blob: ceb30a40ca40a2bb35930f2ab2d79036e71bd1d8 [file] [log] [blame]
/*
* drivers/gpu/ion/ion_system_heap.c
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <asm/page.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/ion.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/iommu.h>
#include <linux/seq_file.h>
#include <mach/iommu_domains.h>
#include "ion_priv.h"
#include <mach/memory.h>
#include <asm/cacheflush.h>
#include <linux/msm_ion.h>
#include <linux/dma-mapping.h>
static atomic_t system_heap_allocated;
static atomic_t system_contig_heap_allocated;
static unsigned int system_heap_has_outer_cache;
static unsigned int system_heap_contig_has_outer_cache;
struct page_info {
struct page *page;
unsigned long order;
struct list_head list;
};
static struct page_info *alloc_largest_available(unsigned long size,
bool split_pages)
{
static unsigned int orders[] = {8, 4, 0};
struct page *page;
struct page_info *info;
int i;
for (i = 0; i < ARRAY_SIZE(orders); i++) {
if (size < (1 << orders[i]) * PAGE_SIZE)
continue;
page = alloc_pages(GFP_HIGHUSER | __GFP_ZERO |
__GFP_NOWARN | __GFP_NORETRY, orders[i]);
if (!page)
continue;
if (split_pages)
split_page(page, orders[i]);
info = kmap(page);
info->page = page;
info->order = orders[i];
return info;
}
return NULL;
}
static int ion_system_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long size, unsigned long align,
unsigned long flags)
{
struct sg_table *table;
struct scatterlist *sg;
int ret;
struct list_head pages;
struct page_info *info, *tmp_info;
int i = 0;
long size_remaining = PAGE_ALIGN(size);
bool split_pages = ion_buffer_fault_user_mappings(buffer);
INIT_LIST_HEAD(&pages);
while (size_remaining > 0) {
info = alloc_largest_available(size_remaining, split_pages);
if (!info)
goto err;
list_add_tail(&info->list, &pages);
size_remaining -= (1 << info->order) * PAGE_SIZE;
i++;
}
table = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!table)
goto err;
if (split_pages)
ret = sg_alloc_table(table, PAGE_ALIGN(size) / PAGE_SIZE,
GFP_KERNEL);
else
ret = sg_alloc_table(table, i, GFP_KERNEL);
if (ret)
goto err1;
sg = table->sgl;
list_for_each_entry_safe(info, tmp_info, &pages, list) {
struct page *page = info->page;
if (split_pages) {
for (i = 0; i < (1 << info->order); i++) {
sg_set_page(sg, page + i, PAGE_SIZE, 0);
sg = sg_next(sg);
}
} else {
sg_set_page(sg, page, (1 << info->order) * PAGE_SIZE,
0);
sg = sg_next(sg);
}
list_del(&info->list);
kunmap(page);
}
dma_sync_sg_for_device(NULL, table->sgl, table->nents,
DMA_BIDIRECTIONAL);
buffer->priv_virt = table;
atomic_add(size, &system_heap_allocated);
return 0;
err1:
kfree(table);
err:
list_for_each_entry(info, &pages, list) {
if (split_pages)
for (i = 0; i < (1 << info->order); i++)
__free_page(info->page + i);
else
__free_pages(info->page, info->order);
kunmap(info->page);
}
return -ENOMEM;
}
void ion_system_heap_free(struct ion_buffer *buffer)
{
int i;
struct scatterlist *sg;
struct sg_table *table = buffer->priv_virt;
for_each_sg(table->sgl, sg, table->nents, i)
__free_pages(sg_page(sg), get_order(sg_dma_len(sg)));
if (buffer->sg_table)
sg_free_table(buffer->sg_table);
kfree(buffer->sg_table);
atomic_sub(buffer->size, &system_heap_allocated);
}
struct sg_table *ion_system_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return;
}
void *ion_system_heap_map_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct scatterlist *sg;
int i, j;
void *vaddr;
pgprot_t pgprot;
struct sg_table *table = buffer->priv_virt;
int npages = PAGE_ALIGN(buffer->size) / PAGE_SIZE;
struct page **pages = kzalloc(sizeof(struct page *) * npages,
GFP_KERNEL);
struct page **tmp = pages;
if (buffer->flags & ION_FLAG_CACHED)
pgprot = PAGE_KERNEL;
else
pgprot = pgprot_writecombine(PAGE_KERNEL);
for_each_sg(table->sgl, sg, table->nents, i) {
