ |
| while (a[0] == ' ') { |
| a ++; |
| } |
| |
| /* must be end of string */ |
| if (a[0] != '\0') |
| return 0; |
| |
| /* Now have all the chanspec string parts read; |
| * chspec_band, pri_ch, chspec_bw, sb_ul. |
| * chspec_band and chspec_bw are chanspec values. |
| * Need to convert pri_ch, and sb_ul into |
| * a center channel (or two) and sideband. |
| */ |
| |
| /* if a sb u/l string was given, just use that, |
| * guaranteed to be bw = 40 by string parse. |
| */ |
| if (chspec_band != WL_CHANSPEC_BAND_6G && sb_ul != '\0') { |
| if (sb_ul == 'l') { |
| chspec_sb = WL_CHANSPEC_CTL_SB_LLL; |
| } else if (sb_ul == 'u') { |
| chspec_sb = WL_CHANSPEC_CTL_SB_LLU; |
| } |
| chspec = wf_create_40MHz_chspec_primary_sb(pri_ch, chspec_sb, chspec_band); |
| } else if (chspec_bw == WL_CHANSPEC_BW_20) { |
| /* if the bw is 20, only need the primary channel and band */ |
| chspec = wf_create_20MHz_chspec(pri_ch, chspec_band); |
| } else { |
| uint16 flags = 0; |
| /* If the bw is 40/80/160 (and not 40MHz 2G), the channels are |
| * non-overlapping in 5G or 6G bands. Each primary channel is contained |
| * in only one higher bandwidth channel. The wf_create_chspec_from_primary() |
| * will create the chanspec. 2G 40MHz is handled just above, assuming a {u,l} |
| * sub-band spec was given. |
| * However 6g 320Mhz channels are overlapping and in case they are belongs to |
| * center channel set { 63, 127, 191 }, overlap should come with 'o'. |
| */ |
| if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320) && overlap == 'o') { |
| flags |= WF_CHANSPEC_FLAG_OVERLAPPED320; |
| } |
| chspec = wf_create_chspec_from_primary(pri_ch, chspec_bw, chspec_band, |
| flags); |
| } |
| |
| if (wf_chspec_malformed(chspec)) |
| return 0; |
| |
| return chspec; |
| } |
| |
| /** |
| * Verify the chanspec is using a legal set of parameters, i.e. that the |
| * chanspec specified a band, bw, pri_sb and channel and that the |
| * combination could be legal given any set of circumstances. |
| * |
| * @param chanspec the chanspec to check |
| * |
| * @return Returns TRUE if the chanspec is malformed, FALSE if it looks good. |
| */ |
| bool |
| BCMPOSTTRAPFASTPATH(wf_chspec_malformed)(chanspec_t chanspec) |
| { |
| uint chspec_bw = CHSPEC_BW(chanspec); |
| uint chspec_sb; |
| |
| if (chanspec == INVCHANSPEC) { |
| return TRUE; |
| } |
| if (CHSPEC_IS2G(chanspec)) { |
| /* must be valid bandwidth for 2G */ |
| if (!BW_LE40(chspec_bw)) { |
| return TRUE; |
| } |
| |
| /* check for invalid channel number */ |
| if (wf_chspec_center_channel(chanspec) == INVCHANNEL) { |
| return TRUE; |
| } |
| } else if (CHSPEC_IS5G(chanspec) || CHSPEC_IS6G(chanspec)) { |
| if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) { |
| uint ch_id; |
| |
| ch_id = WL_CHSPEC_320_CHAN(chanspec); |
| |
| /* channel IDs in 320 must be in range */ |
| if (CHSPEC_IS6G(chanspec)) { |
| if (ch_id > WF_NUM_6G_320M_CHAN_ID_MAX) { |
| /* bad 320MHz channel ID for the band */ |
| return TRUE; |
| } |
| } else { |
| return TRUE; |
| } |
| } else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) { |
| uint ch0_id, ch1_id; |
| |
| ch0_id = WL_CHSPEC_CHAN0(chanspec); |
| ch1_id = WL_CHSPEC_CHAN1(chanspec); |
| |
| /* channel IDs in 80+80 must be in range */ |
| if (CHSPEC_IS5G(chanspec) && |
| (ch0_id >= WF_NUM_5G_80M_CHANS || ch1_id >= WF_NUM_5G_80M_CHANS)) { |
| /* bad 80MHz channel ID for the band */ |
| return TRUE; |
| } |
| if (CHSPEC_IS6G(chanspec) && |
| (ch0_id >= WF_NUM_6G_80M_CHANS || ch1_id >= WF_NUM_6G_80M_CHANS)) { |
| /* bad 80MHz channel ID for the band */ |
| return TRUE; |
| } |
| } else if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40 || |
| chspec_bw == WL_CHANSPEC_BW_80 || chspec_bw == WL_CHANSPEC_BW_160) { |
| |
| /* check for invalid channel number */ |
| if (wf_chspec_center_channel(chanspec) == INVCHANNEL) { |
| return TRUE; |
| } |
| } else { |
| /* invalid bandwidth */ |
| return TRUE; |
| } |
| } else { |
| /* must be a valid band */ |
| return TRUE; |
| } |
| |
| /* retrive sideband */ |
| if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) { |
| chspec_sb = CHSPEC_320_SB(chanspec); |
| } else { |
| chspec_sb = CHSPEC_CTL_SB(chanspec); |
| } |
| |
| /* side band needs to be consistent with bandwidth */ |
| if (chspec_bw == WL_CHANSPEC_BW_20) { |
| if (chspec_sb != WL_CHANSPEC_CTL_SB_LLL) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_40) { |
| if (chspec_sb > WL_CHANSPEC_CTL_SB_LLU) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_80 || |
| WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) { |
| /* both 80MHz and 80+80MHz use 80MHz side bands. |
| * 80+80 SB info is relative to the primary 80MHz sub-band. |
| */ |
| if (chspec_sb > WL_CHANSPEC_CTL_SB_LUU) |
| return TRUE; |
| } else if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) { |
| /* FIXME: define the max sideband index */ |
| ASSERT_FP((chspec_sb >> WL_CHANSPEC_320_SB_SHIFT) <= 15); |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * Verify the chanspec specifies a valid channel according to 802.11. |
| * |
| * @param chanspec the chanspec to check |
| * |
| * @return Returns TRUE if the chanspec is a valid 802.11 channel |
| */ |
| bool |
| wf_chspec_valid(chanspec_t chanspec) |
| { |
| chanspec_band_t chspec_band = CHSPEC_BAND(chanspec); |
| chanspec_bw_t chspec_bw = CHSPEC_BW(chanspec); |
| uint chspec_ch = -1; |
| |
| if (wf_chspec_malformed(chanspec)) { |
| return FALSE; |
| } |
| |
| chspec_ch = wf_chspec_center_channel(chanspec); |
| |
| /* After the malformed check, we know that we have |
| * a valid band field, |
| * a valid bandwidth for the band, |
| * and a valid sub-band value for the bandwidth. |
| * |
| * Since all sub-band specs are valid for any channel, the only thing remaining to |
| * check is that |
| * the 20MHz channel, |
| * or the center channel for higher BW, |
| * or both center channels for an 80+80MHz channel, |
| * are valid for the specified band. |
| * Also, 80+80MHz channels need to be non-contiguous. |
| */ |
| |
| if (chspec_bw == WL_CHANSPEC_BW_20) { |
| |
| return wf_valid_20MHz_chan(chspec_ch, chspec_band); |
| |
| } else if (chspec_bw == WL_CHANSPEC_BW_40) { |
| |
| return wf_valid_40MHz_center_chan(chspec_ch, chspec_band); |
| |
| } else if (chspec_bw == WL_CHANSPEC_BW_80) { |
| |
| return wf_valid_80MHz_center_chan(chspec_ch, chspec_band); |
| |
| } else if (chspec_bw == WL_CHANSPEC_BW_160) { |
| |
| return wf_valid_160MHz_center_chan(chspec_ch, chspec_band); |
| |
| } else if (WFC_BW_EQ(chspec_bw, WL_CHANSPEC_BW_320)) { |
| return wf_valid_320MHz_center_chan(chspec_ch, chspec_band); |
| |
| } else if (WFC_NCBW_EQ(chspec_bw, WL_CHANSPEC_BW_8080)) { |
| uint16 ch0 = 0; |
| uint16 ch1 = 0; |
| |
| /* get the center channels for each frequency segment */ |
| if (CHSPEC_IS5G(chanspec)) { |
| ch0 = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN0(chanspec)); |
| ch1 = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN1(chanspec)); |
| } else if (CHSPEC_IS6G(chanspec)) { |
| ch0 = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN0(chanspec)); |
| ch1 = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN1(chanspec)); |
| } else { |
| return FALSE; |
| } |
| |
| /* the two channels must be separated by more than 80MHz by VHT req */ |
| if ((ch1 > ch0 + CH_80MHZ_APART) || |
| (ch0 > ch1 + CH_80MHZ_APART)) |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * Verify the chanspec is greater than or equal to the given bandwidth. |
| * |
| * @param chanspec the chanspec to check |
| * @param chspec_bw the bandwidth to check |
| * |
| * @return Returns TRUE if the chanspec is greater than or equal to |
| * the bandwidth |
| */ |
| bool |
| wf_chspec_bw_ge(chanspec_t chanspec, chanspec_bw_t chspec_bw) |
| { |
| bool chspec_bw_ge = FALSE; |
| |
| /* BW inequality comparisons, GE (>=), comparisons can be made as simple numeric |
| * comparisons, with the exception that 160 is the same bandwidth as 80+80, |
| * but have different numeric values (WL_CHANSPEC_BW_160 < WL_CHANSPEC_BW_8080). |
| * For 320 wide bandwidth, the numeric values (WL_CHANSPEC_BW_320) is lesser than |
| * the other bandwidths 20, 40, 80, 80+80 and 160. |
| * |
| * Check first whether both chanspec bandwidth and chspec_bw are 160 wide. If chanspec |
| * bandwidth is 320 wide, then the opposite inequality is made as 320 bandwidth numeric |
| * value is lesser than other bandwidth values. Otherwise, the regular comparison is made. |
| */ |
| if (CHSPEC_IS_BW_160_WIDE(chanspec) && BW_IS_160_WIDE(chspec_bw)) { |
| chspec_bw_ge = TRUE; |
| } else if (CHSPEC_BW(chanspec) == WL_CHANSPEC_BW_320) { |
| chspec_bw_ge = TRUE; |
| } else if (chspec_bw != WL_CHANSPEC_BW_320) { |
| chspec_bw_ge = (CHSPEC_BW(chanspec) >= chspec_bw); |
| } |
| |
| return chspec_bw_ge; |
| } |
| |
| /** |
| * Verify the chanspec is lesser than or equal to the given bandwidth. |
| * |
| * @param chanspec the chanspec to check |
| * @param chspec_bw the bandwidth to check |
| * |
| * @return Returns TRUE if the chanspec is lesser than or equal to |
| * the bandwidth |
| */ |
| bool |
| wf_chspec_bw_le(chanspec_t chanspec, chanspec_bw_t chspec_bw) |
| { |
| bool chspec_bw_le = FALSE; |
| |
| /* BW inequality comparisons, LE (<=), comparisons can be made as simple numeric |
| * comparisons, with the exception that 160 is the same bandwidth as 80+80, |
| * but have different numeric values (WL_CHANSPEC_BW_160 < WL_CHANSPEC_BW_8080). |
| * For 320 wide bandwidth, the numeric values (WL_CHANSPEC_BW_320) is lesser than |
| * the other bandwidths 20, 40, 80, 80+80 and 160. |
| * |
| * Check first whether both chanspec bandwidth and chspec_bw are 160 wide. If chanspec |
