blob: 6e847f6e982340d16ada7e13861d7967a75ddc0b [file] [log] [blame]
/*
* drivers/gpu/ion/ion.c
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/file.h>
#include <linux/freezer.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/ion.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/memblock.h>
#include <linux/miscdevice.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/mm_types.h>
#include <linux/rbtree.h>
#include <linux/rtmutex.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/dma-buf.h>
#include <linux/msm_ion.h>
#include <trace/events/kmem.h>
#include <mach/iommu_domains.h>
#include "ion_priv.h"
/**
* struct ion_device - the metadata of the ion device node
* @dev: the actual misc device
* @buffers: an rb tree of all the existing buffers
* @lock: lock protecting the buffers & heaps trees
* @heaps: list of all the heaps in the system
* @user_clients: list of all the clients created from userspace
*/
struct ion_device {
struct miscdevice dev;
struct rb_root buffers;
struct mutex lock;
struct rb_root heaps;
long (*custom_ioctl) (struct ion_client *client, unsigned int cmd,
unsigned long arg);
struct rb_root clients;
struct dentry *debug_root;
};
/**
* struct ion_client - a process/hw block local address space
* @node: node in the tree of all clients
* @dev: backpointer to ion device
* @handles: an rb tree of all the handles in this client
* @lock: lock protecting the tree of handles
* @heap_mask: mask of all supported heaps
* @name: used for debugging
* @task: used for debugging
*
* A client represents a list of buffers this client may access.
* The mutex stored here is used to protect both handles tree
* as well as the handles themselves, and should be held while modifying either.
*/
struct ion_client {
struct rb_node node;
struct ion_device *dev;
struct rb_root handles;
struct mutex lock;
unsigned int heap_mask;
char *name;
struct task_struct *task;
pid_t pid;
struct dentry *debug_root;
};
/**
* ion_handle - a client local reference to a buffer
* @ref: reference count
* @client: back pointer to the client the buffer resides in
* @buffer: pointer to the buffer
* @node: node in the client's handle rbtree
* @kmap_cnt: count of times this client has mapped to kernel
* @dmap_cnt: count of times this client has mapped for dma
*
* Modifications to node, map_cnt or mapping should be protected by the
* lock in the client. Other fields are never changed after initialization.
*/
struct ion_handle {
struct kref ref;
struct ion_client *client;
struct ion_buffer *buffer;
struct rb_node node;
unsigned int kmap_cnt;
unsigned int iommu_map_cnt;
};
bool ion_buffer_fault_user_mappings(struct ion_buffer *buffer)
{
return ((buffer->flags & ION_FLAG_CACHED) &&
!(buffer->flags & ION_FLAG_CACHED_NEEDS_SYNC));
}
static void ion_iommu_release(struct kref *kref);
/* this function should only be called while dev->lock is held */
static void ion_buffer_add(struct ion_device *dev,
struct ion_buffer *buffer)
{
struct rb_node **p = &dev->buffers.rb_node;
struct rb_node *parent = NULL;
struct ion_buffer *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_buffer, node);
if (buffer < entry) {
p = &(*p)->rb_left;
} else if (buffer > entry) {
p = &(*p)->rb_right;
} else {
pr_err("%s: buffer already found.", __func__);
BUG();
}
}
rb_link_node(&buffer->node, parent, p);
rb_insert_color(&buffer->node, &dev->buffers);
}
static void ion_iommu_add(struct ion_buffer *buffer,
struct ion_iommu_map *iommu)
{
struct rb_node **p = &buffer->iommu_maps.rb_node;
struct rb_node *parent = NULL;
struct ion_iommu_map *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_iommu_map, node);
if (iommu->key < entry->key) {
p = &(*p)->rb_left;
} else if (iommu->key > entry->key) {
p = &(*p)->rb_right;
} else {
pr_err("%s: buffer %p already has mapping for domain %d"
" and partition %d\n", __func__,
buffer,
iommu_map_domain(iommu),
iommu_map_partition(iommu));
BUG();
}
}
rb_link_node(&iommu->node, parent, p);
rb_insert_color(&iommu->node, &buffer->iommu_maps);
}
static struct ion_iommu_map *ion_iommu_lookup(struct ion_buffer *buffer,
unsigned int domain_no,
unsigned int partition_no)
{
struct rb_node **p = &buffer->iommu_maps.rb_node;
struct rb_node *parent = NULL;
struct ion_iommu_map *entry;
uint64_t key = domain_no;
key = key << 32 | partition_no;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_iommu_map, node);
if (key < entry->key)
p = &(*p)->rb_left;
else if (key > entry->key)
p = &(*p)->rb_right;
else
return entry;
}
return NULL;
}
static int ion_buffer_alloc_dirty(struct ion_buffer *buffer);
/* this function should only be called while dev->lock is held */
static struct ion_buffer *ion_buffer_create(struct ion_heap *heap,
struct ion_device *dev,
unsigned long len,
unsigned long align,
unsigned long flags)
{
struct ion_buffer *buffer;
struct sg_table *table;
struct scatterlist *sg;
int i, ret;
buffer = kzalloc(sizeof(struct ion_buffer), GFP_KERNEL);
if (!buffer)
return ERR_PTR(-ENOMEM);
buffer->heap = heap;
buffer->flags = flags;
kref_init(&buffer->ref);
ret = heap->ops->allocate(heap, buffer, len, align, flags);
if (ret) {
if (!(heap->flags & ION_HEAP_FLAG_DEFER_FREE))
goto err2;
ion_heap_drain_freelist(heap);
ret = heap->ops->allocate(heap, buffer, len, align,
flags);
if (ret)
goto err2;
}
buffer->dev = dev;
buffer->size = len;
table = heap->ops->map_dma(heap, buffer);
if (IS_ERR_OR_NULL(table)) {
heap->ops->free(buffer);
kfree(buffer);
return ERR_PTR(PTR_ERR(table));
}
buffer->sg_table = table;
if (ion_buffer_fault_user_mappings(buffer)) {
for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents,
i) {
if (sg_dma_len(sg) == PAGE_SIZE)
continue;
pr_err("%s: cached mappings that will be faulted in "
"must have pagewise sg_lists\n", __func__);
ret = -EINVAL;
goto err;
}
ret = ion_buffer_alloc_dirty(buffer);
if (ret)
goto err;
}
buffer->dev = dev;
buffer->size = len;
INIT_LIST_HEAD(&buffer->vmas);
mutex_init(&buffer->lock);
/* this will set up dma addresses for the sglist -- it is not
technically correct as per the dma api -- a specific
device isn't really taking ownership here. However, in practice on
our systems the only dma_address space is physical addresses.
Additionally, we can't afford the overhead of invalidating every
allocation via dma_map_sg. The implicit contract here is that
memory comming from the heaps is ready for dma, ie if it has a
cached mapping that mapping has been invalidated */
for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) {
if (sg_dma_address(sg) == 0)
sg_dma_address(sg) = sg_phys(sg);
}
ion_buffer_add(dev, buffer);
return buffer;
err:
heap->ops->unmap_dma(heap, buffer);
heap->ops->free(buffer);
kfree(buffer);
return ERR_PTR(ret);
}
/**
* Check for delayed IOMMU unmapping. Also unmap any outstanding
* mappings which would otherwise have been leaked.