int npages_this_entry = PAGE_ALIGN(sg_dma_len(sg)) / PAGE_SIZE;
struct page *page = sg_page(sg);
BUG_ON(i >= npages);
for (j = 0; j < npages_this_entry; j++) {
*(tmp++) = page++;
}
}
vaddr = vmap(pages, npages, VM_MAP, pgprot);
kfree(pages);
return vaddr;
}
void ion_system_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
vunmap(buffer->vaddr);
}
void ion_system_heap_unmap_iommu(struct ion_iommu_map *data)
{
unsigned int domain_num;
unsigned int partition_num;
struct iommu_domain *domain;
if (!msm_use_iommu())
return;
domain_num = iommu_map_domain(data);
partition_num = iommu_map_partition(data);
domain = msm_get_iommu_domain(domain_num);
if (!domain) {
WARN(1, "Could not get domain %d. Corruption?\n", domain_num);
return;
}
iommu_unmap_range(domain, data->iova_addr, data->mapped_size);
msm_free_iova_address(data->iova_addr, domain_num, partition_num,
data->mapped_size);
return;
}
int ion_system_heap_map_user(struct ion_heap *heap, struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
struct sg_table *table = buffer->priv_virt;
unsigned long addr = vma->vm_start;
unsigned long offset = vma->vm_pgoff;
struct scatterlist *sg;
int i;
if (!ION_IS_CACHED(buffer->flags)) {
pr_err("%s: cannot map system heap uncached\n", __func__);
return -EINVAL;
}
for_each_sg(table->sgl, sg, table->nents, i) {
if (offset) {
offset--;
continue;
}
remap_pfn_range(vma, addr, page_to_pfn(sg_page(sg)),
sg_dma_len(sg), vma->vm_page_prot);
addr += sg_dma_len(sg);
}
return 0;
}
int ion_system_heap_cache_ops(struct ion_heap *heap, struct ion_buffer *buffer,
void *vaddr, unsigned int offset, unsigned int length,
unsigned int cmd)
{
void (*outer_cache_op)(phys_addr_t, phys_addr_t);
switch (cmd) {
case ION_IOC_CLEAN_CACHES:
if (!vaddr)
dma_sync_sg_for_device(NULL, buffer->sg_table->sgl,
buffer->sg_table->nents, DMA_TO_DEVICE);
else
dmac_clean_range(vaddr, vaddr + length);
outer_cache_op = outer_clean_range;
break;
case ION_IOC_INV_CACHES:
if (!vaddr)
dma_sync_sg_for_cpu(NULL, buffer->sg_table->sgl,
buffer->sg_table->nents, DMA_FROM_DEVICE);
else
dmac_inv_range(vaddr, vaddr + length);
outer_cache_op = outer_inv_range;
break;
case ION_IOC_CLEAN_INV_CACHES:
if (!vaddr) {
dma_sync_sg_for_device(NULL, buffer->sg_table->sgl,
buffer->sg_table->nents, DMA_TO_DEVICE);
dma_sync_sg_for_cpu(NULL, buffer->sg_table->sgl,
buffer->sg_table->nents, DMA_FROM_DEVICE);
} else {
dmac_flush_range(vaddr, vaddr + length);
}
outer_cache_op = outer_flush_range;
break;
default:
return -EINVAL;
}
if (system_heap_has_outer_cache) {
unsigned long pstart;
struct sg_table *table = buffer->priv_virt;
struct scatterlist *sg;
int i;
for_each_sg(table->sgl, sg, table->nents, i) {
struct page *page = sg_page(sg);
pstart = page_to_phys(page);
/*
* If page -> phys is returning NULL, something
* has really gone wrong...
*/
if (!pstart) {
WARN(1, "Could not translate virtual address to physical address\n");
return -EINVAL;
}
outer_cache_op(pstart, pstart + PAGE_SIZE);
}
}
return 0;
}
static int ion_system_print_debug(struct ion_heap *heap, struct seq_file *s,
const struct rb_root *unused)
{
seq_printf(s, "total bytes currently allocated: %lx\n",
(unsigned long) atomic_read(&system_heap_allocated));
return 0;
}
int ion_system_heap_map_iommu(struct ion_buffer *buffer,
struct ion_iommu_map *data,
unsigned int domain_num,
unsigned int partition_num,
unsigned long align,
unsigned long iova_length,
unsigned long flags)
{
int ret = 0;
struct iommu_domain *domain;
unsigned long extra;
unsigned long extra_iova_addr;
struct sg_table *table = buffer->priv_virt;
int prot = IOMMU_WRITE | IOMMU_READ;
prot |= ION_IS_CACHED(flags) ? IOMMU_CACHE : 0;
if (!ION_IS_CACHED(flags))
return -EINVAL;
if (!msm_use_iommu())
return -EINVAL;
data->mapped_size = iova_length;
extra = iova_length - buffer->size;
/* Use the biggest alignment to allow bigger IOMMU mappings.