| * bandwidth is 320 wide, then the opposite inequality is made as 320 bandwidth numeric |
| * value is lesser than other bandwidth values. Otherwise, the regular comparison is made. |
| */ |
| if (CHSPEC_IS_BW_160_WIDE(chanspec) && BW_IS_160_WIDE(chspec_bw)) { |
| chspec_bw_le = TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_320) { |
| chspec_bw_le = TRUE; |
| } else if (CHSPEC_BW(chanspec) != WL_CHANSPEC_BW_320) { |
| chspec_bw_le = (CHSPEC_BW(chanspec) <= chspec_bw); |
| } |
| |
| return chspec_bw_le; |
| } |
| |
| /* 5G band 20MHz channel ranges with even (+4) channel spacing */ |
| static const struct wf_iter_range wf_5g_iter_ranges[] = { |
| {36, 64}, |
| {100, 144}, |
| {149, 165} |
| }; |
| |
| #define RANGE_ID_INVAL 0xFFu |
| enum wf_iter_state { |
| WF_ITER_INIT = 0, |
| WF_ITER_RUN = 1, |
| WF_ITER_DONE = 2 |
| }; |
| |
| /** |
| * @brief Initialize a chanspec iteration structure. |
| */ |
| bool |
| wf_chanspec_iter_init(wf_chanspec_iter_t *iter, chanspec_band_t band, chanspec_bw_t bw) |
| { |
| if (iter == NULL) { |
| return FALSE; |
| } |
| |
| /* Initialize the iter structure to the "DONE" state |
| * in case the parameter validation fails. |
| * If the validation fails then the iterator will return INVCHANSPEC as the current |
| * chanspec, and wf_chanspec_iter_next() will return FALSE. |
| */ |
| bzero(iter, sizeof(*iter)); |
| iter->state = WF_ITER_DONE; |
| iter->chanspec = INVCHANSPEC; |
| |
| if (band != WL_CHANSPEC_BAND_2G && |
| band != WL_CHANSPEC_BAND_5G && |
| band != WL_CHANSPEC_BAND_6G) { |
| ASSERT(0); |
| return FALSE; |
| } |
| |
| /* make sure the BW is unspecified (INVCHANSPEC), 20/40, |
| * or (not 2g and 80/160) |
| */ |
| if (!(bw == INVCHANSPEC || |
| bw == WL_CHANSPEC_BW_20 || |
| bw == WL_CHANSPEC_BW_40 || |
| (band != WL_CHANSPEC_BAND_2G && |
| (bw == WL_CHANSPEC_BW_80 || |
| bw == WL_CHANSPEC_BW_160 || |
| WFC_BW_EQ(bw, WL_CHANSPEC_BW_320))))) { |
| |
| ASSERT(0); |
| return FALSE; |
| } |
| |
| /* Validation of the params is successful so move to the "INIT" state to |
| * allow the first wf_chanspec_iter_next() move the iteration to the first |
| * chanspec in the set. |
| */ |
| iter->state = WF_ITER_INIT; |
| iter->band = band; |
| iter->bw = bw; |
| iter->range_id = RANGE_ID_INVAL; |
| |
| return TRUE; |
| } |
| |
| /** |
| * Start the iterator off from the 'init' state. |
| * The internal state is set up and advanced to the first chanspec. |
| */ |
| static void |
| wf_chanspec_iter_firstchan(wf_chanspec_iter_t *iter) |
| { |
| chanspec_band_t band = iter->band; |
| chanspec_bw_t bw = iter->bw; |
| chanspec_t chspec; |
| |
| /* if BW unspecified (INVCHANSPEC), start with 20 MHz */ |
| if (bw == INVCHANSPEC) { |
| bw = WL_CHANSPEC_BW_20; |
| } |
| |
| /* calc the initial channel based on band */ |
| if (band == WL_CHANSPEC_BAND_2G) { |
| /* 2g has overlapping 40MHz channels, so cannot just use the |
| * wf_create_chspec_from_primary() fn. |
| */ |
| if (bw == WL_CHANSPEC_BW_20) { |
| chspec = wf_create_20MHz_chspec(CH_MIN_2G_CHANNEL, band); |
| } else { |
| chspec = (WL_CHANSPEC_BAND_2G | bw | WL_CHANSPEC_CTL_SB_L | |
| CH_MIN_2G_40M_CHANNEL); |
| } |
| } else { |
| if (band == WL_CHANSPEC_BAND_5G) { |
| wf_chanspec_iter_next_5g_range(iter, bw); |
| chspec = wf_create_chspec_from_primary(iter->range.start, bw, band, 0); |
| } else { |
| wf_chanspec_iter_6g_range_init(iter, bw); |
| /* First 6g 320Mhz chanspec */ |
| chspec = wf_create_chspec_from_primary(iter->range.start, bw, band, 0); |
| } |
| } |
| |
| iter->chanspec = chspec; |
| } |
| |
| /** |
| * @brief Return the current chanspec of the iteration. |
| */ |
| chanspec_t |
| wf_chanspec_iter_current(wf_chanspec_iter_t *iter) |
| { |
| return iter->chanspec; |
| } |
| |
| /** |
| * @brief Advance the iteration to the next chanspec in the set. |
| */ |
| bool |
| wf_chanspec_iter_next(wf_chanspec_iter_t *iter, chanspec_t *chspec) |
| { |
| bool ok = FALSE; |
| chanspec_band_t band = iter->band; |
| |
| /* Handle the INIT and DONE states. Otherwise, we are in the RUN state |
| * and will dispatch to the 'next' function for the appropriate band. |
| */ |
| if (iter->state == WF_ITER_INIT) { |
| iter->state = WF_ITER_RUN; |
| wf_chanspec_iter_firstchan(iter); |
| ok = TRUE; |
| } else if (iter->state == WF_ITER_DONE) { |
| ok = FALSE; |
| } else if (band == WL_CHANSPEC_BAND_2G) { |
| ok = wf_chanspec_iter_next_2g(iter); |
| } else if (band == WL_CHANSPEC_BAND_5G) { |
| ok = wf_chanspec_iter_next_5g(iter); |
| } else if (band == WL_CHANSPEC_BAND_6G) { |
| ok = wf_chanspec_iter_next_6g(iter); |
| } |
| |
| /* Return the new chanspec if a pointer was provided. |
| * In case the iteration is done, the return will be INVCHANSPEC. |
| */ |
| if (chspec != NULL) { |
| *chspec = iter->chanspec; |
| } |
| |
| return ok; |
| } |
| |
| /** |
| * When the iterator completes a particular bandwidth, this function |
| * returns the next BW, or INVCHANSPEC when done. |
| * |
| * Internal iterator helper. |
| */ |
| static chanspec_bw_t |
| wf_iter_next_bw(chanspec_bw_t bw) |
| { |
| switch (bw) { |
| case WL_CHANSPEC_BW_20: |
| bw = WL_CHANSPEC_BW_40; |
| break; |
| case WL_CHANSPEC_BW_40: |
| bw = WL_CHANSPEC_BW_80; |
| break; |
| case WL_CHANSPEC_BW_80: |
| bw = WL_CHANSPEC_BW_160; |
| break; |
| #if defined(BCMWIFI_BW320MHZ) |
| case WL_CHANSPEC_BW_160: |
| bw = WL_CHANSPEC_BW_320; |
| break; |
| #endif /* WL_BW320MHZ */ |
| default: |
| bw = INVCHANSPEC; |
| break; |
| } |
| return bw; |
| } |
| |
| /** |
| * This is the _iter_next() helper for 2g band chanspec iteration. |
| */ |
| static bool |
| wf_chanspec_iter_next_2g(wf_chanspec_iter_t *iter) |
| { |
| chanspec_t chspec = iter->chanspec; |
| uint8 ch = wf_chspec_center_channel(chspec); |
| |
| if (CHSPEC_IS20(chspec)) { |
| if (ch < CH_MAX_2G_CHANNEL) { |
| ch++; |
| chspec = wf_create_20MHz_chspec(ch, WL_CHANSPEC_BAND_2G); |
| } else if (iter->bw == INVCHANSPEC) { |
| /* hit the end of 20M channels, go to 40M if bw was unspecified */ |
| ch = CH_MIN_2G_40M_CHANNEL; |
| chspec = wf_create_40MHz_chspec(LOWER_20_SB(ch), ch, WL_CHANSPEC_BAND_2G); |
| } else { |
| /* done */ |
| iter->state = WF_ITER_DONE; |
| chspec = INVCHANSPEC; |
| } |
| } else { |
| /* step through low then high primary sideband, then next 40 center channel */ |
| if (CHSPEC_SB_LOWER(iter->chanspec)) { |
| /* move from lower primary 20 to upper */ |
| chspec = wf_create_40MHz_chspec(UPPER_20_SB(ch), |
| ch, WL_CHANSPEC_BAND_2G); |
| } else if (ch < CH_MAX_2G_40M_CHANNEL) { |
| /* move to next 40M center and lower primary 20 */ |
| ch++; |
| chspec = wf_create_40MHz_chspec(LOWER_20_SB(ch), |
| ch, WL_CHANSPEC_BAND_2G); |
| } else { |
| /* done */ |
| iter->state = WF_ITER_DONE; |
| chspec = INVCHANSPEC; |
| } |
| } |
| |
| iter->chanspec = chspec; |
| |
| return (chspec != INVCHANSPEC); |
| } |
| |
| /** |
| * This is the _iter_next() helper for 5g band chanspec iteration. |
| * The 5g iterator uses ranges of primary 20MHz channels, and the current BW, to create |
| * each chanspec in the set. |
| * When a 5g range is exhausted, wf_chanspec_iter_next_5g_range() is called to get the next |
| * range appropriate to the current BW. |
| */ |
| static bool |
| wf_chanspec_iter_next_5g(wf_chanspec_iter_t *iter) |
| { |
| chanspec_t chspec = iter->chanspec; |
| chanspec_bw_t bw = CHSPEC_BW(chspec); |
| uint8 ch = wf_chspec_primary20_chan(chspec); |
| uint8 end = iter->range.end; |
| |
| if (ch < end) { |
| /* not at the end of the current range, so |
| * step to the next 20MHz channel and create the current BW |
| * channel with that new primary 20MHz. |
| */ |
| ch += CH_20MHZ_APART; |
| } else if (wf_chanspec_iter_next_5g_range(iter, bw)) { |
| /* there was a new range in the current BW, so start at the beginning */ |
| ch = iter->range.start; |
| } else if (iter->bw == INVCHANSPEC) { |
| /* hit the end of current bw, so move to the next bw */ |
| bw = wf_iter_next_bw(bw); |
| if (bw != INVCHANSPEC) { |
| /* initialize the first range */ |
| iter->range_id = RANGE_ID_INVAL; |
| wf_chanspec_iter_next_5g_range(iter, bw); |
| ch = iter->range.start; |
| } else { |
| /* no more BWs */ |
| chspec = INVCHANSPEC; |
| } |
| } else { |
| /* no more channels, ranges, or BWs */ |
| chspec = INVCHANSPEC; |
| } |
| |
| /* if we are not at the end of the iteration, calc the next chanspec from components */ |
| if (chspec != INVCHANSPEC) { |
| chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_5G, 0); |
| } |
| |
| iter->chanspec = chspec; |
| if (chspec != INVCHANSPEC) { |
| return TRUE; |
| } else { |
| iter->state = WF_ITER_DONE; |
| return FALSE; |
| } |
| } |
| |
| /** |
| * Helper function to set up the next range of primary 20MHz channels to |
| * iterate over for the current BW. This will advance |
| * iter->range_id |
| * and set up |
| * iter->range.start |
| * iter->range.end |
| * for the new range. |
| * Returns FALSE if there are no more ranges in the current BW. |
| */ |
| static int |
| wf_chanspec_iter_next_5g_range(wf_chanspec_iter_t *iter, chanspec_bw_t bw) |
| { |
| uint8 range_id = iter->range_id; |
| const uint8 *channels; |
| uint count; |
| |
| if (bw == WL_CHANSPEC_BW_20) { |
| if (range_id == RANGE_ID_INVAL) { |
| range_id = 0; |
| } else { |
| range_id++; |
| } |
| |
| if (range_id < ARRAYSIZE(wf_5g_iter_ranges)) { |
| iter->range_id = range_id; |
| iter->range = wf_5g_iter_ranges[range_id]; |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| if (bw == WL_CHANSPEC_BW_40) { |
| channels = wf_5g_40m_chans; |
| count = WF_NUM_5G_40M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_80) { |
| channels = wf_5g_80m_chans; |
| count = WF_NUM_5G_80M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_160) { |