*/
static void ion_iommu_delayed_unmap(struct ion_buffer *buffer)
{
struct ion_iommu_map *iommu_map;
struct rb_node *node;
const struct rb_root *rb = &(buffer->iommu_maps);
unsigned long ref_count;
unsigned int delayed_unmap;
mutex_lock(&buffer->lock);
while ((node = rb_first(rb)) != 0) {
iommu_map = rb_entry(node, struct ion_iommu_map, node);
ref_count = atomic_read(&iommu_map->ref.refcount);
delayed_unmap = iommu_map->flags & ION_IOMMU_UNMAP_DELAYED;
if ((delayed_unmap && ref_count > 1) || !delayed_unmap) {
pr_err("%s: Virtual memory address leak in domain %u, partition %u\n",
__func__, iommu_map->domain_info[DI_DOMAIN_NUM],
iommu_map->domain_info[DI_PARTITION_NUM]);
}
/* set ref count to 1 to force release */
kref_init(&iommu_map->ref);
kref_put(&iommu_map->ref, ion_iommu_release);
}
mutex_unlock(&buffer->lock);
}
static void ion_delayed_unsecure(struct ion_buffer *buffer)
{
if (buffer->heap->ops->unsecure_buffer)
buffer->heap->ops->unsecure_buffer(buffer, 1);
}
static void _ion_buffer_destroy(struct ion_buffer *buffer)
{
if (WARN_ON(buffer->kmap_cnt > 0))
buffer->heap->ops->unmap_kernel(buffer->heap, buffer);
buffer->heap->ops->unmap_dma(buffer->heap, buffer);
ion_delayed_unsecure(buffer);
ion_iommu_delayed_unmap(buffer);
buffer->heap->ops->free(buffer);
mutex_lock(&dev->lock);
rb_erase(&buffer->node, &dev->buffers);
mutex_unlock(&dev->lock);
if (buffer->flags & ION_FLAG_CACHED)
kfree(buffer->dirty);
kfree(buffer);
}
static void ion_buffer_destroy(struct kref *kref)
{
struct ion_buffer *buffer = container_of(kref, struct ion_buffer, ref);
struct ion_heap *heap = buffer->heap;
struct ion_device *dev = buffer->dev;
mutex_lock(&dev->buffer_lock);
rb_erase(&buffer->node, &dev->buffers);
mutex_unlock(&dev->buffer_lock);
if (heap->flags & ION_HEAP_FLAG_DEFER_FREE) {
rt_mutex_lock(&heap->lock);
list_add(&buffer->list, &heap->free_list);
rt_mutex_unlock(&heap->lock);
wake_up(&heap->waitqueue);
return;
}
_ion_buffer_destroy(buffer);
}
static void ion_buffer_get(struct ion_buffer *buffer)
{
kref_get(&buffer->ref);
}
static int ion_buffer_put(struct ion_buffer *buffer)
{
return kref_put(&buffer->ref, ion_buffer_destroy);
}
static struct ion_handle *ion_handle_create(struct ion_client *client,
struct ion_buffer *buffer)
{
struct ion_handle *handle;
handle = kzalloc(sizeof(struct ion_handle), GFP_KERNEL);
if (!handle)
return ERR_PTR(-ENOMEM);
kref_init(&handle->ref);
RB_CLEAR_NODE(&handle->node);
handle->client = client;
ion_buffer_get(buffer);
handle->buffer = buffer;
return handle;
}
static void ion_handle_kmap_put(struct ion_handle *);
static void ion_handle_destroy(struct kref *kref)
{
struct ion_handle *handle = container_of(kref, struct ion_handle, ref);
struct ion_client *client = handle->client;
struct ion_buffer *buffer = handle->buffer;
mutex_lock(&buffer->lock);
while (buffer->kmap_cnt)
ion_handle_kmap_put(handle);
mutex_unlock(&buffer->lock);
if (!RB_EMPTY_NODE(&handle->node))
rb_erase(&handle->node, &client->handles);
ion_buffer_put(buffer);
kfree(handle);
}
struct ion_buffer *ion_handle_buffer(struct ion_handle *handle)
{
return handle->buffer;
}
static void ion_handle_get(struct ion_handle *handle)
{
kref_get(&handle->ref);
}
static int ion_handle_put(struct ion_handle *handle)
{
return kref_put(&handle->ref, ion_handle_destroy);
}
static struct ion_handle *ion_handle_lookup(struct ion_client *client,
struct ion_buffer *buffer)
{
struct rb_node *n;
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
if (handle->buffer == buffer)
return handle;
}
return NULL;
}
static bool ion_handle_validate(struct ion_client *client, struct ion_handle *handle)
{
struct rb_node *n = client->handles.rb_node;
while (n) {
struct ion_handle *handle_node = rb_entry(n, struct ion_handle,
node);
if (handle < handle_node)
n = n->rb_left;
else if (handle > handle_node)
n = n->rb_right;
else
return true;
}
return false;
}
static void ion_handle_add(struct ion_client *client, struct ion_handle *handle)
{
struct rb_node **p = &client->handles.rb_node;
struct rb_node *parent = NULL;
struct ion_handle *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_handle, node);
if (handle < entry)
p = &(*p)->rb_left;
else if (handle > entry)
p = &(*p)->rb_right;
else
WARN(1, "%s: buffer already found.", __func__);
}
rb_link_node(&handle->node, parent, p);
rb_insert_color(&handle->node, &client->handles);
}
struct ion_handle *ion_alloc(struct ion_client *client, size_t len,
size_t align, unsigned int heap_mask,
unsigned int flags)
{
struct rb_node *n;
struct ion_handle *handle;
struct ion_device *dev = client->dev;
struct ion_buffer *buffer = NULL;
unsigned long secure_allocation = flags & ION_SECURE;
const unsigned int MAX_DBG_STR_LEN = 64;
char dbg_str[MAX_DBG_STR_LEN];
unsigned int dbg_str_idx = 0;
dbg_str[0] = '\0';
/*
* For now, we don't want to fault in pages individually since
* clients are already doing manual cache maintenance. In
* other words, the implicit caching infrastructure is in
* place (in code) but should not be used.