* Use the first entry since the first entry will always be the
* biggest entry. To take advantage of bigger mapping sizes both the
* VA and PA addresses have to be aligned to the biggest size.
*/
if (table->sgl->length > align)
align = table->sgl->length;
ret = msm_allocate_iova_address(domain_num, partition_num,
data->mapped_size, align,
&data->iova_addr);
if (ret)
goto out;
domain = msm_get_iommu_domain(domain_num);
if (!domain) {
ret = -ENOMEM;
goto out1;
}
ret = iommu_map_range(domain, data->iova_addr, table->sgl,
buffer->size, prot);
if (ret) {
pr_err("%s: could not map %lx in domain %p\n",
__func__, data->iova_addr, domain);
goto out1;
}
extra_iova_addr = data->iova_addr + buffer->size;
if (extra) {
unsigned long phys_addr = sg_phys(table->sgl);
ret = msm_iommu_map_extra(domain, extra_iova_addr, phys_addr,
extra, SZ_4K, prot);
if (ret)
goto out2;
}
return ret;
out2:
iommu_unmap_range(domain, data->iova_addr, buffer->size);
out1:
msm_free_iova_address(data->iova_addr, domain_num, partition_num,
data->mapped_size);
out:
return ret;
}
static struct ion_heap_ops vmalloc_ops = {
.allocate = ion_system_heap_allocate,
.free = ion_system_heap_free,
.map_dma = ion_system_heap_map_dma,
.unmap_dma = ion_system_heap_unmap_dma,
.map_kernel = ion_system_heap_map_kernel,
.unmap_kernel = ion_system_heap_unmap_kernel,
.map_user = ion_system_heap_map_user,
.cache_op = ion_system_heap_cache_ops,
.print_debug = ion_system_print_debug,
.map_iommu = ion_system_heap_map_iommu,
.unmap_iommu = ion_system_heap_unmap_iommu,
};
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *pheap)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &vmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM;
system_heap_has_outer_cache = pheap->has_outer_cache;
return heap;
}
void ion_system_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}
static int ion_system_contig_heap_allocate(struct ion_heap *heap,
struct ion_buffer *buffer,
unsigned long len,
unsigned long align,
unsigned long flags)
{
buffer->priv_virt = kzalloc(len, GFP_KERNEL);
if (!buffer->priv_virt)
return -ENOMEM;
atomic_add(len, &system_contig_heap_allocated);
return 0;
}
void ion_system_contig_heap_free(struct ion_buffer *buffer)
{
kfree(buffer->priv_virt);
atomic_sub(buffer->size, &system_contig_heap_allocated);
}
static int ion_system_contig_heap_phys(struct ion_heap *heap,
struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len)
{
*addr = virt_to_phys(buffer->priv_virt);
*len = buffer->size;
return 0;
}
struct sg_table *ion_system_contig_heap_map_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
struct sg_table *table;
int ret;
table = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!table)
return ERR_PTR(-ENOMEM);
ret = sg_alloc_table(table, 1, GFP_KERNEL);
if (ret) {
kfree(table);
return ERR_PTR(ret);
}
sg_set_page(table->sgl, virt_to_page(buffer->priv_virt), buffer->size,
0);
return table;
}
void ion_system_contig_heap_unmap_dma(struct ion_heap *heap,
struct ion_buffer *buffer)
{
sg_free_table(buffer->sg_table);
kfree(buffer->sg_table);
}
int ion_system_contig_heap_map_user(struct ion_heap *heap,
struct ion_buffer *buffer,
struct vm_area_struct *vma)
{
unsigned long pfn = __phys_to_pfn(virt_to_phys(buffer->priv_virt));
if (ION_IS_CACHED(buffer->flags))
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
else {
pr_err("%s: cannot map system heap uncached\n", __func__);
return -EINVAL;
}
}
int ion_system_contig_heap_cache_ops(struct ion_heap *heap,
struct ion_buffer *buffer, void *vaddr,
unsigned int offset, unsigned int length,
unsigned int cmd)
{
void (*outer_cache_op)(phys_addr_t, phys_addr_t);