| channels = wf_5g_160m_chans; |
| count = WF_NUM_5G_160M_CHANS; |
| } else { |
| return FALSE; |
| } |
| |
| if (range_id == RANGE_ID_INVAL) { |
| range_id = 0; |
| } else { |
| range_id++; |
| } |
| if (range_id < count) { |
| uint8 ch = channels[range_id]; |
| uint offset = center_chan_to_edge(bw); |
| |
| iter->range_id = range_id; |
| iter->range.start = ch - offset; |
| iter->range.end = ch + offset; |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * This is the _iter_next() helper for 6g band chanspec iteration. |
| * The 6g iterator uses ranges of primary 20MHz channels, and the current BW, to create |
| * each chanspec in the set. |
| * Each BW in 6g has one contiguous range of primary 20MHz channels. When a range is |
| * exhausted, the iterator moves to the next BW. |
| */ |
| static bool |
| wf_chanspec_iter_next_6g(wf_chanspec_iter_t *iter) |
| { |
| chanspec_t chspec = iter->chanspec; |
| chanspec_bw_t bw = CHSPEC_BW(chspec); |
| uint8 ch = wf_chspec_primary20_chan(chspec); |
| uint8 end = iter->range.end; |
| uint16 flags = 0; |
| BCM_REFERENCE(flags); |
| if ((ch < end) && (ch != 2)) { |
| /* not at the end of the current range, so |
| * step to the next 20MHz channel and create the current BW |
| * channel with that new primary 20MHz. |
| */ |
| ch += CH_20MHZ_APART; |
| |
| if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| if (iter->range_id % 2) { |
| flags |= WF_CHANSPEC_FLAG_OVERLAPPED320; |
| } |
| } |
| /* try to create a valid channel of the current BW |
| * with a primary20 'ch' |
| */ |
| chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_6G, |
| flags); |
| |
| /* if chspec is INVCHANSPEC, then we hit the end |
| * of the valid channels in the range. |
| */ |
| } |
| else if ((ch != 2) && (bw == WL_CHANSPEC_BW_20)) { |
| /* channel 2 need special handling as it doesnot follow |
| * 20mhz channel numbering rule with (chan-1)%4=0 |
| * It is placed at the end of 20Mhz channel list |
| */ |
| chspec = wf_create_chspec_from_primary(2, bw, WL_CHANSPEC_BAND_6G, 0); |
| } else if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320) && wf_chanspec_iter_6g_range_init(iter, bw)) { |
| /* there was a new range in the current BW, so start at the beginning */ |
| ch = iter->range.start; |
| if (iter->range_id % 2) { |
| flags |= WF_CHANSPEC_FLAG_OVERLAPPED320; |
| } |
| /* try to create a valid channel of the current BW |
| * with a primary20 'ch' |
| */ |
| chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_6G, flags); |
| } else { |
| /* hit the end of the current range */ |
| chspec = INVCHANSPEC; |
| } |
| |
| /* if we are at the end of the current channel range |
| * check if there is another BW to iterate |
| * Note: (iter->bw == INVCHANSPEC) indicates an unspecified BW for the interation, |
| * so it will iterate over all BWs. |
| */ |
| if (chspec == INVCHANSPEC && |
| iter->bw == INVCHANSPEC && |
| (bw = wf_iter_next_bw(bw)) != INVCHANSPEC) { |
| wf_chanspec_iter_6g_range_init(iter, bw); |
| /* start the new bw with the first primary20 */ |
| ch = iter->range.start; |
| if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320) && iter->range_id != RANGE_ID_INVAL && |
| iter->range_id % 2) { |
| flags |= WF_CHANSPEC_FLAG_OVERLAPPED320; |
| } |
| chspec = wf_create_chspec_from_primary(ch, bw, WL_CHANSPEC_BAND_6G, flags); |
| } |
| |
| iter->chanspec = chspec; |
| if (chspec != INVCHANSPEC) { |
| return TRUE; |
| } else { |
| iter->state = WF_ITER_DONE; |
| return FALSE; |
| } |
| } |
| |
| /** |
| * Helper used by wf_chanspec_iter_firstchan() to set up the first range of |
| * primary channels for the 6g band and for the BW being iterated. |
| */ |
| static bool |
| wf_chanspec_iter_6g_range_init(wf_chanspec_iter_t *iter, chanspec_bw_t bw) |
| { |
| bool ret = FALSE; |
| if (bw == WL_CHANSPEC_BW_20 || bw == WL_CHANSPEC_BW_40 || |
| bw == WL_CHANSPEC_BW_80 || bw == WL_CHANSPEC_BW_160) { |
| iter->range.start = CH_MIN_6G_CHANNEL; |
| iter->range.end = CH_MAX_6G_CHANNEL; |
| } else if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| if (iter->range_id == RANGE_ID_INVAL) { |
| iter->range_id = 0; |
| } else { |
| iter->range_id++; |
| } |
| if (iter->range_id == 0) { |
| iter->range.start = CH_MIN_6G_320M_START_CHAN; |
| iter->range.end = (iter->range.start + |
| CH_6G_320M_CNTR_FREQ_SPACING) - CH_20MHZ_APART; |
| iter->range.end = MIN(iter->range.end, CH_MAX_6G_320M_END_CHAN); |
| ret = TRUE; |
| } else if (iter->range_id < WF_NUM_6G_320M_CHANS) { |
| iter->range.start = iter->range.start + (CH_6G_320M_CNTR_FREQ_SPACING / 2u); |
| iter->range.end = (iter->range.start + |
| CH_6G_320M_CNTR_FREQ_SPACING) - CH_20MHZ_APART; |
| iter->range.end = MIN(iter->range.end, CH_MAX_6G_320M_END_CHAN); |
| ret = TRUE; |
| } else { |
| ret = FALSE; |
| } |
| } else { |
| ASSERT(0); |
| } |
| return ret; |
| } |
| |
| /** |
| * Verify that the channel is a valid 20MHz channel according to 802.11. |
| * |
| * @param channel 20MHz channel number to validate |
| * @param band chanspec band |
| * |
| * @return Return TRUE if valid |
| */ |
| bool |
| wf_valid_20MHz_chan(uint channel, chanspec_band_t band) |
| { |
| if (band == WL_CHANSPEC_BAND_2G) { |
| /* simple range check for 2GHz */ |
| return (channel >= CH_MIN_2G_CHANNEL && |
| channel <= CH_MAX_2G_CHANNEL); |
| } else if (band == WL_CHANSPEC_BAND_5G) { |
| const uint8 *center_ch = wf_5g_40m_chans; |
| uint num_ch = WF_NUM_5G_40M_CHANS; |
| uint i; |
| |
| /* We don't have an array of legal 20MHz 5G channels, but they are |
| * each side of the legal 40MHz channels. Check the chanspec |
| * channel against either side of the 40MHz channels. |
| */ |
| for (i = 0; i < num_ch; i ++) { |
| if (channel == (uint)LOWER_20_SB(center_ch[i]) || |
| channel == (uint)UPPER_20_SB(center_ch[i])) { |
| break; /* match found */ |
| } |
| } |
| |
| if (i == num_ch) { |
| /* check for legacy JP channels on failure */ |
| if (channel == 34 || channel == 38 || |
| channel == 42 || channel == 46) { |
| i = 0; |
| } |
| } |
| |
| if (i < num_ch) { |
| /* match found */ |
| return TRUE; |
| } |
| } |
| else if (band == WL_CHANSPEC_BAND_6G) { |
| /* Use the simple pattern of 6GHz 20MHz channels for validity check */ |
| if ((channel >= CH_MIN_6G_CHANNEL && |
| channel <= CH_MAX_6G_CHANNEL) && |
| ((((channel - CH_MIN_6G_CHANNEL) % 4) == 0) || // even multiple of 4 |
| channel == 2)) { // Or the oddball channel 2 |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * Verify that the center channel is a valid 40MHz center channel according to 802.11. |
| * |
| * @param center_channel 40MHz center channel to validate |
| * @param band chanspec band |
| * |
| * @return Return TRUE if valid |
| */ |
| bool |
| wf_valid_40MHz_center_chan(uint center_channel, chanspec_band_t band) |
| { |
| if (band == WL_CHANSPEC_BAND_2G) { |
| /* simple range check for 2GHz */ |
| return (center_channel >= CH_MIN_2G_40M_CHANNEL && |
| center_channel <= CH_MAX_2G_40M_CHANNEL); |
| } else if (band == WL_CHANSPEC_BAND_5G) { |
| uint i; |
| |
| /* use the 5GHz lookup of 40MHz channels */ |
| for (i = 0; i < WF_NUM_5G_40M_CHANS; i++) { |
| if (center_channel == wf_5g_40m_chans[i]) { |
| return TRUE; |
| } |
| } |
| } |
| else if (band == WL_CHANSPEC_BAND_6G) { |
| /* Use the simple pattern of 6GHz center channels */ |
| if ((center_channel >= CH_MIN_6G_40M_CHANNEL && |
| center_channel <= CH_MAX_6G_40M_CHANNEL) && |
| ((center_channel - CH_MIN_6G_40M_CHANNEL) % 8) == 0) { // even multiple of 8 |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * Verify that the center channel is a valid 80MHz center channel according to 802.11. |
| * |
| * @param center_channel 80MHz center channel to validate |
| * @param band chanspec band |
| * |
| * @return Return TRUE if valid |
| */ |
| bool |
| wf_valid_80MHz_center_chan(uint center_channel, chanspec_band_t band) |
| { |
| if (band == WL_CHANSPEC_BAND_5G) { |
| /* use the 80MHz ID lookup to validate the center channel */ |
| if (channel_80mhz_to_id(center_channel) >= 0) { |
| return TRUE; |
| } |
| } else if (band == WL_CHANSPEC_BAND_6G) { |
| /* use the 80MHz ID lookup to validate the center channel */ |
| if (channel_6g_80mhz_to_id(center_channel) >= 0) { |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /** |
| * Verify that the center channel is a valid 160MHz center channel according to 802.11. |
| * |
| * @param center_channel 160MHz center channel to validate |
| * @param band chanspec band |
| * |
| * @return Return TRUE if valid |
| */ |
| bool |
| wf_valid_160MHz_center_chan(uint center_channel, chanspec_band_t band) |
| { |
| if (band == WL_CHANSPEC_BAND_5G) { |
| uint i; |
| |
| /* use the 5GHz lookup of 40MHz channels */ |
| for (i = 0; i < WF_NUM_5G_160M_CHANS; i++) { |
| if (center_channel == wf_5g_160m_chans[i]) { |
| return TRUE; |
| } |
| } |
| } else if (band == WL_CHANSPEC_BAND_6G) { |
| /* Use the simple pattern of 6GHz center channels */ |
| if ((center_channel >= CH_MIN_6G_160M_CHANNEL && |
| center_channel <= CH_MAX_6G_160M_CHANNEL) && |
| ((center_channel - CH_MIN_6G_160M_CHANNEL) % 32) == 0) { // even multiple of 32 |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| |
| /** |
| * Verify that the center channel is a valid 320MHz center channel according to 802.11. |
| * |
| * @param center_channel 320MHz center channel to validate |
| * @param band chanspec band |
| * |
| * @return Return TRUE if valid |
| */ |
| bool |
| wf_valid_320MHz_center_chan(uint center_channel, chanspec_band_t band) |
| { |
| if (band == WL_CHANSPEC_BAND_6G) { |
| /* Use the simple pattern of 6GHz center channels */ |
| if ((center_channel >= CH_MIN_6G_320M_CHANNEL && |
| center_channel <= CH_MAX_6G_320M_CHANNEL) && |