*/
flags |= ION_FLAG_CACHED_NEEDS_SYNC;
pr_debug("%s: len %d align %d heap_mask %u flags %x\n", __func__, len,
align, heap_mask, flags);
/*
* traverse the list of heaps available in this system in priority
* order. If the heap type is supported by the client, and matches the
* request of the caller allocate from it. Repeat until allocate has
* succeeded or all heaps have been tried
*/
if (WARN_ON(!len))
return ERR_PTR(-EINVAL);
len = PAGE_ALIGN(len);
mutex_lock(&dev->lock);
for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) {
struct ion_heap *heap = rb_entry(n, struct ion_heap, node);
/* if the client doesn't support this heap type */
if (!((1 << heap->type) & client->heap_mask))
continue;
/* if the caller didn't specify this heap type */
if (!((1 << heap->id) & heap_mask))
continue;
/* Do not allow un-secure heap if secure is specified */
if (secure_allocation &&
!ion_heap_allow_secure_allocation(heap->type))
continue;
trace_ion_alloc_buffer_start(client->name, heap->name, len,
heap_mask, flags);
buffer = ion_buffer_create(heap, dev, len, align, flags);
trace_ion_alloc_buffer_end(client->name, heap->name, len,
heap_mask, flags);
if (!IS_ERR_OR_NULL(buffer))
break;
trace_ion_alloc_buffer_fallback(client->name, heap->name, len,
heap_mask, flags, PTR_ERR(buffer));
if (dbg_str_idx < MAX_DBG_STR_LEN) {
unsigned int len_left = MAX_DBG_STR_LEN-dbg_str_idx-1;
int ret_value = snprintf(&dbg_str[dbg_str_idx],
len_left, "%s ", heap->name);
if (ret_value >= len_left) {
/* overflow */
dbg_str[MAX_DBG_STR_LEN-1] = '\0';
dbg_str_idx = MAX_DBG_STR_LEN;
} else if (ret_value >= 0) {
dbg_str_idx += ret_value;
} else {
/* error */
dbg_str[MAX_DBG_STR_LEN-1] = '\0';
}
}
}
mutex_unlock(&dev->lock);
if (buffer == NULL) {
trace_ion_alloc_buffer_fail(client->name, dbg_str, len,
heap_mask, flags, -ENODEV);
return ERR_PTR(-ENODEV);
}
if (IS_ERR(buffer)) {
trace_ion_alloc_buffer_fail(client->name, dbg_str, len,
heap_mask, flags, PTR_ERR(buffer));
pr_debug("ION is unable to allocate 0x%x bytes (alignment: "
"0x%x) from heap(s) %sfor client %s with heap "
"mask 0x%x\n",
len, align, dbg_str, client->name, client->heap_mask);
return ERR_PTR(PTR_ERR(buffer));
}
handle = ion_handle_create(client, buffer);
/*
* ion_buffer_create will create a buffer with a ref_cnt of 1,
* and ion_handle_create will take a second reference, drop one here
*/
ion_buffer_put(buffer);
if (!IS_ERR(handle)) {
mutex_lock(&client->lock);
ion_handle_add(client, handle);
mutex_unlock(&client->lock);
}
return handle;
}
EXPORT_SYMBOL(ion_alloc);
void ion_free(struct ion_client *client, struct ion_handle *handle)
{
bool valid_handle;
BUG_ON(client != handle->client);
mutex_lock(&client->lock);
valid_handle = ion_handle_validate(client, handle);
if (!valid_handle) {
mutex_unlock(&client->lock);
WARN(1, "%s: invalid handle passed to free.\n", __func__);
return;
}
ion_handle_put(handle);
mutex_unlock(&client->lock);
}
EXPORT_SYMBOL(ion_free);
int ion_phys(struct ion_client *client, struct ion_handle *handle,
ion_phys_addr_t *addr, size_t *len)
{
struct ion_buffer *buffer;
int ret;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
if (!buffer->heap->ops->phys) {
pr_err("%s: ion_phys is not implemented by this heap.\n",
__func__);
mutex_unlock(&client->lock);
return -ENODEV;
}
mutex_unlock(&client->lock);
ret = buffer->heap->ops->phys(buffer->heap, buffer, addr, len);
return ret;
}
EXPORT_SYMBOL(ion_phys);
static void *ion_buffer_kmap_get(struct ion_buffer *buffer)
{
void *vaddr;
if (buffer->kmap_cnt) {
buffer->kmap_cnt++;
return buffer->vaddr;
}
vaddr = buffer->heap->ops->map_kernel(buffer->heap, buffer);
if (IS_ERR_OR_NULL(vaddr))
return vaddr;
buffer->vaddr = vaddr;
buffer->kmap_cnt++;
return vaddr;
}
static void *ion_handle_kmap_get(struct ion_handle *handle)
{
struct ion_buffer *buffer = handle->buffer;
void *vaddr;
if (handle->kmap_cnt) {
handle->kmap_cnt++;
return buffer->vaddr;
}
vaddr = ion_buffer_kmap_get(buffer);
if (IS_ERR_OR_NULL(vaddr))
return vaddr;
handle->kmap_cnt++;
return vaddr;
}
static void ion_buffer_kmap_put(struct ion_buffer *buffer)
{
buffer->kmap_cnt--;
if (!buffer->kmap_cnt) {
buffer->heap->ops->unmap_kernel(buffer->heap, buffer);
buffer->vaddr = NULL;
}
}
static void ion_handle_kmap_put(struct ion_handle *handle)
{
struct ion_buffer *buffer = handle->buffer;
handle->kmap_cnt--;
if (!handle->kmap_cnt)
ion_buffer_kmap_put(buffer);
}
static struct ion_iommu_map *__ion_iommu_map(struct ion_buffer *buffer,
int domain_num, int partition_num, unsigned long align,
unsigned long iova_length, unsigned long flags,
unsigned long *iova)
{
struct ion_iommu_map *data;
int ret;
data = kmalloc(sizeof(*data), GFP_ATOMIC);
if (!data)
return ERR_PTR(-ENOMEM);
data->buffer = buffer;
iommu_map_domain(data) = domain_num;
iommu_map_partition(data) = partition_num;
ret = buffer->heap->ops->map_iommu(buffer, data,
domain_num,
partition_num,
align,
iova_length,
flags);
if (ret)
goto out;
kref_init(&data->ref);
*iova = data->iova_addr;
ion_iommu_add(buffer, data);
return data;
out:
kfree(data);
return ERR_PTR(ret);
}
int ion_map_iommu(struct ion_client *client, struct ion_handle *handle,
int domain_num, int partition_num, unsigned long align,
unsigned long iova_length, unsigned long *iova,
unsigned long *buffer_size,
unsigned long flags, unsigned long iommu_flags)
{
struct ion_buffer *buffer;
struct ion_iommu_map *iommu_map;
int ret = 0;
if (IS_ERR_OR_NULL(client)) {
pr_err("%s: client pointer is invalid\n", __func__);
return -EINVAL;
}
if (IS_ERR_OR_NULL(handle)) {
pr_err("%s: handle pointer is invalid\n", __func__);
return -EINVAL;
}
if (IS_ERR_OR_NULL(handle->buffer)) {
pr_err("%s: buffer pointer is invalid\n", __func__);
return -EINVAL;
}
if (ION_IS_CACHED(flags)) {
pr_err("%s: Cannot map iommu as cached.\n", __func__);
return -EINVAL;
}
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to map_kernel.\n",
__func__);
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (!handle->buffer->heap->ops->map_iommu) {
pr_err("%s: map_iommu is not implemented by this heap.\n",
__func__);
ret = -ENODEV;
goto out;
}
/*
* If clients don't want a custom iova length, just use whatever
* the buffer size is
*/
if (!iova_length)
iova_length = buffer->size;
if (buffer->size > iova_length) {
pr_debug("%s: iova length %lx is not at least buffer size"
" %x\n", __func__, iova_length, buffer->size);
ret = -EINVAL;
goto out;
}
if (buffer->size & ~PAGE_MASK) {
pr_debug("%s: buffer size %x is not aligned to %lx", __func__,
buffer->size, PAGE_SIZE);
ret = -EINVAL;
goto out;
}
if (iova_length & ~PAGE_MASK) {
pr_debug("%s: iova_length %lx is not aligned to %lx", __func__,
iova_length, PAGE_SIZE);
ret = -EINVAL;
goto out;
}
iommu_map = ion_iommu_lookup(buffer, domain_num, partition_num);
if (!iommu_map) {
iommu_map = __ion_iommu_map(buffer, domain_num, partition_num,
align, iova_length, flags, iova);
if (!IS_ERR_OR_NULL(iommu_map)) {
iommu_map->flags = iommu_flags;
if (iommu_map->flags & ION_IOMMU_UNMAP_DELAYED)