| (((center_channel - CH_MIN_6G_320M_CHANNEL) % |
| CH_6G_320M_CNTR_FREQ_SPACING == 0) || |
| (((center_channel - CH_MIN_6G_320M_OL_CHANNEL) % |
| CH_6G_320M_CNTR_FREQ_SPACING == 0)))) { |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /* |
| * This function returns TRUE if both the chanspec can co-exist in PHY. |
| * Addition to primary20 channel, the function checks for side band for 2g 40 channels |
| */ |
| bool |
| wf_chspec_coexist(chanspec_t chspec1, chanspec_t chspec2) |
| { |
| bool same_primary; |
| |
| if ((chspec1 == NONWLAN_CHAN_SPEC) || |
| chspec2 == NONWLAN_CHAN_SPEC) { |
| same_primary = (chspec1 == chspec2)? TRUE: FALSE; |
| goto end; |
| } |
| |
| if (CHSPEC_BAND(chspec1) != CHSPEC_BAND(chspec2)) { |
| same_primary = FALSE; |
| goto end; |
| } |
| same_primary = (wf_chspec_primary20_chan(chspec1) == wf_chspec_primary20_chan(chspec2)); |
| |
| if (same_primary && CHSPEC_IS2G(chspec1)) { |
| if (CHSPEC_IS40(chspec1) && CHSPEC_IS40(chspec2)) { |
| same_primary = (CHSPEC_CTL_SB(chspec1) == CHSPEC_CTL_SB(chspec2)); |
| goto end; |
| } |
| } |
| end: |
| return same_primary; |
| } |
| |
| /** |
| * Create a 20MHz chanspec for the given band. |
| * |
| * This function returns a 20MHz chanspec in the given band. |
| * |
| * @param channel 20MHz channel number |
| * @param band a chanspec band (e.g. WL_CHANSPEC_BAND_2G) |
| * |
| * @return Returns a 20MHz chanspec, or IVNCHANSPEC in case of error. |
| */ |
| chanspec_t |
| wf_create_20MHz_chspec(uint channel, chanspec_band_t band) |
| { |
| chanspec_t chspec; |
| |
| if (channel <= WL_CHANSPEC_CHAN_MASK && |
| (band == WL_CHANSPEC_BAND_2G || |
| band == WL_CHANSPEC_BAND_5G || |
| band == WL_CHANSPEC_BAND_6G)) { |
| chspec = band | WL_CHANSPEC_BW_20 | WL_CHANSPEC_CTL_SB_NONE | channel; |
| if (!wf_chspec_valid(chspec)) { |
| chspec = INVCHANSPEC; |
| } |
| } else { |
| chspec = INVCHANSPEC; |
| } |
| |
| return chspec; |
| } |
| |
| /** |
| * Returns the chanspec for a 40MHz channel given the primary 20MHz channel number, |
| * the center channel number, and the band. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param center_channel center channel of the 40MHz channel |
| * @param band band of the 40MHz channel (chanspec_band_t value) |
| * |
| * The center_channel can be one of the 802.11 spec valid 40MHz chenter channels |
| * in the given band. |
| * |
| * @return returns a 40MHz chanspec, or INVCHANSPEC in case of error |
| */ |
| chanspec_t |
| wf_create_40MHz_chspec(uint primary_channel, uint center_channel, |
| chanspec_band_t band) |
| { |
| int sb; |
| |
| /* Calculate the sideband value for the center and primary channel. |
| * Will return -1 if not a valid pair for 40MHz |
| */ |
| sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_40); |
| |
| /* return err if the sideband was bad or the center channel is not |
| * valid for the given band. |
| */ |
| if (sb < 0 || !wf_valid_40MHz_center_chan(center_channel, band)) { |
| return INVCHANSPEC; |
| } |
| |
| /* othewise construct and return the valid 40MHz chanspec */ |
| return (chanspec_t)(center_channel | WL_CHANSPEC_BW_40 | band | |
| ((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT)); |
| } |
| |
| /** |
| * Returns the chanspec for a 40MHz channel given the primary 20MHz channel number, |
| * the sub-band for the primary 20MHz channel, and the band. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param primary_subband sub-band of the 20MHz primary channel (chanspec_subband_t value) |
| * @param band band of the 40MHz channel (chanspec_band_t value) |
| * |
| * The primary channel and sub-band should describe one of the 802.11 spec valid |
| * 40MHz channels in the given band. |
| * |
| * @return returns a 40MHz chanspec, or INVCHANSPEC in case of error |
| */ |
| chanspec_t |
| wf_create_40MHz_chspec_primary_sb(uint primary_channel, chanspec_subband_t primary_subband, |
| chanspec_band_t band) |
| { |
| uint center_channel; |
| |
| /* find the center channel */ |
| if (primary_subband == WL_CHANSPEC_CTL_SB_L) { |
| center_channel = primary_channel + CH_10MHZ_APART; |
| } else if (primary_subband == WL_CHANSPEC_CTL_SB_U) { |
| center_channel = primary_channel - CH_10MHZ_APART; |
| } else { |
| return INVCHANSPEC; |
| } |
| |
| return wf_create_40MHz_chspec(primary_channel, center_channel, band); |
| } |
| |
| /** |
| * Returns the chanspec for an 80MHz channel given the primary 20MHz channel number, |
| * the center channel number, and the band. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param center_channel center channel of the 80MHz channel |
| * @param band band of the 80MHz channel (chanspec_band_t value) |
| * |
| * The center_channel can be one of {42, 58, 106, 122, 138, 155} for 5G, |
| * or {7 + 16*X for 0 <= X <= 13} for 6G. |
| * |
| * @return returns an 80MHz chanspec, or INVCHANSPEC in case of error |
| */ |
| chanspec_t |
| wf_create_80MHz_chspec(uint primary_channel, uint center_channel, |
| chanspec_band_t band) |
| { |
| int sb; |
| |
| /* Calculate the sideband value for the center and primary channel. |
| * Will return -1 if not a valid pair for 80MHz |
| */ |
| sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_80); |
| |
| /* return err if the sideband was bad or the center channel is not |
| * valid for the given band. |
| */ |
| if (sb < 0 || !wf_valid_80MHz_center_chan(center_channel, band)) { |
| return INVCHANSPEC; |
| } |
| |
| /* othewise construct and return the valid 80MHz chanspec */ |
| return (chanspec_t)(center_channel | WL_CHANSPEC_BW_80 | band | |
| ((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT)); |
| } |
| |
| /** |
| * Returns the chanspec for an 160MHz channel given the primary 20MHz channel number, |
| * the center channel number, and the band. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param center_channel center channel of the 160MHz channel |
| * @param band band of the 160MHz channel (chanspec_band_t value) |
| * |
| * The center_channel can be one of {50, 114} for 5G, |
| * or {15 + 32*X for 0 <= X <= 7} for 6G. |
| * |
| * @return returns an 160MHz chanspec, or INVCHANSPEC in case of error |
| */ |
| chanspec_t |
| wf_create_160MHz_chspec(uint primary_channel, uint center_channel, chanspec_band_t band) |
| { |
| int sb; |
| |
| /* Calculate the sideband value for the center and primary channel. |
| * Will return -1 if not a valid pair for 160MHz |
| */ |
| sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_160); |
| |
| /* return err if the sideband was bad or the center channel is not |
| * valid for the given band. |
| */ |
| if (sb < 0 || !wf_valid_160MHz_center_chan(center_channel, band)) { |
| return INVCHANSPEC; |
| } |
| |
| /* othewise construct and return the valid 160MHz chanspec */ |
| return (chanspec_t)(center_channel | WL_CHANSPEC_BW_160 | band | |
| ((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT)); |
| } |
| |
| /** |
| * Returns the chanspec for an 80+80MHz channel given the primary 20MHz channel number, |
| * the center channel numbers for each frequency segment, and the band. |
| * |
| * @param primary_channel primary 20 Mhz channel |
| * @param chan0 center channel number of one frequency segment |
| * @param chan1 center channel number of the other frequency segment |
| * @param band band of the 80+80 MHz channel (chanspec_band_t value) |
| * |
| * Parameters chan0 and chan1 are valid 80 MHz center channel numbers for the given band. |
| * The primary channel must be contained in one of the 80 MHz channels. This routine |
| * will determine which frequency segment is the primary 80 MHz segment. |
| * |
| * @return returns an 80+80 MHz chanspec, or INVCHANSPEC in case of error |
| * |
| * Refer to 802.11-2016 section 21.3.14 "Channelization". |
| */ |
| chanspec_t |
| wf_create_8080MHz_chspec(uint primary_channel, uint chan0, uint chan1, |
| chanspec_band_t band) |
| { |
| int sb = 0; |
| chanspec_t chanspec = 0; |
| int chan0_id = -1, chan1_id = -1; |
| int seg0, seg1; |
| |
| /* frequency segments need to be non-contiguous, so the channel separation needs |
| * to be greater than 80MHz |
| */ |
| if ((uint)ABS((int)(chan0 - chan1)) <= CH_80MHZ_APART) { |
| return INVCHANSPEC; |
| } |
| |
| if (band == WL_CHANSPEC_BAND_5G) { |
| chan0_id = channel_80mhz_to_id(chan0); |
| chan1_id = channel_80mhz_to_id(chan1); |
| } else if (band == WL_CHANSPEC_BAND_6G) { |
| chan0_id = channel_6g_80mhz_to_id(chan0); |
| chan1_id = channel_6g_80mhz_to_id(chan1); |
| } |
| |
| /* make sure the channel numbers were valid */ |
| if (chan0_id == -1 || chan1_id == -1) { |
| return INVCHANSPEC; |
| } |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(chan0, primary_channel, WL_CHANSPEC_BW_80); |
| if (sb >= 0) { |
| /* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */ |
| seg0 = chan0_id; |
| seg1 = chan1_id; |
| } else { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(chan1, primary_channel, WL_CHANSPEC_BW_80); |
| if (sb < 0) { |
| /* no match for pri_ch to either 80MHz center channel */ |
| return INVCHANSPEC; |
| } |
| /* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */ |
| seg0 = chan1_id; |
| seg1 = chan0_id; |
| } |
| |
| chanspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) | |
| (seg1 << WL_CHANSPEC_CHAN1_SHIFT) | |
| (sb << WL_CHANSPEC_CTL_SB_SHIFT) | |
| WL_CHANSPEC_BW_8080 | |
| band); |
| |
| return chanspec; |
| } |
| |
| /** |
| * Returns the chanspec for an 320MHz channel given the primary 20MHz channel number, |
| * the center channel number, and the band. |
| * |
| * @param primary_channel primary 20 Mhz channel |
| * @param chan center channel number |
| * @param band band of the 320 MHz channel (chanspec_band_t value) |
| * |