kref_get(&iommu_map->ref);
} else {
ret = PTR_ERR(iommu_map);
}
} else {
if (iommu_map->flags != iommu_flags) {
pr_err("%s: handle %p is already mapped with iommu flags %lx, trying to map with flags %lx\n",
__func__, handle,
iommu_map->flags, iommu_flags);
ret = -EINVAL;
} else if (iommu_map->mapped_size != iova_length) {
pr_err("%s: handle %p is already mapped with length"
" %x, trying to map with length %lx\n",
__func__, handle, iommu_map->mapped_size,
iova_length);
ret = -EINVAL;
} else {
kref_get(&iommu_map->ref);
*iova = iommu_map->iova_addr;
}
}
if (!ret)
buffer->iommu_map_cnt++;
*buffer_size = buffer->size;
out:
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return ret;
}
EXPORT_SYMBOL(ion_map_iommu);
static void ion_iommu_release(struct kref *kref)
{
struct ion_iommu_map *map = container_of(kref, struct ion_iommu_map,
ref);
struct ion_buffer *buffer = map->buffer;
rb_erase(&map->node, &buffer->iommu_maps);
buffer->heap->ops->unmap_iommu(map);
kfree(map);
}
void ion_unmap_iommu(struct ion_client *client, struct ion_handle *handle,
int domain_num, int partition_num)
{
struct ion_iommu_map *iommu_map;
struct ion_buffer *buffer;
if (IS_ERR_OR_NULL(client)) {
pr_err("%s: client pointer is invalid\n", __func__);
return;
}
if (IS_ERR_OR_NULL(handle)) {
pr_err("%s: handle pointer is invalid\n", __func__);
return;
}
if (IS_ERR_OR_NULL(handle->buffer)) {
pr_err("%s: buffer pointer is invalid\n", __func__);
return;
}
mutex_lock(&client->lock);
buffer = handle->buffer;
mutex_lock(&buffer->lock);
iommu_map = ion_iommu_lookup(buffer, domain_num, partition_num);
if (!iommu_map) {
WARN(1, "%s: (%d,%d) was never mapped for %p\n", __func__,
domain_num, partition_num, buffer);
goto out;
}
kref_put(&iommu_map->ref, ion_iommu_release);
buffer->iommu_map_cnt--;
out:
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
}
EXPORT_SYMBOL(ion_unmap_iommu);
void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
void *vaddr;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to map_kernel.\n",
__func__);
mutex_unlock(&client->lock);
return ERR_PTR(-EINVAL);
}
buffer = handle->buffer;
if (!handle->buffer->heap->ops->map_kernel) {
pr_err("%s: map_kernel is not implemented by this heap.\n",
__func__);
mutex_unlock(&client->lock);
return ERR_PTR(-ENODEV);
}
mutex_lock(&buffer->lock);
vaddr = ion_handle_kmap_get(handle);
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return vaddr;
}
EXPORT_SYMBOL(ion_map_kernel);
void ion_unmap_kernel(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
mutex_lock(&client->lock);
buffer = handle->buffer;
mutex_lock(&buffer->lock);
ion_handle_kmap_put(handle);
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
}
EXPORT_SYMBOL(ion_unmap_kernel);
int ion_do_cache_op(struct ion_client *client, struct ion_handle *handle,
void *uaddr, unsigned long offset, unsigned long len,
unsigned int cmd)
{
struct ion_buffer *buffer;
int ret = -EINVAL;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to do_cache_op.\n",
__func__);
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
if (!ION_IS_CACHED(buffer->flags)) {
ret = 0;
goto out;
}
if (!handle->buffer->heap->ops->cache_op) {
pr_err("%s: cache_op is not implemented by this heap.\n",
__func__);
ret = -ENODEV;
goto out;
}
ret = buffer->heap->ops->cache_op(buffer->heap, buffer, uaddr,
offset, len, cmd);
out:
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return ret;
}
EXPORT_SYMBOL(ion_do_cache_op);
static int ion_debug_client_show(struct seq_file *s, void *unused)
{
struct ion_client *client = s->private;
struct rb_node *n;
struct rb_node *n2;
seq_printf(s, "%16.16s: %16.16s : %16.16s : %12.12s : %12.12s : %s\n",
"heap_name", "size_in_bytes", "handle refcount",
"buffer", "physical", "[domain,partition] - virt");
mutex_lock(&client->lock);
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
enum ion_heap_type type = handle->buffer->heap->type;
seq_printf(s, "%16.16s: %16x : %16d : %12p",
handle->buffer->heap->name,
handle->buffer->size,
atomic_read(&handle->ref.refcount),
handle->buffer);
if (type == ION_HEAP_TYPE_SYSTEM_CONTIG ||
type == ION_HEAP_TYPE_CARVEOUT ||
type == (enum ion_heap_type) ION_HEAP_TYPE_CP)
seq_printf(s, " : %12pa", &handle->buffer->priv_phys);
else
seq_printf(s, " : %12s", "N/A");
for (n2 = rb_first(&handle->buffer->iommu_maps); n2;
n2 = rb_next(n2)) {
struct ion_iommu_map *imap =
rb_entry(n2, struct ion_iommu_map, node);
seq_printf(s, " : [%d,%d] - %8lx",
imap->domain_info[DI_DOMAIN_NUM],
imap->domain_info[DI_PARTITION_NUM],
imap->iova_addr);
}
seq_printf(s, "\n");
}
mutex_unlock(&client->lock);
return 0;
}
static int ion_debug_client_open(struct inode *inode, struct file *file)
{
return single_open(file, ion_debug_client_show, inode->i_private);
}
static const struct file_operations debug_client_fops = {
.open = ion_debug_client_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
struct ion_client *ion_client_create(struct ion_device *dev,
unsigned int heap_mask,
const char *name)
{
struct ion_client *client;
struct task_struct *task;
struct rb_node **p;
struct rb_node *parent = NULL;
struct ion_client *entry;
pid_t pid;
unsigned int name_len;
if (!name) {
pr_err("%s: Name cannot be null\n", __func__);
return ERR_PTR(-EINVAL);
}
name_len = strnlen(name, 64);
get_task_struct(current->group_leader);
task_lock(current->group_leader);
pid = task_pid_nr(current->group_leader);
/* don't bother to store task struct for kernel threads,
they can't be killed anyway */
if (current->group_leader->flags & PF_KTHREAD) {
put_task_struct(current->group_leader);
task = NULL;
} else {
task = current->group_leader;
}
task_unlock(current->group_leader);
client = kzalloc(sizeof(struct ion_client), GFP_KERNEL);
if (!client) {
if (task)
put_task_struct(current->group_leader);
return ERR_PTR(-ENOMEM);
}
client->dev = dev;
client->handles = RB_ROOT;
mutex_init(&client->lock);
client->name = kzalloc(name_len+1, GFP_KERNEL);
if (!client->name) {
put_task_struct(current->group_leader);
kfree(client);
return ERR_PTR(-ENOMEM);
} else {
strlcpy(client->name, name, name_len+1);
}
client->heap_mask = heap_mask;
client->task = task;
client->pid = pid;
mutex_lock(&dev->lock);
p = &dev->clients.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_client, node);
if (client < entry)
p = &(*p)->rb_left;
else if (client > entry)
p = &(*p)->rb_right;
}
rb_link_node(&client->node, parent, p);
rb_insert_color(&client->node, &dev->clients);
client->debug_root = debugfs_create_file(name, 0664,
dev->debug_root, client,
&debug_client_fops);
mutex_unlock(&dev->lock);
return client;
}
/**
* ion_mark_dangling_buffers_locked() - Mark dangling buffers
* @dev: the ion device whose buffers will be searched
*
* Sets marked=1 for all known buffers associated with `dev' that no
* longer have a handle pointing to them. dev->lock should be held
* across a call to this function (and should only be unlocked after
* checking for marked buffers).
*/
static void ion_mark_dangling_buffers_locked(struct ion_device *dev)
{
struct rb_node *n, *n2;
/* mark all buffers as 1 */
for (n = rb_first(&dev->buffers); n; n = rb_next(n)) {
struct ion_buffer *buf = rb_entry(n, struct ion_buffer,
node);
buf->marked = 1;
}
/* now see which buffers we can access */
for (n = rb_first(&dev->clients); n; n = rb_next(n)) {
struct ion_client *client = rb_entry(n, struct ion_client,
node);
mutex_lock(&client->lock);
for (n2 = rb_first(&client->handles); n2; n2 = rb_next(n2)) {
struct ion_handle *handle
= rb_entry(n2, struct ion_handle, node);
handle->buffer->marked = 0;
}
mutex_unlock(&client->lock);
}
}
#ifdef CONFIG_ION_LEAK_CHECK
static u32 ion_debug_check_leaks_on_destroy;
static int ion_check_for_and_print_leaks(struct ion_device *dev)
{
struct rb_node *n;
int num_leaks = 0;
if (!ion_debug_check_leaks_on_destroy)
return 0;
/* check for leaked buffers (those that no longer have a
* handle pointing to them) */
ion_mark_dangling_buffers_locked(dev);
/* Anyone still marked as a 1 means a leaked handle somewhere */
for (n = rb_first(&dev->buffers); n; n = rb_next(n)) {
struct ion_buffer *buf = rb_entry(n, struct ion_buffer,
node);
if (buf->marked == 1) {
pr_info("Leaked ion buffer at %p\n", buf);
num_leaks++;
}
}
return num_leaks;
}
static void setup_ion_leak_check(struct dentry *debug_root)
{
debugfs_create_bool("check_leaks_on_destroy", 0664, debug_root,
&ion_debug_check_leaks_on_destroy);
}
#else
static int ion_check_for_and_print_leaks(struct ion_device *dev)
{
return 0;
}
static void setup_ion_leak_check(struct dentry *debug_root)
{
}
#endif
void ion_client_destroy(struct ion_client *client)
{
struct ion_device *dev = client->dev;
struct rb_node *n;
int num_leaks;
pr_debug("%s: %d\n", __func__, __LINE__);
while ((n = rb_first(&client->handles))) {
struct ion_handle *handle = rb_entry(n, struct ion_handle,
node);
ion_handle_destroy(&handle->ref);
}
mutex_lock(&dev->lock);
if (client->task)
put_task_struct(client->task);
rb_erase(&client->node, &dev->clients);
debugfs_remove_recursive(client->debug_root);
num_leaks = ion_check_for_and_print_leaks(dev);
mutex_unlock(&dev->lock);
if (num_leaks) {
struct task_struct *current_task = current;
char current_task_name[TASK_COMM_LEN];
get_task_comm(current_task_name, current_task);
WARN(1, "%s: Detected %d leaked ion buffer%s.\n",
__func__, num_leaks, num_leaks == 1 ? "" : "s");
pr_info("task name at time of leak: %s, pid: %d\n",
current_task_name, current_task->pid);
}
kfree(client->name);
kfree(client);
}
EXPORT_SYMBOL(ion_client_destroy);
int ion_handle_get_flags(struct ion_client *client, struct ion_handle *handle,
unsigned long *flags)
{
struct ion_buffer *buffer;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to %s.\n",
__func__, __func__);
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
*flags = buffer->flags;
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return 0;
}
EXPORT_SYMBOL(ion_handle_get_flags);
int ion_handle_get_size(struct ion_client *client, struct ion_handle *handle,
unsigned long *size)
{
struct ion_buffer *buffer;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to %s.\n",
__func__, __func__);
mutex_unlock(&client->lock);
return -EINVAL;
}
buffer = handle->buffer;
mutex_lock(&buffer->lock);
*size = buffer->size;
mutex_unlock(&buffer->lock);
mutex_unlock(&client->lock);
return 0;
}
EXPORT_SYMBOL(ion_handle_get_size);
struct sg_table *ion_sg_table(struct ion_client *client,
struct ion_handle *handle)
{
struct ion_buffer *buffer;
struct sg_table *table;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
pr_err("%s: invalid handle passed to map_dma.\n",
__func__);
mutex_unlock(&client->lock);
return ERR_PTR(-EINVAL);
}
buffer = handle->buffer;
table = buffer->sg_table;
mutex_unlock(&client->lock);
return table;
}
EXPORT_SYMBOL(ion_sg_table);
struct sg_table *ion_create_chunked_sg_table(phys_addr_t buffer_base,
size_t chunk_size, size_t total_size)
{
struct sg_table *table;
int i, n_chunks, ret;
struct scatterlist *sg;
table = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!table)
return ERR_PTR(-ENOMEM);
n_chunks = DIV_ROUND_UP(total_size, chunk_size);
pr_debug("creating sg_table with %d chunks\n", n_chunks);
ret = sg_alloc_table(table, n_chunks, GFP_KERNEL);
if (ret)
goto err0;
for_each_sg(table->sgl, sg, table->nents, i) {
dma_addr_t addr = buffer_base + i * chunk_size;
sg_dma_address(sg) = addr;
sg_dma_len(sg) = chunk_size;
}
return table;
err0:
kfree(table);
return ERR_PTR(ret);
}
static void ion_buffer_sync_for_device(struct ion_buffer *buffer,
struct device *dev,
enum dma_data_direction direction);
static struct sg_table *ion_map_dma_buf(struct dma_buf_attachment *attachment,
enum dma_data_direction direction)
{
struct dma_buf *dmabuf = attachment->dmabuf;
struct ion_buffer *buffer = dmabuf->priv;
ion_buffer_sync_for_device(buffer, attachment->dev, direction);
return buffer->sg_table;
}
static void ion_unmap_dma_buf(struct dma_buf_attachment *attachment,
struct sg_table *table,
enum dma_data_direction direction)
{
}
static int ion_buffer_alloc_dirty(struct ion_buffer *buffer)
{
unsigned long pages = buffer->sg_table->nents;
unsigned long length = (pages + BITS_PER_LONG - 1)/BITS_PER_LONG;
buffer->dirty = kzalloc(length * sizeof(unsigned long), GFP_KERNEL);
if (!buffer->dirty)
return -ENOMEM;
return 0;
}
struct ion_vma_list {
struct list_head list;
struct vm_area_struct *vma;
};
static void ion_buffer_sync_for_device(struct ion_buffer *buffer,
struct device *dev,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
struct ion_vma_list *vma_list;
pr_debug("%s: syncing for device %s\n", __func__,
dev ? dev_name(dev) : "null");
if (!ion_buffer_fault_user_mappings(buffer))
return;
mutex_lock(&buffer->lock);
for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) {
if (!test_bit(i, buffer->dirty))
continue;
dma_sync_sg_for_device(dev, sg, 1, dir);
clear_bit(i, buffer->dirty);
}
list_for_each_entry(vma_list, &buffer->vmas, list) {
struct vm_area_struct *vma = vma_list->vma;
zap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start,
NULL);
}
mutex_unlock(&buffer->lock);
}
int ion_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct ion_buffer *buffer = vma->vm_private_data;
struct scatterlist *sg;
int i;
mutex_lock(&buffer->lock);
set_bit(vmf->pgoff, buffer->dirty);
for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) {
if (i != vmf->pgoff)
continue;
dma_sync_sg_for_cpu(NULL, sg, 1, DMA_BIDIRECTIONAL);
vm_insert_page(vma, (unsigned long)vmf->virtual_address,
sg_page(sg));
break;
}
mutex_unlock(&buffer->lock);
return VM_FAULT_NOPAGE;
}
static void ion_vm_open(struct vm_area_struct *vma)
{
struct ion_buffer *buffer = vma->vm_private_data;
struct ion_vma_list *vma_list;
vma_list = kmalloc(sizeof(struct ion_vma_list), GFP_KERNEL);
if (!vma_list)
return;
vma_list->vma = vma;
mutex_lock(&buffer->lock);
list_add(&vma_list->list, &buffer->vmas);
mutex_unlock(&buffer->lock);
pr_debug("%s: adding %p\n", __func__, vma);
}
static void ion_vm_close(struct vm_area_struct *vma)
{
struct ion_buffer *buffer = vma->vm_private_data;
struct ion_vma_list *vma_list, *tmp;
pr_debug("%s\n", __func__);
mutex_lock(&buffer->lock);
list_for_each_entry_safe(vma_list, tmp, &buffer->vmas, list) {
if (vma_list->vma != vma)
continue;
list_del(&vma_list->list);
kfree(vma_list);
pr_debug("%s: deleting %p\n", __func__, vma);
break;
}
mutex_unlock(&buffer->lock);
if (buffer->heap->ops->unmap_user)
buffer->heap->ops->unmap_user(buffer->heap, buffer);
}
struct vm_operations_struct ion_vma_ops = {
.open = ion_vm_open,
.close = ion_vm_close,
.fault = ion_vm_fault,
};
static int ion_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct ion_buffer *buffer = dmabuf->priv;
int ret = 0;
if (!buffer->heap->ops->map_user) {
pr_err("%s: this heap does not define a method for mapping "