| * Parameters chan is valid 320 MHz center channel numbers for the given band. |
| * The primary channel must be contained in one of the 320 MHz channels. |
| * |
| * @return returns an 320 MHz chanspec, or INVCHANSPEC in case of error |
| * |
| * Refer to <TBD> "Channelization". |
| */ |
| chanspec_t |
| wf_create_320MHz_chspec(uint primary_channel, uint center_channel, |
| chanspec_band_t band) |
| { |
| int sb = 0; |
| chanspec_t chanspec = 0; |
| int chan_id = -1; |
| |
| if (band == WL_CHANSPEC_BAND_6G) { |
| chan_id = channel_6g_320mhz_to_id(center_channel); |
| } |
| |
| /* make sure the channel number were valid */ |
| if (chan_id == -1) { |
| return INVCHANSPEC; |
| } |
| |
| /* Calculate the sideband value for the center and primary channel. |
| * Will return -1 if not a valid pair for 320MHz |
| */ |
| sb = channel_to_sb(center_channel, primary_channel, WL_CHANSPEC_BW_320); |
| |
| /* return err if the sideband was bad or the center channel is not |
| * valid for the given band. |
| */ |
| if (sb < 0 || !wf_valid_320MHz_center_chan(center_channel, band)) { |
| return INVCHANSPEC; |
| } |
| |
| chanspec = ((chan_id << WL_CHANSPEC_320_CHAN_SHIFT) | |
| (sb << WL_CHANSPEC_320_SB_SHIFT) | |
| WL_CHANSPEC_BW_320 | |
| band); |
| |
| return chanspec; |
| } |
| |
| /** |
| * Returns the chanspec given the primary 20MHz channel number, |
| * the center channel number, channel width, and the band. The channel width |
| * must be 20, 40, 80, 160, 320 MHz. |
| * 80+80 MHz chanspec creation is not handled by this function, |
| * use wf_create_8080MHz_chspec() instead. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param center_channel center channel of the channel |
| * @param bw width of the channel (chanspec_bw_t) |
| * @param band chanspec band of channel (chanspec_band_t) |
| * |
| * The center_channel can be one of the 802.11 spec valid center channels |
| * for the given bandwidth in the given band. |
| * |
| * @return returns a chanspec, or INVCHANSPEC in case of error |
| */ |
| chanspec_t |
| wf_create_chspec(uint primary_channel, uint center_channel, |
| chanspec_bw_t bw, chanspec_band_t band) |
| { |
| chanspec_t chspec = INVCHANSPEC; |
| int sb = -1; |
| uint sb_shift; |
| |
| /* 20MHz channels have matching center and primary channels */ |
| if (bw == WL_CHANSPEC_BW_20 && primary_channel == center_channel) { |
| |
| sb = 0; |
| |
| } else if (bw == WL_CHANSPEC_BW_40 || |
| bw == WL_CHANSPEC_BW_80 || |
| bw == WL_CHANSPEC_BW_160 || |
| WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| |
| /* calculate the sub-band index */ |
| sb = channel_to_sb(center_channel, primary_channel, bw); |
| } |
| |
| /* if we have a good sub-band, assemble the chanspec, and use wf_chspec_valid() |
| * to check it for correctness |
| */ |
| if (sb >= 0) { |
| if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| if (band == WL_CHANSPEC_BAND_6G) { |
| center_channel = channel_6g_320mhz_to_id(center_channel); |
| sb_shift = WL_CHANSPEC_320_SB_SHIFT; |
| } else { |
| return INVCHANSPEC; |
| } |
| } else { |
| sb_shift = WL_CHANSPEC_CTL_SB_SHIFT; |
| } |
| chspec = center_channel | band | bw | |
| ((uint)sb << sb_shift); |
| if (!wf_chspec_valid(chspec)) { |
| chspec = INVCHANSPEC; |
| } |
| } |
| |
| return chspec; |
| } |
| |
| /** |
| * Returns the chanspec given the primary 20MHz channel number, |
| * channel width, and the band. |
| * |
| * @param primary_channel primary 20Mhz channel |
| * @param bw width of the channel (chanspec_bw_t) |
| * @param band chanspec band of channel (chanspec_band_t) |
| * |
| * @return returns a chanspec, or INVCHANSPEC in case of error |
| * |
| * This function is a similar to wf_create_chspec() but does not require the |
| * center_channel parameter. As a result, it can not create 40MHz channels on |
| * the 2G band. |
| * |
| * This function supports creating 20MHz bandwidth chanspecs on any band. |
| * |
| * For the 2GHz band, 40MHz channels overlap, so two 40MHz channels may |
| * have the same primary 20MHz channel. This function will return INVCHANSPEC |
| * whenever called with a bandwidth of 40MHz or wider for the 2GHz band. |
| * |
| * 5GHz and 6GHz bands have non-overlapping 40/80/160 MHz channels, so a |
| * 20MHz primary channel uniquely specifies a wider channel in a given band. |
| * For the 6GHz band, as 320MHz channels overlaps, if OVERLAPPED320 is TRUE. |
| * 320Mhz chanspecs from center channel set { 63, 127, 191 } is generated. |
| * |
| * 80+80MHz channels also cannot be uniquely defined. This function will return |
| * INVCHANSPEC whenever bandwidth of WL_CHANSPEC_BW_8080. |
| */ |
| chanspec_t |
| wf_create_chspec_from_primary(uint primary_channel, chanspec_bw_t bw, chanspec_band_t band, |
| uint16 flags) |
| { |
| chanspec_t chspec = INVCHANSPEC; |
| |
| if (bw == WL_CHANSPEC_BW_20) { |
| chspec = wf_create_20MHz_chspec(primary_channel, band); |
| } else if (band == WL_CHANSPEC_BAND_2G) { |
| /* 2G 40MHz cannot be uniquely identified by the primary channel. |
| * Return INVAL for any channel given. Or if bw != 20 |
| */ |
| } else if (band == WL_CHANSPEC_BAND_5G) { |
| /* For 5GHz, use the lookup tables for valid 40/80/160 center channels |
| * and search for a center channel compatible with the given primary channel. |
| */ |
| const uint8 *center_ch = NULL; |
| uint num_ch, i; |
| |
| if (bw == WL_CHANSPEC_BW_40) { |
| center_ch = wf_5g_40m_chans; |
| num_ch = WF_NUM_5G_40M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_80) { |
| center_ch = wf_5g_80m_chans; |
| num_ch = WF_NUM_5G_80M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_160) { |
| center_ch = wf_5g_160m_chans; |
| num_ch = WF_NUM_5G_160M_CHANS; |
| } else { |
| num_ch = 0; |
| } |
| |
| for (i = 0; i < num_ch; i ++) { |
| chspec = wf_create_chspec(primary_channel, center_ch[i], bw, band); |
| if (chspec != INVCHANSPEC) { |
| break; |
| } |
| } |
| } |
| else if (band == WL_CHANSPEC_BAND_6G) { |
| bool ol320 = (flags & WF_CHANSPEC_FLAG_OVERLAPPED320); |
| uint center = wf_6g_get_center_chan_from_primary(primary_channel, bw, ol320); |
| if (center != INVCHANNEL) { |
| chspec = wf_create_chspec(primary_channel, center, bw, band); |
| } |
| } |
| |
| return chspec; |
| } |
| |
| /** |
| * Return the primary 20MHz channel. |
| * |
| * This function returns the channel number of the primary 20MHz channel. For |
| * 20MHz channels this is just the channel number. For 40MHz or wider channels |
| * it is the primary 20MHz channel specified by the chanspec. |
| * |
| * @param chspec input chanspec |
| * |
| * @return Returns the channel number of the primary 20MHz channel |
| */ |
| uint8 |
| BCMFASTPATH(wf_chspec_primary20_chan)(chanspec_t chspec) |
| { |
| uint center_chan = INVCHANNEL; |
| chanspec_bw_t bw; |
| uint sb; |
| |
| ASSERT_FP(!wf_chspec_malformed(chspec)); |
| |
| /* Is there a sideband ? */ |
| if (CHSPEC_IS20(chspec)) { |
| return wf_chspec_center_channel(chspec); |
| } else { |
| sb = wf_chspec_get_primary_sb(chspec); |
| |
| if (CHSPEC_IS8080(chspec)) { |
| /* For an 80+80 MHz channel, the sideband 'sb' field is an 80 MHz sideband |
| * (LL, LU, UL, LU) for the 80 MHz frequency segment 0. |
| */ |
| |
| /* use bw 80MHz for the primary channel lookup */ |
| bw = WL_CHANSPEC_BW_80; |
| |
| /* convert from channel index to channel number */ |
| if (CHSPEC_IS5G(chspec)) { |
| center_chan = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| } else if (CHSPEC_IS6G(chspec)) { |
| center_chan = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| } |
| } else if (CHSPEC_IS320(chspec)) { |
| /* use bw 320MHz for the primary channel lookup */ |
| bw = WL_CHANSPEC_BW_320; |
| |
| /* convert from channel index to channel number */ |
| if (CHSPEC_IS6G(chspec)) { |
| center_chan = wf_chspec_6G_id320_to_ch(WL_CHSPEC_320_CHAN(chspec)); |
| } |
| /* What to return otherwise? */ |
| } |
| else { |
| bw = CHSPEC_BW(chspec); |
| center_chan = wf_chspec_center_channel(chspec); |
| } |
| |
| return (uint8)(channel_to_primary20_chan((uint8)center_chan, bw, sb)); |
| } |
| } |
| |
| /** |
| * Return the bandwidth string for a given chanspec |
| * |
| * This function returns the bandwidth string for the passed chanspec. |
| * |
| * @param chspec input chanspec |
| * |
| * @return Returns the bandwidth string: |
| * "320", "20", "20", "40", "80", "160", "80+80", |
| */ |
| const char * |
| BCMRAMFN(wf_chspec_to_bw_str)(chanspec_t chspec) |
| { |
| return wf_chspec_bw_str[WL_CHSPEC_BW(chspec)]; |
| } |
| |
| /** |
| * Return the primary 20MHz chanspec of a given chanspec |
| * |
| * This function returns the chanspec of the primary 20MHz channel. For 20MHz |
| * channels this is just the chanspec. For 40MHz or wider channels it is the |
| * chanspec of the primary 20MHz channel specified by the chanspec. |
| * |
| * @param chspec input chanspec |
| * |
| * @return Returns the chanspec of the primary 20MHz channel |
| */ |
| chanspec_t |
| wf_chspec_primary20_chspec(chanspec_t chspec) |
| { |
| chanspec_t pri_chspec = chspec; |
| uint8 pri_chan; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| /* Is there a sideband ? */ |
| if (!CHSPEC_IS20(chspec)) { |
| pri_chan = wf_chspec_primary20_chan(chspec); |
| pri_chspec = pri_chan | WL_CHANSPEC_BW_20; |
| pri_chspec |= CHSPEC_BAND(chspec); |
| } |
| return pri_chspec; |
| } |
| |
| /* return chanspec given primary 20MHz channel and bandwidth |
| * return 0 on error |
| * does not support 6G |
| */ |
| uint16 |
| wf_channel2chspec(uint pri_ch, uint bw) |
| { |
| uint16 chspec; |
| const uint8 *center_ch = NULL; |
| int num_ch = 0; |
| int sb = -1; |
| int i = 0; |
| |
| chspec = ((pri_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); |
| |
| chspec |= bw; |
| |