"to userspace\n", __func__);
return -EINVAL;
}
if (ion_buffer_fault_user_mappings(buffer)) {
vma->vm_private_data = buffer;
vma->vm_ops = &ion_vma_ops;
vma->vm_flags |= VM_MIXEDMAP;
ion_vm_open(vma);
return 0;
}
if (!(buffer->flags & ION_FLAG_CACHED))
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
mutex_lock(&buffer->lock);
/* now map it to userspace */
ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma);
mutex_unlock(&buffer->lock);
if (ret)
pr_err("%s: failure mapping buffer to userspace\n",
__func__);
return ret;
}
static void ion_dma_buf_release(struct dma_buf *dmabuf)
{
struct ion_buffer *buffer = dmabuf->priv;
ion_buffer_put(buffer);
}
static void *ion_dma_buf_kmap(struct dma_buf *dmabuf, unsigned long offset)
{
struct ion_buffer *buffer = dmabuf->priv;
return buffer->vaddr + offset;
}
static void ion_dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long offset,
void *ptr)
{
return;
}
static int ion_dma_buf_begin_cpu_access(struct dma_buf *dmabuf, size_t start,
size_t len,
enum dma_data_direction direction)
{
struct ion_buffer *buffer = dmabuf->priv;
void *vaddr;
if (!buffer->heap->ops->map_kernel) {
pr_err("%s: map kernel is not implemented by this heap.\n",
__func__);
return -ENODEV;
}
mutex_lock(&buffer->lock);
vaddr = ion_buffer_kmap_get(buffer);
mutex_unlock(&buffer->lock);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
if (!vaddr)
return -ENOMEM;
return 0;
}
static void ion_dma_buf_end_cpu_access(struct dma_buf *dmabuf, size_t start,
size_t len,
enum dma_data_direction direction)
{
struct ion_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
ion_buffer_kmap_put(buffer);
mutex_unlock(&buffer->lock);
}
struct dma_buf_ops dma_buf_ops = {
.map_dma_buf = ion_map_dma_buf,
.unmap_dma_buf = ion_unmap_dma_buf,
.mmap = ion_mmap,
.release = ion_dma_buf_release,
.begin_cpu_access = ion_dma_buf_begin_cpu_access,
.end_cpu_access = ion_dma_buf_end_cpu_access,
.kmap_atomic = ion_dma_buf_kmap,
.kunmap_atomic = ion_dma_buf_kunmap,
.kmap = ion_dma_buf_kmap,
.kunmap = ion_dma_buf_kunmap,
};
int ion_share_dma_buf(struct ion_client *client, struct ion_handle *handle)
{
struct ion_buffer *buffer;
struct dma_buf *dmabuf;
bool valid_handle;
int fd;
mutex_lock(&client->lock);
valid_handle = ion_handle_validate(client, handle);
mutex_unlock(&client->lock);
if (!valid_handle) {
WARN(1, "%s: invalid handle passed to share.\n", __func__);
return -EINVAL;
}
buffer = handle->buffer;
ion_buffer_get(buffer);
dmabuf = dma_buf_export(buffer, &dma_buf_ops, buffer->size, O_RDWR);
if (IS_ERR(dmabuf)) {
ion_buffer_put(buffer);
return PTR_ERR(dmabuf);
}
fd = dma_buf_fd(dmabuf, O_CLOEXEC);
if (fd < 0) {
dma_buf_put(dmabuf);
ion_buffer_put(buffer);
}
return fd;
}
EXPORT_SYMBOL(ion_share_dma_buf);
struct ion_handle *ion_import_dma_buf(struct ion_client *client, int fd)
{
struct dma_buf *dmabuf;
struct ion_buffer *buffer;
struct ion_handle *handle;
dmabuf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dmabuf))
return ERR_PTR(PTR_ERR(dmabuf));
/* if this memory came from ion */
if (dmabuf->ops != &dma_buf_ops) {
pr_err("%s: can not import dmabuf from another exporter\n",
__func__);
dma_buf_put(dmabuf);
return ERR_PTR(-EINVAL);
}
buffer = dmabuf->priv;
mutex_lock(&client->lock);
/* if a handle exists for this buffer just take a reference to it */
handle = ion_handle_lookup(client, buffer);
if (!IS_ERR_OR_NULL(handle)) {
ion_handle_get(handle);
goto end;
}
handle = ion_handle_create(client, buffer);
if (IS_ERR_OR_NULL(handle))
goto end;
ion_handle_add(client, handle);
end:
mutex_unlock(&client->lock);
dma_buf_put(dmabuf);
return handle;
}
EXPORT_SYMBOL(ion_import_dma_buf);
static int ion_sync_for_device(struct ion_client *client, int fd)
{
struct dma_buf *dmabuf;
struct ion_buffer *buffer;
dmabuf = dma_buf_get(fd);
if (IS_ERR_OR_NULL(dmabuf))
return PTR_ERR(dmabuf);
/* if this memory came from ion */
if (dmabuf->ops != &dma_buf_ops) {
pr_err("%s: can not sync dmabuf from another exporter\n",
__func__);
dma_buf_put(dmabuf);
return -EINVAL;
}
buffer = dmabuf->priv;
dma_sync_sg_for_device(NULL, buffer->sg_table->sgl,
buffer->sg_table->nents, DMA_BIDIRECTIONAL);
dma_buf_put(dmabuf);
return 0;
}
static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct ion_client *client = filp->private_data;
switch (cmd) {
case ION_IOC_ALLOC:
{
struct ion_allocation_data data;
if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
return -EFAULT;
data.handle = ion_alloc(client, data.len, data.align,
data.heap_mask, data.flags);
if (IS_ERR(data.handle))
return PTR_ERR(data.handle);
if (copy_to_user((void __user *)arg, &data, sizeof(data))) {
ion_free(client, data.handle);
return -EFAULT;
}
break;
}
case ION_IOC_FREE:
{
struct ion_handle_data data;
bool valid;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_handle_data)))
return -EFAULT;
mutex_lock(&client->lock);
valid = ion_handle_validate(client, data.handle);
mutex_unlock(&client->lock);
if (!valid)
return -EINVAL;
ion_free(client, data.handle);
break;
}
case ION_IOC_MAP:
case ION_IOC_SHARE:
{
struct ion_fd_data data;
if (copy_from_user(&data, (void __user *)arg, sizeof(data)))
return -EFAULT;
data.fd = ion_share_dma_buf(client, data.handle);
if (copy_to_user((void __user *)arg, &data, sizeof(data)))
return -EFAULT;
if (data.fd < 0)
return data.fd;
break;
}
case ION_IOC_IMPORT:
{
struct ion_fd_data data;
int ret = 0;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_fd_data)))
return -EFAULT;
data.handle = ion_import_dma_buf(client, data.fd);
if (IS_ERR(data.handle)) {
ret = PTR_ERR(data.handle);
data.handle = NULL;
}
if (copy_to_user((void __user *)arg, &data,
sizeof(struct ion_fd_data)))
return -EFAULT;
if (ret < 0)
return ret;
break;
}
case ION_IOC_SYNC:
{
struct ion_fd_data data;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_fd_data)))
return -EFAULT;
ion_sync_for_device(client, data.fd);
break;
}
case ION_IOC_CUSTOM:
{
struct ion_device *dev = client->dev;
struct ion_custom_data data;
if (!dev->custom_ioctl)
return -ENOTTY;
if (copy_from_user(&data, (void __user *)arg,
sizeof(struct ion_custom_data)))
return -EFAULT;
return dev->custom_ioctl(client, data.cmd, data.arg);
}
case ION_IOC_CLEAN_CACHES:
return client->dev->custom_ioctl(client,
ION_IOC_CLEAN_CACHES, arg);
case ION_IOC_INV_CACHES:
return client->dev->custom_ioctl(client,
ION_IOC_INV_CACHES, arg);
case ION_IOC_CLEAN_INV_CACHES:
return client->dev->custom_ioctl(client,
ION_IOC_CLEAN_INV_CACHES, arg);
default:
return -ENOTTY;
}
return 0;
}
static int ion_release(struct inode *inode, struct file *file)
{
struct ion_client *client = file->private_data;
pr_debug("%s: %d\n", __func__, __LINE__);
ion_client_destroy(client);
return 0;
}
static int ion_open(struct inode *inode, struct file *file)
{
struct miscdevice *miscdev = file->private_data;
struct ion_device *dev = container_of(miscdev, struct ion_device, dev);
struct ion_client *client;
char debug_name[64];
pr_debug("%s: %d\n", __func__, __LINE__);
snprintf(debug_name, 64, "%u", task_pid_nr(current->group_leader));
client = ion_client_create(dev, -1, debug_name);
if (IS_ERR_OR_NULL(client))
return PTR_ERR(client);
file->private_data = client;
return 0;
}
static const struct file_operations ion_fops = {
.owner = THIS_MODULE,
.open = ion_open,
.release = ion_release,
.unlocked_ioctl = ion_ioctl,
};
static size_t ion_debug_heap_total(struct ion_client *client,
enum ion_heap_ids id)
{
size_t size = 0;
struct rb_node *n;
mutex_lock(&client->lock);
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
struct ion_handle *handle = rb_entry(n,
struct ion_handle,
node);
if (handle->buffer->heap->id == id)
size += handle->buffer->size;
}
mutex_unlock(&client->lock);
return size;
}
/**
* Searches through a clients handles to find if the buffer is owned
* by this client. Used for debug output.
* @param client pointer to candidate owner of buffer
* @param buf pointer to buffer that we are trying to find the owner of
* @return 1 if found, 0 otherwise
*/
static int ion_debug_find_buffer_owner(const struct ion_client *client,
const struct ion_buffer *buf)
{
struct rb_node *n;
for (n = rb_first(&client->handles); n; n = rb_next(n)) {
const struct ion_handle *handle = rb_entry(n,
const struct ion_handle,
node);
if (handle->buffer == buf)
return 1;
}
return 0;
}
/**
* Adds mem_map_data pointer to the tree of mem_map
* Used for debug output.
* @param mem_map The mem_map tree
* @param data The new data to add to the tree
*/
static void ion_debug_mem_map_add(struct rb_root *mem_map,
struct mem_map_data *data)
{
struct rb_node **p = &mem_map->rb_node;
struct rb_node *parent = NULL;
struct mem_map_data *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct mem_map_data, node);
if (data->addr < entry->addr) {
p = &(*p)->rb_left;
} else if (data->addr > entry->addr) {
p = &(*p)->rb_right;
} else {
pr_err("%s: mem_map_data already found.", __func__);
BUG();
}
}
rb_link_node(&data->node, parent, p);
rb_insert_color(&data->node, mem_map);
}
/**
* Search for an owner of a buffer by iterating over all ION clients.
* @param dev ion device containing pointers to all the clients.
* @param buffer pointer to buffer we are trying to find the owner of.
* @return name of owner.
*/
const char *ion_debug_locate_owner(const struct ion_device *dev,
const struct ion_buffer *buffer)
{
struct rb_node *j;
const char *client_name = NULL;
for (j = rb_first(&dev->clients); j && !client_name;
j = rb_next(j)) {
struct ion_client *client = rb_entry(j, struct ion_client,
node);
if (ion_debug_find_buffer_owner(client, buffer))
client_name = client->name;
}
return client_name;
}
/**
* Create a mem_map of the heap.
* @param s seq_file to log error message to.
* @param heap The heap to create mem_map for.
* @param mem_map The mem map to be created.
*/
void ion_debug_mem_map_create(struct seq_file *s, struct ion_heap *heap,
struct rb_root *mem_map)
{
struct ion_device *dev = heap->dev;
struct rb_node *n;
size_t size;
if (!heap->ops->phys)
return;
for (n = rb_first(&dev->buffers); n; n = rb_next(n)) {
struct ion_buffer *buffer =
rb_entry(n, struct ion_buffer, node);
if (buffer->heap->id == heap->id) {
struct mem_map_data *data =
kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
seq_printf(s, "ERROR: out of memory. "
"Part of memory map will not be logged\n");
break;
}
buffer->heap->ops->phys(buffer->heap, buffer,
&(data->addr), &size);
data->size = (unsigned long) size;
data->addr_end = data->addr + data->size - 1;
data->client_name = ion_debug_locate_owner(dev, buffer);
ion_debug_mem_map_add(mem_map, data);
}
}
}
/**
* Free the memory allocated by ion_debug_mem_map_create
* @param mem_map The mem map to free.
*/
static void ion_debug_mem_map_destroy(struct rb_root *mem_map)
{
if (mem_map) {
struct rb_node *n;
while ((n = rb_first(mem_map)) != 0) {
struct mem_map_data *data =
rb_entry(n, struct mem_map_data, node);
rb_erase(&data->node, mem_map);
kfree(data);
}
}
}
/**
* Print heap debug information.
* @param s seq_file to log message to.
* @param heap pointer to heap that we will print debug information for.
*/
static void ion_heap_print_debug(struct seq_file *s, struct ion_heap *heap)
{
if (heap->ops->print_debug) {
struct rb_root mem_map = RB_ROOT;
ion_debug_mem_map_create(s, heap, &mem_map);
heap->ops->print_debug(heap, s, &mem_map);
ion_debug_mem_map_destroy(&mem_map);
}
}
static int ion_debug_heap_show(struct seq_file *s, void *unused)
{
struct ion_heap *heap = s->private;
struct ion_device *dev = heap->dev;
struct rb_node *n;
mutex_lock(&dev->lock);
seq_printf(s, "%16.s %16.s %16.s\n", "client", "pid", "size");
for (n = rb_first(&dev->clients); n; n = rb_next(n)) {
struct ion_client *client = rb_entry(n, struct ion_client,
node);
size_t size = ion_debug_heap_total(client, heap->id);
if (!size)
continue;
if (client->task) {
char task_comm[TASK_COMM_LEN];
get_task_comm(task_comm, client->task);
seq_printf(s, "%16.s %16u %16u\n", task_comm,
client->pid, size);
} else {
seq_printf(s, "%16.s %16u %16u\n", client->name,
client->pid, size);
}
}
ion_heap_print_debug(s, heap);
mutex_unlock(&dev->lock);
return 0;
}
static int ion_debug_heap_open(struct inode *inode, struct file *file)
{
return single_open(file, ion_debug_heap_show, inode->i_private);
}
static const struct file_operations debug_heap_fops = {
.open = ion_debug_heap_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static size_t ion_heap_free_list_is_empty(struct ion_heap *heap)
{
bool is_empty;
rt_mutex_lock(&heap->lock);
is_empty = list_empty(&heap->free_list);
rt_mutex_unlock(&heap->lock);
return is_empty;
}
static int ion_heap_deferred_free(void *data)
{
struct ion_heap *heap = data;
while (true) {
struct ion_buffer *buffer;
wait_event_freezable(heap->waitqueue,
!ion_heap_free_list_is_empty(heap));
rt_mutex_lock(&heap->lock);
if (list_empty(&heap->free_list)) {
rt_mutex_unlock(&heap->lock);
continue;
}
buffer = list_first_entry(&heap->free_list, struct ion_buffer,
list);
list_del(&buffer->list);
rt_mutex_unlock(&heap->lock);
_ion_buffer_destroy(buffer);
}
return 0;
}
static bool ion_heap_drain_freelist(struct ion_heap *heap)
{
struct ion_buffer *buffer, *tmp;
if (ion_heap_free_list_is_empty(heap))
return false;
rt_mutex_lock(&heap->lock);
list_for_each_entry_safe(buffer, tmp, &heap->free_list, list) {
list_del(&buffer->list);
_ion_buffer_destroy(buffer);
}
BUG_ON(!list_empty(&heap->free_list));
rt_mutex_unlock(&heap->lock);
return true;
}
void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap)
{
struct rb_node **p = &dev->heaps.rb_node;
struct rb_node *parent = NULL;
struct ion_heap *entry;
if (!heap->ops->allocate || !heap->ops->free || !heap->ops->map_dma ||
!heap->ops->unmap_dma)
pr_err("%s: can not add heap with invalid ops struct.\n",