| if (bw == WL_CHANSPEC_BW_40) { |
| center_ch = wf_5g_40m_chans; |
| num_ch = WF_NUM_5G_40M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_80) { |
| center_ch = wf_5g_80m_chans; |
| num_ch = WF_NUM_5G_80M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_160) { |
| center_ch = wf_5g_160m_chans; |
| num_ch = WF_NUM_5G_160M_CHANS; |
| } else if (bw == WL_CHANSPEC_BW_20) { |
| chspec |= pri_ch; |
| return chspec; |
| } else { |
| return 0; |
| } |
| |
| for (i = 0; i < num_ch; i ++) { |
| sb = channel_to_sb(center_ch[i], pri_ch, (chanspec_bw_t)bw); |
| if (sb >= 0) { |
| chspec |= center_ch[i]; |
| chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT); |
| break; |
| } |
| } |
| |
| /* check for no matching sb/center */ |
| if (sb < 0) { |
| return 0; |
| } |
| |
| return chspec; |
| } |
| |
| /** |
| * Return the primary 40MHz chanspec or a 40MHz or wider channel |
| * |
| * This function returns the chanspec for the primary 40MHz of an 80MHz or wider channel. |
| * The primary 40MHz channel is the 40MHz sub-band that contains the primary 20MHz channel. |
| * The primary 20MHz channel of the returned 40MHz chanspec is the same as the primary 20MHz |
| * channel of the input chanspec. |
| * |
| * @param chspec input chanspec |
| * |
| * @return Returns the chanspec of the primary 20MHz channel |
| */ |
| chanspec_t |
| wf_chspec_primary40_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec40 = chspec; |
| uint center_chan; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| /* if the chanspec is > 80MHz, use the helper routine to find the primary 80 MHz channel */ |
| if (CHSPEC_IS8080(chspec) || CHSPEC_IS160(chspec)) { |
| chspec = wf_chspec_primary80_chspec(chspec); |
| } |
| |
| /* determine primary 40 MHz sub-channel of an 80 MHz chanspec */ |
| if (CHSPEC_IS80(chspec)) { |
| center_chan = wf_chspec_center_channel(chspec); |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| if (sb < WL_CHANSPEC_CTL_SB_UL) { |
| /* Primary 40MHz is on lower side */ |
| center_chan -= CH_20MHZ_APART; |
| /* sideband bits are the same for LL/LU and L/U */ |
| } else { |
| /* Primary 40MHz is on upper side */ |
| center_chan += CH_20MHZ_APART; |
| /* sideband bits need to be adjusted by UL offset */ |
| sb -= WL_CHANSPEC_CTL_SB_UL; |
| } |
| |
| /* Create primary 40MHz chanspec */ |
| chspec40 = (CHSPEC_BAND(chspec) | WL_CHANSPEC_BW_40 | |
| sb | center_chan); |
| } |
| |
| return chspec40; |
| } |
| |
| /** |
| * Return the chanspec band for a given frequency. |
| * |
| * @param freq frequency in MHz of the channel center |
| * |
| * @return Returns chanspec band of frequency (chanspec_band_t) |
| */ |
| chanspec_band_t |
| wf_mhz2chanspec_band(uint freq) |
| { |
| chanspec_band_t band = INVCHANSPEC; |
| |
| if (freq >= 2400u && freq <= 2500u) { |
| band = WL_CHANSPEC_BAND_2G; |
| } else if (freq >= 5000u && freq < 5935u) { |
| band = WL_CHANSPEC_BAND_5G; |
| } else if (freq >= 5935u && freq <= 7205u) { |
| band = WL_CHANSPEC_BAND_6G; |
| } |
| |
| return band; |
| } |
| |
| /** |
| * Return the channel number for a given frequency and base frequency. |
| * |
| * @param freq frequency in MHz of the channel center |
| * @param start_factor starting base frequency in 500 KHz units |
| * |
| * @return Returns a channel number > 0, or -1 on error |
| * |
| * The returned channel number is relative to the given base frequency. |
| * |
| * The base frequency is specified as (start_factor * 500 kHz). |
| * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G, and WF_CHAN_FACTOR_6_G are |
| * defined for 2.4 GHz, 5 GHz, and 6 GHz bands. |
| * |
| * If the given base frequency is zero these base frequencies are assumed: |
| * |
| * freq (GHz) -> assumed base freq (GHz) |
| * 2G band 2.4 - 2.5 2.407 |
| * 5G band 5.0 - 5.940 5.000 |
| * 6G band 5.940 - 7.205 5.940 |
| * |
| * It is an error if the start_factor is zero and the freq is not in one of |
| * these ranges. |
| * |
| * The returned channel will be in the range [1, 14] in the 2.4 GHz band, |
| * [1, 253] for 6 GHz band, or [1, 200] otherwise. |
| * |
| * It is an error if the start_factor is WF_CHAN_FACTOR_2_4_G and the |
| * frequency is not a 2.4 GHz channel. For any other start factor the frequency |
| * must be an even 5 MHz multiple greater than the base frequency. |
| * |
| * For a start_factor WF_CHAN_FACTOR_6_G, the frequency may be up to 7.205 MHz |
| * (channel 253). For any other start_factor, the frequence can be up to |
| * 1 GHz from the base freqency (channel 200). |
| * |
| * Reference 802.11-2016, section 17.3.8.3 and section 16.3.6.3 |
| */ |
| int |
| wf_mhz2channel(uint freq, uint start_factor) |
| { |
| int ch = -1; |
| uint base; |
| int offset; |
| |
| /* take the default channel start frequency */ |
| if (start_factor == 0) { |
| if (freq >= 2400 && freq <= 2500) { |
| start_factor = WF_CHAN_FACTOR_2_4_G; |
| } else if (freq >= 5000 && freq < 5935) { |
| start_factor = WF_CHAN_FACTOR_5_G; |
| } else if (freq >= 5935 && freq <= 7205) { |
| start_factor = WF_CHAN_FACTOR_6_G; |
| } |
| } |
| |
| if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G) { |
| return 14; |
| } else if (freq == 5935 && start_factor == WF_CHAN_FACTOR_6_G) { |
| /* channel #2 is an oddball, 10MHz below chan #1 */ |
| return 2; |
| } else if (freq == 5960 && start_factor == WF_CHAN_FACTOR_6_G) { |
| /* do not return ch #2 for the convetional location that #2 would appear */ |
| return -1; |
| } |
| |
| base = start_factor / 2; |
| |
| if (freq < base) { |
| return -1; |
| } |
| |
| offset = freq - base; |
| ch = offset / 5; |
| |
| /* check that frequency is a 5MHz multiple from the base */ |
| if (offset != (ch * 5)) |
| return -1; |
| |
| /* channel range checks */ |
| if (start_factor == WF_CHAN_FACTOR_2_4_G) { |
| /* 2G should only be up to 13 here as 14 is |
| * handled above as it is a non-5MHz offset |
| */ |
| if (ch > 13) { |
| ch = -1; |
| } |
| } |
| else if (start_factor == WF_CHAN_FACTOR_6_G) { |
| /* 6G has a higher channel range than 5G channelization specifies [1,200] */ |
| if ((uint)ch > CH_MAX_6G_CHANNEL) { |
| ch = -1; |
| } |
| } else if (ch > 200) { |
| ch = -1; |
| } |
| |
| return ch; |
| } |
| |
| /** |
| * Return the center frequency in MHz of the given channel and base frequency. |
| * |
| * The channel number is interpreted relative to the given base frequency. |
| * |
| * The valid channel range is [1, 14] in the 2.4 GHz band, [1,253] in the 6 GHz |
| * band, and [1, 200] otherwise. |
| * The base frequency is specified as (start_factor * 500 kHz). |
| * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G, and WF_CHAN_FACTOR_6_G are |
| * defined for 2.4 GHz, 5 GHz, and 6 GHz bands. |
| * The channel range of [1, 14] is only checked for a start_factor of |
| * WF_CHAN_FACTOR_2_4_G (4814). |
| * Odd start_factors produce channels on .5 MHz boundaries, in which case |
| * the answer is rounded down to an integral MHz. |
| * -1 is returned for an out of range channel. |
| * |
| * Reference 802.11-2016, section 17.3.8.3 and section 16.3.6.3 |
| * |
| * @param channel input channel number |
| * @param start_factor base frequency in 500 kHz units, e.g. 10000 for 5 GHz |
| * |
| * @return Returns a frequency in MHz |
| * |
| * @see WF_CHAN_FACTOR_2_4_G |
| * @see WF_CHAN_FACTOR_5_G |
| * @see WF_CHAN_FACTOR_6_G |
| */ |
| int |
| BCMPOSTTRAPFN(wf_channel2mhz)(uint ch, uint start_factor) |
| { |
| int freq; |
| |
| if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) || |
| (start_factor == WF_CHAN_FACTOR_6_G && (ch < 1 || ch > 253)) || |
| (start_factor != WF_CHAN_FACTOR_6_G && (ch < 1 || ch > 200))) { |
| freq = -1; |
| } else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14)) { |
| freq = 2484; |
| } else if ((start_factor == WF_CHAN_FACTOR_6_G) && (ch == 2)) { |
| freq = 5935; |
| } else { |
| freq = ch * 5 + start_factor / 2; |
| } |
| |
| return freq; |
| } |
| |
| static const uint16 sidebands[] = { |
| WL_CHANSPEC_CTL_SB_LLL, WL_CHANSPEC_CTL_SB_LLU, |
| WL_CHANSPEC_CTL_SB_LUL, WL_CHANSPEC_CTL_SB_LUU, |
| WL_CHANSPEC_CTL_SB_ULL, WL_CHANSPEC_CTL_SB_ULU, |
| WL_CHANSPEC_CTL_SB_UUL, WL_CHANSPEC_CTL_SB_UUU |
| }; |
| |
| /* |
| * Returns the chanspec 80Mhz channel corresponding to the following input |
| * parameters |
| * |
| * primary_channel - primary 20Mhz channel |
| * center_channel - center frequecny of the 80Mhz channel |
| * |
| * The center_channel can be one of {42, 58, 106, 122, 138, 155} |
| * |
| * returns INVCHANSPEC in case of error |
| * |
| * does not support 6G |
| */ |
| chanspec_t |
| wf_chspec_80(uint8 center_channel, uint8 primary_channel) |
| { |
| |
| chanspec_t chanspec = INVCHANSPEC; |
| chanspec_t chanspec_cur; |
| uint i; |
| |
| for (i = 0; i < WF_NUM_SIDEBANDS_80MHZ; i++) { |
| chanspec_cur = CH80MHZ_CHSPEC(center_channel, sidebands[i]); |
| if (primary_channel == wf_chspec_primary20_chan(chanspec_cur)) { |
| chanspec = chanspec_cur; |
| break; |
| } |
| } |
| /* If the loop ended early, we are good, otherwise we did not |
| * find a 80MHz chanspec with the given center_channel that had a primary channel |
| *matching the given primary_channel. |
| */ |
| return chanspec; |
| } |
| |
| /* |
| * Returns the 80+80 chanspec corresponding to the following input parameters |
| * |
| * primary_20mhz - Primary 20 MHz channel |
| * chan0 - center channel number of one frequency segment |
| * chan1 - center channel number of the other frequency segment |
| * |
| * Parameters chan0 and chan1 are channel numbers in {42, 58, 106, 122, 138, 155}. |
| * The primary channel must be contained in one of the 80MHz channels. This routine |
| * will determine which frequency segment is the primary 80 MHz segment. |
| * |