__func__);
if (heap->flags & ION_HEAP_FLAG_DEFER_FREE) {
INIT_LIST_HEAD(&heap->free_list);
rt_mutex_init(&heap->lock);
init_waitqueue_head(&heap->waitqueue);
heap->task = kthread_run(ion_heap_deferred_free, heap,
"%s", heap->name);
sched_setscheduler(heap->task, SCHED_IDLE, &param);
if (IS_ERR(heap->task))
pr_err("%s: creating thread for deferred free failed\n",
__func__);
}
heap->dev = dev;
mutex_lock(&dev->lock);
while (*p) {
parent = *p;
entry = rb_entry(parent, struct ion_heap, node);
if (heap->id < entry->id) {
p = &(*p)->rb_left;
} else if (heap->id > entry->id ) {
p = &(*p)->rb_right;
} else {
pr_err("%s: can not insert multiple heaps with "
"id %d\n", __func__, heap->id);
goto end;
}
}
rb_link_node(&heap->node, parent, p);
rb_insert_color(&heap->node, &dev->heaps);
debugfs_create_file(heap->name, 0664, dev->debug_root, heap,
&debug_heap_fops);
end:
mutex_unlock(&dev->lock);
}
int ion_secure_handle(struct ion_client *client, struct ion_handle *handle,
int version, void *data, int flags)
{
int ret = -EINVAL;
struct ion_heap *heap;
struct ion_buffer *buffer;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
WARN(1, "%s: invalid handle passed to secure.\n", __func__);
goto out_unlock;
}
buffer = handle->buffer;
heap = buffer->heap;
if (!ion_heap_allow_handle_secure(heap->type)) {
pr_err("%s: cannot secure buffer from non secure heap\n",
__func__);
goto out_unlock;
}
BUG_ON(!buffer->heap->ops->secure_buffer);
/*
* Protect the handle via the client lock to ensure we aren't
* racing with free
*/
ret = buffer->heap->ops->secure_buffer(buffer, version, data, flags);
out_unlock:
mutex_unlock(&client->lock);
return ret;
}
int ion_unsecure_handle(struct ion_client *client, struct ion_handle *handle)
{
int ret = -EINVAL;
struct ion_heap *heap;
struct ion_buffer *buffer;
mutex_lock(&client->lock);
if (!ion_handle_validate(client, handle)) {
WARN(1, "%s: invalid handle passed to secure.\n", __func__);
goto out_unlock;
}
buffer = handle->buffer;
heap = buffer->heap;
if (!ion_heap_allow_handle_secure(heap->type)) {
pr_err("%s: cannot secure buffer from non secure heap\n",
__func__);
goto out_unlock;
}
BUG_ON(!buffer->heap->ops->unsecure_buffer);
/*
* Protect the handle via the client lock to ensure we aren't
* racing with free
*/
ret = buffer->heap->ops->unsecure_buffer(buffer, 0);
out_unlock:
mutex_unlock(&client->lock);
return ret;
}
int ion_secure_heap(struct ion_device *dev, int heap_id, int version,
void *data)
{
struct rb_node *n;
int ret_val = 0;
/*
* traverse the list of heaps available in this system
* and find the heap that is specified.
*/
mutex_lock(&dev->lock);
for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) {
struct ion_heap *heap = rb_entry(n, struct ion_heap, node);
if (!ion_heap_allow_heap_secure(heap->type))
continue;
if (ION_HEAP(heap->id) != heap_id)
continue;
if (heap->ops->secure_heap)
ret_val = heap->ops->secure_heap(heap, version, data);
else
ret_val = -EINVAL;
break;
}
mutex_unlock(&dev->lock);
return ret_val;
}
EXPORT_SYMBOL(ion_secure_heap);
int ion_unsecure_heap(struct ion_device *dev, int heap_id, int version,
void *data)
{
struct rb_node *n;
int ret_val = 0;
/*
* traverse the list of heaps available in this system
* and find the heap that is specified.
*/
mutex_lock(&dev->lock);
for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) {
struct ion_heap *heap = rb_entry(n, struct ion_heap, node);
if (!ion_heap_allow_heap_secure(heap->type))
continue;
if (ION_HEAP(heap->id) != heap_id)
continue;
if (heap->ops->secure_heap)
ret_val = heap->ops->unsecure_heap(heap, version, data);
else
ret_val = -EINVAL;
break;
}
mutex_unlock(&dev->lock);
return ret_val;
}
EXPORT_SYMBOL(ion_unsecure_heap);
static int ion_debug_leak_show(struct seq_file *s, void *unused)
{
struct ion_device *dev = s->private;
struct rb_node *n;
seq_printf(s, "%16.s %16.s %16.s %16.s\n", "buffer", "heap", "size",
"ref cnt");
mutex_lock(&dev->lock);
ion_mark_dangling_buffers_locked(dev);
/* Anyone still marked as a 1 means a leaked handle somewhere */
for (n = rb_first(&dev->buffers); n; n = rb_next(n)) {
struct ion_buffer *buf = rb_entry(n, struct ion_buffer,
node);
if (buf->marked == 1)
seq_printf(s, "%16.x %16.s %16.x %16.d\n",
(int)buf, buf->heap->name, buf->size,
atomic_read(&buf->ref.refcount));
}
mutex_unlock(&dev->lock);
return 0;
}
static int ion_debug_leak_open(struct inode *inode, struct file *file)
{
return single_open(file, ion_debug_leak_show, inode->i_private);
}
static const struct file_operations debug_leak_fops = {
.open = ion_debug_leak_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
struct ion_device *ion_device_create(long (*custom_ioctl)
(struct ion_client *client,
unsigned int cmd,
unsigned long arg))
{
struct ion_device *idev;
int ret;
idev = kzalloc(sizeof(struct ion_device), GFP_KERNEL);
if (!idev)
return ERR_PTR(-ENOMEM);
idev->dev.minor = MISC_DYNAMIC_MINOR;
idev->dev.name = "ion";
idev->dev.fops = &ion_fops;
idev->dev.parent = NULL;
ret = misc_register(&idev->dev);
if (ret) {
pr_err("ion: failed to register misc device.\n");
return ERR_PTR(ret);
}
idev->debug_root = debugfs_create_dir("ion", NULL);
if (IS_ERR_OR_NULL(idev->debug_root))
pr_err("ion: failed to create debug files.\n");
idev->custom_ioctl = custom_ioctl;
idev->buffers = RB_ROOT;
mutex_init(&idev->lock);
idev->heaps = RB_ROOT;
idev->clients = RB_ROOT;
debugfs_create_file("check_leaked_fds", 0664, idev->debug_root, idev,
&debug_leak_fops);
setup_ion_leak_check(idev->debug_root);
return idev;
}
void ion_device_destroy(struct ion_device *dev)
{
misc_deregister(&dev->dev);
/* XXX need to free the heaps and clients ? */
kfree(dev);
}
void __init ion_reserve(struct ion_platform_data *data)
{
int i, ret;
for (i = 0; i < data->nr; i++) {
if (data->heaps[i].size == 0)
continue;
ret = memblock_reserve(data->heaps[i].base,
data->heaps[i].size);
if (ret)
pr_err("memblock reserve of %x@%pa failed\n",
data->heaps[i].size,
&data->heaps[i].base);
}
}