| * Returns INVCHANSPEC in case of error. |
| * |
| * Refer to 802.11-2016 section 22.3.14 "Channelization". |
| * |
| * does not support 6G |
| */ |
| chanspec_t |
| wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan0, uint8 chan1) |
| { |
| int sb = 0; |
| uint16 chanspec = 0; |
| int chan0_id = 0, chan1_id = 0; |
| int seg0, seg1; |
| |
| chan0_id = channel_80mhz_to_id(chan0); |
| chan1_id = channel_80mhz_to_id(chan1); |
| |
| /* make sure the channel numbers were valid */ |
| if (chan0_id == -1 || chan1_id == -1) |
| return INVCHANSPEC; |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(chan0, primary_20mhz, WL_CHANSPEC_BW_80); |
| if (sb >= 0) { |
| /* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */ |
| seg0 = chan0_id; |
| seg1 = chan1_id; |
| } else { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(chan1, primary_20mhz, WL_CHANSPEC_BW_80); |
| if (sb < 0) { |
| /* no match for pri_ch to either 80MHz center channel */ |
| return INVCHANSPEC; |
| } |
| /* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */ |
| seg0 = chan1_id; |
| seg1 = chan0_id; |
| } |
| |
| chanspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) | |
| (seg1 << WL_CHANSPEC_CHAN1_SHIFT) | |
| (sb << WL_CHANSPEC_CTL_SB_SHIFT) | |
| WL_CHANSPEC_BW_8080 | |
| WL_CHANSPEC_BAND_5G); |
| |
| return chanspec; |
| } |
| |
| /* |
| * Returns the center channel of the primary 80 MHz sub-band of the provided chanspec |
| */ |
| uint8 |
| wf_chspec_primary80_channel(chanspec_t chanspec) |
| { |
| chanspec_t primary80_chspec; |
| uint8 primary80_chan; |
| |
| primary80_chspec = wf_chspec_primary80_chspec(chanspec); |
| |
| if (primary80_chspec == INVCHANSPEC) { |
| primary80_chan = INVCHANNEL; |
| } else { |
| primary80_chan = wf_chspec_center_channel(primary80_chspec); |
| } |
| |
| return primary80_chan; |
| } |
| |
| /* |
| * Returns the center channel of the secondary 80 MHz sub-band of the provided chanspec |
| */ |
| uint8 |
| wf_chspec_secondary80_channel(chanspec_t chanspec) |
| { |
| chanspec_t secondary80_chspec; |
| uint8 secondary80_chan; |
| |
| secondary80_chspec = wf_chspec_secondary80_chspec(chanspec); |
| |
| if (secondary80_chspec == INVCHANSPEC) { |
| secondary80_chan = INVCHANNEL; |
| } else { |
| secondary80_chan = wf_chspec_center_channel(secondary80_chspec); |
| } |
| |
| return secondary80_chan; |
| } |
| |
| /* |
| * Returns the chanspec for the primary 80MHz sub-band of a 320MHz or 160MHz or |
| * 80+80MHz channel |
| */ |
| chanspec_t |
| wf_chspec_primary80_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec80 = INVCHANSPEC; |
| uint center_chan = INVCHANNEL; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| /* if the chanspec is > 160MHz, use helper routine to find the primary 160 MHz channel */ |
| if (CHSPEC_IS320(chspec)) { |
| chspec = wf_chspec_primary160_chspec(chspec); |
| } |
| |
| if (CHSPEC_IS80(chspec)) { |
| chspec80 = chspec; |
| } else if (CHSPEC_IS8080(chspec)) { |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| /* primary sub-band is stored in seg0 */ |
| if (CHSPEC_IS5G(chspec)) { |
| center_chan = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| } else if (CHSPEC_IS6G(chspec)) { |
| center_chan = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN0(chspec)); |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create primary 80MHz chanspec */ |
| chspec80 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_80 | |
| sb | |
| center_chan); |
| } |
| } |
| else if (CHSPEC_IS160(chspec)) { |
| center_chan = wf_chspec_center_channel(chspec); |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| if (sb < WL_CHANSPEC_CTL_SB_ULL) { |
| /* Primary 80MHz is on lower side */ |
| center_chan -= CH_40MHZ_APART; |
| } else { |
| /* Primary 80MHz is on upper side */ |
| center_chan += CH_40MHZ_APART; |
| sb -= WL_CHANSPEC_CTL_SB_ULL; |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create primary 80MHz chanspec */ |
| chspec80 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_80 | |
| sb | |
| center_chan); |
| } |
| } |
| |
| return chspec80; |
| } |
| |
| /* |
| * Returns the chanspec for the secondary 80MHz sub-band of an 160MHz or 80+80 channel |
| */ |
| chanspec_t |
| wf_chspec_secondary80_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec80 = INVCHANSPEC; |
| uint center_chan = INVCHANNEL; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| if (CHSPEC_IS8080(chspec)) { |
| /* secondary sub-band is stored in seg1 */ |
| if (CHSPEC_IS5G(chspec)) { |
| center_chan = wf_chspec_5G_id80_to_ch(WL_CHSPEC_CHAN1(chspec)); |
| } else if (CHSPEC_IS6G(chspec)) { |
| center_chan = wf_chspec_6G_id80_to_ch(WL_CHSPEC_CHAN1(chspec)); |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create secondary 80MHz chanspec */ |
| chspec80 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_80 | |
| WL_CHANSPEC_CTL_SB_LL | |
| center_chan); |
| } |
| } |
| else if (CHSPEC_IS160(chspec)) { |
| center_chan = wf_chspec_center_channel(chspec); |
| |
| if (CHSPEC_CTL_SB(chspec) < WL_CHANSPEC_CTL_SB_ULL) { |
| /* Primary 80MHz is on lower side, so the secondary is on |
| * the upper side |
| */ |
| center_chan += CH_40MHZ_APART; |
| } else { |
| /* Primary 80MHz is on upper side, so the secondary is on |
| * the lower side |
| */ |
| center_chan -= CH_40MHZ_APART; |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create secondary 80MHz chanspec */ |
| chspec80 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_80 | |
| WL_CHANSPEC_CTL_SB_LL | |
| center_chan); |
| } |
| } |
| |
| return chspec80; |
| } |
| |
| /* |
| * For 160MHz or 80P80 chanspec, set ch[0]/ch[1] to be the low/high 80 Mhz channels |
| * |
| * For 20/40/80MHz chanspec, set ch[0] to be the center freq, and chan[1]=-1 |
| */ |
| void |
| wf_chspec_get_80p80_channels(chanspec_t chspec, uint8 *ch) |
| { |
| |
| if (CHSPEC_IS160(chspec)) { |
| uint8 center_chan = wf_chspec_center_channel(chspec); |
| ch[0] = center_chan - CH_40MHZ_APART; |
| ch[1] = center_chan + CH_40MHZ_APART; |
| } |
| else { |
| /* for 20, 40, and 80 Mhz */ |
| ch[0] = wf_chspec_center_channel(chspec); |
| ch[1] = -1; |
| } |
| return; |
| |
| } |
| |
| /* |
| * Returns the center channel of the primary 160MHz sub-band of the provided chanspec |
| */ |
| uint8 |
| wf_chspec_primary160_channel(chanspec_t chanspec) |
| { |
| chanspec_t primary160_chspec; |
| uint8 primary160_chan; |
| |
| primary160_chspec = wf_chspec_primary160_chspec(chanspec); |
| |
| if (primary160_chspec == INVCHANSPEC) { |
| primary160_chan = INVCHANNEL; |
| } else { |
| primary160_chan = wf_chspec_center_channel(primary160_chspec); |
| } |
| |
| return primary160_chan; |
| } |
| |
| /* |
| * Returns the chanspec for the primary 160MHz sub-band of an 320MHz channel |
| */ |
| chanspec_t |
| wf_chspec_primary160_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec160 = INVCHANSPEC; |
| uint center_chan = INVCHANNEL; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| if (CHSPEC_IS160(chspec)) { |
| chspec160 = chspec; |
| } else if (CHSPEC_IS320(chspec)) { |
| center_chan = wf_chspec_320_id2cch(chspec); |
| sb = CHSPEC_320_SB(chspec) >> WL_CHANSPEC_320_SB_SHIFT; |
| |
| if (sb < 8u) { |
| /* Primary 160MHz is on lower side */ |
| center_chan -= CH_80MHZ_APART; |
| } else { |
| /* Primary 160MHz is on upper side */ |
| center_chan += CH_80MHZ_APART; |
| sb -= 8u; |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create primary 160MHz chanspec */ |
| chspec160 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_160 | |
| (sb << WL_CHANSPEC_CTL_SB_SHIFT) | |
| center_chan); |
| } |
| } |
| |
| return chspec160; |
| } |
| |
| /* |
| * Returns the center channel of the secondary 160MHz sub-band of the provided chanspec |
| */ |
| uint8 |
| wf_chspec_secondary160_channel(chanspec_t chanspec) |
| { |
| chanspec_t secondary160_chspec; |
| uint8 secondary160_chan; |
| |
| secondary160_chspec = wf_chspec_secondary160_chspec(chanspec); |
| |
| if (secondary160_chspec == INVCHANSPEC) { |
| secondary160_chan = INVCHANNEL; |
| } else { |
| secondary160_chan = wf_chspec_center_channel(secondary160_chspec); |
| } |
| |
| return secondary160_chan; |
| } |
| |
| /* |
| * Returns the chanspec for the secondary 160MHz sub-band of an 320MHz channel |
| */ |
| chanspec_t |
| wf_chspec_secondary160_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec160 = INVCHANSPEC; |
| uint center_chan = INVCHANNEL; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| if (CHSPEC_IS160(chspec)) { |
| chspec160 = chspec; |
| } else if (CHSPEC_IS320(chspec)) { |
| center_chan = wf_chspec_320_id2cch(chspec); |
| sb = CHSPEC_320_SB(chspec) >> WL_CHANSPEC_320_SB_SHIFT; |
| |
| if (sb < 8u) { |
| /* Primary 160MHz is on lower side, so the secondary is on |
| * the upper side |
| */ |
| center_chan += CH_80MHZ_APART; |
| sb += 8u; |
| } else { |
| /* Primary 160MHz is on upper side, so the secondary is on |
| * the lower side |
| */ |
| center_chan -= CH_80MHZ_APART; |
| sb -= 8u; |
| } |
| |
| if (center_chan != INVCHANNEL) { |
| /* Create secondary 160MHz chanspec */ |
| chspec160 = (CHSPEC_BAND(chspec) | |
| WL_CHANSPEC_BW_160 | |
| (sb << WL_CHANSPEC_CTL_SB_SHIFT) | |
| center_chan); |
| } |
| } |
| |
| return chspec160; |
| } |
| |
| /* Populates array with all 20MHz side bands of a given chanspec_t in the following order: |
| * primary20, secondary20, two secondary40s, four secondary80s. |
| * 'chspec' is the chanspec of interest |
| * 'pext' must point to an uint8 array of long enough to hold all side bands of the given chspec |
| * |
| * Works with 20, 40, 80, and 160MHz chspec |
| */ |
| void |
| wf_get_all_ext(chanspec_t chspec, uint8 *pext) |
| { |
| chanspec_t t = (CHSPEC_IS160(chspec)) ? /* if bw > 80MHz */ |
| wf_chspec_primary80_chspec(chspec) : (chspec); /* extract primary 80 */ |
| /* primary20 channel as first element */ |
| uint8 pri_ch = (pext)[0] = wf_chspec_primary20_chan(t); |
| |
| if (CHSPEC_IS20(chspec)) { |
| return; /* nothing more to do since 20MHz chspec */ |
| } |
| /* 20MHz EXT */ |
| (pext)[1] = (IS_CTL_IN_L20(t) ? pri_ch + CH_20MHZ_APART : pri_ch - CH_20MHZ_APART); |
| |
| if (CHSPEC_IS40(chspec)) { |
| return; /* nothing more to do since 40MHz chspec */ |
| } |
| /* center 40MHz EXT */ |
| t = wf_channel2chspec((IS_CTL_IN_L40(chspec) ? |
| pri_ch + CH_40MHZ_APART : pri_ch - CH_40MHZ_APART), WL_CHANSPEC_BW_40); |
| GET_ALL_SB(t, &((pext)[2])); /* get the 20MHz side bands in 40MHz EXT */ |
| |
| if (CHSPEC_IS80(chspec)) { |
| return; /* nothing more to do since 80MHz chspec */ |
| } |
| t = CH80MHZ_CHSPEC(wf_chspec_secondary80_channel(chspec), WL_CHANSPEC_CTL_SB_LLL); |
| /* get the 20MHz side bands in 80MHz EXT (secondary) */ |
| GET_ALL_SB(t, &((pext)[4])); |
| } |
| |
| /* |
| * Given two chanspecs, returns true if they overlap. |
| * (Overlap: At least one 20MHz subband is common between the two chanspecs provided) |
| */ |
| bool wf_chspec_overlap(chanspec_t chspec0, chanspec_t chspec1) |
| { |
| uint8 ch0, ch1; |
| |
| if (CHSPEC_BAND(chspec0) != CHSPEC_BAND(chspec1)) { |
| return FALSE; |
| } |
| |
| FOREACH_20_SB(chspec0, ch0) { |
| FOREACH_20_SB(chspec1, ch1) { |
| if ((uint)ABS(ch0 - ch1) < CH_20MHZ_APART) { |
| return TRUE; |
| } |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| uint8 |
| channel_bw_to_width(chanspec_t chspec) |
| { |
| uint8 channel_width; |
| |
| if (CHSPEC_IS80(chspec)) |
| channel_width = VHT_OP_CHAN_WIDTH_80; |
| else if (CHSPEC_IS160(chspec)) |
| channel_width = VHT_OP_CHAN_WIDTH_160; |
| else if (CHSPEC_IS8080(chspec)) |
| channel_width = VHT_OP_CHAN_WIDTH_80_80; |
| else |
| channel_width = VHT_OP_CHAN_WIDTH_20_40; |
| |
| return channel_width; |
| } |
| |
| |
| uint |
| wf_chspec_first_20_sb(chanspec_t chspec) |
| { |
| uint8 cc = wf_chspec_center_channel(chspec); |
| /* This is to avoid infinite loop if return value is non-zero */ |
| if (chspec == INVCHANSPEC) { |
| return 0; |
| } |
| #if defined(BCMWIFI_BW320MHZ) |
| if (CHSPEC_IS320(chspec)) { |
| return LLLL_20_SB_320(cc); |
| } else |
| #endif |
| #if defined(BCMWIFI_BW160MHZ) |
| if (CHSPEC_IS160(chspec)) { |
| return LLL_20_SB_160(cc); |
| } else |
| #endif |
| if (CHSPEC_IS80(chspec)) { |
| return LL_20_SB(cc); |
| } else if (CHSPEC_IS40(chspec)) { |
| return LOWER_20_SB(cc); |
| } else { |
| return cc; |
| } |
| } |
| |
| chanspec_t |
| wf_create_chspec_sb(uint sb, uint center_channel, chanspec_bw_t bw, |
| chanspec_band_t band) |
| { |
| chanspec_t chspec; |
| if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| int chan_id = -1; |
| if (sb > (WL_CHANSPEC_320_SB_MASK >> WL_CHANSPEC_320_SB_SHIFT)) { |
| return INVCHANSPEC; |
| } |
| chan_id = channel_6g_320mhz_to_id(center_channel); |
| if (chan_id == -1) { |
| return INVCHANSPEC; |
| } |
| chspec = chan_id | band | bw | ((uint)sb << WL_CHANSPEC_320_SB_SHIFT); |
| } else { |
| if (sb > (WL_CHANSPEC_CTL_SB_MASK >> WL_CHANSPEC_CTL_SB_SHIFT)) { |
| return INVCHANSPEC; |
| } |
| chspec = center_channel | band | bw | ((uint)sb << WL_CHANSPEC_CTL_SB_SHIFT); |
| } |
| return wf_chspec_valid(chspec) ? chspec : INVCHANSPEC; |
| } |
| |
| chanspec_t |
| wf_create_8080MHz_chspec_sb(uint sb, uint chan0, uint chan1, chanspec_band_t band) |
| { |
| int chan0_id, chan1_id, seg0, seg1; |
| chanspec_t chspec; |
| |
| if (sb > (WL_CHANSPEC_CTL_SB_UUU >> WL_CHANSPEC_CTL_SB_SHIFT)) { |
| return INVCHANSPEC; |
| } |
| /* From here on sb is not an index, but value for SB field */ |
| sb <<= WL_CHANSPEC_CTL_SB_SHIFT; |
| |
| /* frequency segments need to be non-contiguous, so the channel |
| * separation needs to be greater than 80MHz |
| */ |
| if ((uint)ABS((int)(chan0 - chan1)) <= CH_80MHZ_APART) { |
| return INVCHANSPEC; |
| } |
| |
| if (band == WL_CHANSPEC_BAND_5G) { |
| chan0_id = channel_80mhz_to_id(chan0); |
| chan1_id = channel_80mhz_to_id(chan1); |
| } else if (band == WL_CHANSPEC_BAND_6G) { |
| chan0_id = channel_6g_80mhz_to_id(chan0); |
| chan1_id = channel_6g_80mhz_to_id(chan1); |
| } else { |
| return INVCHANSPEC; |
| } |
| |
| /* make sure the channel numbers were valid */ |
| if ((chan0_id == -1) || (chan1_id == -1)) { |
| return INVCHANSPEC; |
| } |
| /* Optionally swapping channel IDs to make sure that control subchannel |
| * is in chan0 |
| */ |
| if (sb < WL_CHANSPEC_CTL_SB_ULL) { |
| seg0 = chan0_id; |
| seg1 = chan1_id; |
| } else { |
| seg0 = chan1_id; |
| seg1 = chan0_id; |
| sb -= WL_CHANSPEC_CTL_SB_ULL; |
| } |
| chspec = ((seg0 << WL_CHANSPEC_CHAN0_SHIFT) | |
| (seg1 << WL_CHANSPEC_CHAN1_SHIFT) | |
| sb | WL_CHANSPEC_BW_8080 | band); |
| return wf_chspec_valid(chspec) ? chspec : INVCHANSPEC; |
| } |
| |
| /** |
| * Return the chanspec with the given center channel |
| * |
| * This function returns the channel spec with the given center channel number. |
| * For 20MHz channels this is just the channel number. For 40MHz or wider channels |
| * it is the primary 20MHz channel specified by the chanspec. |
| * |
| * @param channel input channel |
| * @param is_6G indicatation of 6G channel |
| * |
| * @return Returns the chanspec including center channel and channel width |
| */ |
| chanspec_t |
| wf_create_chspec_with_center_channel(uint16 channel, bool is_6G) |
| { |
| chanspec_t chspec; |
| |
| if (is_6G) { |
| if (channel < WF_MAX_CHAN_NUM) { |
| if ((channel & WF_CHAN_BITMASK_6G_320MHZ) == WF_CHAN_BITMASK_6G_320MHZ) { |
| int chan_id = channel_6g_320mhz_to_id(channel); |
| if (chan_id == -1) { |
| return INVCHANSPEC; |
| } |
| chspec = (chan_id << WL_CHANSPEC_320_CHAN_SHIFT) | |
| (0 << WL_CHANSPEC_320_SB_SHIFT) | |
| WL_CHANSPEC_BW_320 | WL_CHANSPEC_BAND_6G; |
| } else if ((channel & WF_CHAN_BITMASK_6G_160MHZ) == |
| WF_CHAN_BITMASK_6G_160MHZ) { |
| chspec = CH160MHZ_CHSPEC_6G(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else if ((channel & WF_CHAN_BITMASK_6G_80MHZ) == |
| WF_CHAN_BITMASK_6G_80MHZ) { |
| chspec = CH80MHZ_CHSPEC_6G(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else if ((channel & WF_CHAN_BITMASK_6G_40MHZ) == |
| WF_CHAN_BITMASK_6G_40MHZ) { |
| chspec = CH40MHZ_CHSPEC_6G(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else { |
| /* 6GHz 20MHz */ |
| chspec = CH20MHZ_CHSPEC_6G(channel); |
| } |
| } else { |
| return INVCHANSPEC; |
| |
| } |
| } else { |
| if (channel < WF_MAX_CHAN_NUM) { |
| if (channel < WF_MAX_2G_CHAN_NUM) { |
| chspec = CH20MHZ_CHSPEC(channel); |
| } else if ((channel & WF_CHAN_BITMASK_5G_40MHZ) == |
| WF_CHAN_BITMASK_5G_40MHZ) { |
| chspec = CH40MHZ_CHSPEC(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else if ((channel & WF_CHAN_BITMASK_5G_80MHZ) == |
| WF_CHAN_BITMASK_5G_80MHZ) { |
| chspec = CH80MHZ_CHSPEC(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else if ((channel & WF_CHAN_BITMASK_5G_160MHZ) == |
| WF_CHAN_BITMASK_5G_160MHZ) { |
| chspec = CH160MHZ_CHSPEC(channel, WL_CHANSPEC_CTL_SB_NONE); |
| } else { |
| /* 5GHz 20MHz */ |
| chspec = CH20MHZ_CHSPEC(channel); |
| } |
| } else { |
| return INVCHANSPEC; |
| } |
| } |
| |
| return chspec; |
| } |
| |
| /* For 6GHz, use a formula to calculate the valid 40/80/160/320 center |
| * channel from the primary channel. Caller needs to validate the |
| * returned center channel. |
| */ |
| static uint |
| wf_6g_get_center_chan_from_primary(uint primary_channel, chanspec_bw_t bw, |
| bool overlapped320) |
| { |
| uint ch_per_block = 0; |
| uint mask; |
| uint base, center = INVCHANNEL; |
| wf_6g_320m_chan_range_t const *range; |
| uint i, size; |
| uint8 bw_pos = WL_CHSPEC_BW(bw); |
| |
| if (bw_pos < ARRAYSIZE(ch_per_blk_map)) { |
| ch_per_block = ch_per_blk_map[bw_pos]; |
| } |
| |
| if (WFC_BW_EQ(bw, WL_CHANSPEC_BW_320)) { |
| if (primary_channel >= CH_MIN_6G_320M_START_CHAN || |
| primary_channel <= CH_MAX_6G_320M_END_CHAN) { |
| if (overlapped320) { |
| range = wf_6g_320m_ch_ol_set; |
| size = ARRAYSIZE(wf_6g_320m_ch_ol_set); |
| } else { |
| range = wf_6g_320m_ch_set; |
| size = ARRAYSIZE(wf_6g_320m_ch_set); |
| } |
| for (i = 0; i < size; i++) { |
| if ((primary_channel >= range[i].start) && |
| (primary_channel <= range[i].end)) { |
| center = range[i].center; |
| } |
| } |
| } |
| } else if (ch_per_block) { |
| /* calculate the base of the block of channel numbers |
| * covered by the given bw |
| */ |
| mask = ~(ch_per_block - 1u); |
| base = 1u + ((primary_channel - 1u) & mask); |
| /* calculate the center channel from the base channel */ |
| center = base + center_chan_to_edge(bw); |
| } |
| return center; |
| } |
| |
| uint8 |
| wf_chspec_get_primary_sb(chanspec_t chspec) |
| { |
| uint8 pri_sb; |
| if (CHSPEC_IS320(chspec)) { |
| pri_sb = CHSPEC_320_SB(chspec) >> WL_CHANSPEC_320_SB_SHIFT; |
| } else { |
| pri_sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT; |
| } |
| return pri_sb; |
| } |
| |
| /* |
| * Returns the lower and uppper 20MHz chanel of the given chanspec. |
| * separation is the next channel number from pervious. |
| */ |
| bool |
| wf_chspec_get_20m_lower_upper_channel(chanspec_t chspec, uint* lower, uint* upper, uint *separation) |
| { |
| bool ret = FALSE; |
| uint center_chan; |
| if (wf_chspec_valid(chspec) && lower && upper && separation) { |
| |
| center_chan = wf_chspec_center_channel(chspec); |
| *lower = center_chan - center_chan_to_edge(CHSPEC_BW(chspec)); |
| *upper = center_chan + center_chan_to_edge(CHSPEC_BW(chspec)); |
| |
| if (CHSPEC_IS2G(chspec)) { |
| *separation = 1u; |
| } else { |
| *separation = CH_20MHZ_APART; |
| } |
| ret = TRUE; |
| } |
| |
| return ret; |
| } |