switch (cmd) {
case ION_IOC_CLEAN_CACHES:
dmac_clean_range(vaddr, vaddr + length);
outer_cache_op = outer_clean_range;
break;
case ION_IOC_INV_CACHES:
dmac_inv_range(vaddr, vaddr + length);
outer_cache_op = outer_inv_range;
break;
case ION_IOC_CLEAN_INV_CACHES:
dmac_flush_range(vaddr, vaddr + length);
outer_cache_op = outer_flush_range;
break;
default:
return -EINVAL;
}
if (system_heap_contig_has_outer_cache) {
unsigned long pstart;
pstart = virt_to_phys(buffer->priv_virt) + offset;
if (!pstart) {
WARN(1, "Could not do virt to phys translation on %p\n",
buffer->priv_virt);
return -EINVAL;
}
outer_cache_op(pstart, pstart + PAGE_SIZE);
}
return 0;
}
static int ion_system_contig_print_debug(struct ion_heap *heap,
struct seq_file *s,
const struct rb_root *unused)
{
seq_printf(s, "total bytes currently allocated: %lx\n",
(unsigned long) atomic_read(&system_contig_heap_allocated));
return 0;
}
int ion_system_contig_heap_map_iommu(struct ion_buffer *buffer,
struct ion_iommu_map *data,
unsigned int domain_num,
unsigned int partition_num,
unsigned long align,
unsigned long iova_length,
unsigned long flags)
{
int ret = 0;
struct iommu_domain *domain;
unsigned long extra;
struct scatterlist *sglist = 0;
struct page *page = 0;
int prot = IOMMU_WRITE | IOMMU_READ;
prot |= ION_IS_CACHED(flags) ? IOMMU_CACHE : 0;
if (!ION_IS_CACHED(flags))
return -EINVAL;
if (!msm_use_iommu()) {
data->iova_addr = virt_to_phys(buffer->vaddr);
return 0;
}
data->mapped_size = iova_length;
extra = iova_length - buffer->size;
ret = msm_allocate_iova_address(domain_num, partition_num,
data->mapped_size, align,
&data->iova_addr);
if (ret)
goto out;
domain = msm_get_iommu_domain(domain_num);
if (!domain) {
ret = -ENOMEM;
goto out1;
}
page = virt_to_page(buffer->vaddr);
sglist = vmalloc(sizeof(*sglist));
if (!sglist)
goto out1;
sg_init_table(sglist, 1);
sg_set_page(sglist, page, buffer->size, 0);
ret = iommu_map_range(domain, data->iova_addr, sglist,
buffer->size, prot);
if (ret) {
pr_err("%s: could not map %lx in domain %p\n",
__func__, data->iova_addr, domain);
goto out1;
}
if (extra) {
unsigned long extra_iova_addr = data->iova_addr + buffer->size;
unsigned long phys_addr = sg_phys(sglist);
ret = msm_iommu_map_extra(domain, extra_iova_addr, phys_addr,
extra, SZ_4K, prot);
if (ret)
goto out2;
}
vfree(sglist);
return ret;
out2:
iommu_unmap_range(domain, data->iova_addr, buffer->size);
out1:
vfree(sglist);
msm_free_iova_address(data->iova_addr, domain_num, partition_num,
data->mapped_size);
out:
return ret;
}
void *ion_system_contig_heap_map_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return buffer->priv_virt;
}
void ion_system_contig_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)
{
return;
}
static struct ion_heap_ops kmalloc_ops = {
.allocate = ion_system_contig_heap_allocate,
.free = ion_system_contig_heap_free,
.phys = ion_system_contig_heap_phys,
.map_dma = ion_system_contig_heap_map_dma,
.unmap_dma = ion_system_contig_heap_unmap_dma,
.map_kernel = ion_system_contig_heap_map_kernel,
.unmap_kernel = ion_system_contig_heap_unmap_kernel,
.map_user = ion_system_contig_heap_map_user,
.cache_op = ion_system_contig_heap_cache_ops,
.print_debug = ion_system_contig_print_debug,
.map_iommu = ion_system_contig_heap_map_iommu,
.unmap_iommu = ion_system_heap_unmap_iommu,
};
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *pheap)
{
struct ion_heap *heap;
heap = kzalloc(sizeof(struct ion_heap), GFP_KERNEL);
if (!heap)
return ERR_PTR(-ENOMEM);
heap->ops = &kmalloc_ops;
heap->type = ION_HEAP_TYPE_SYSTEM_CONTIG;
system_heap_contig_has_outer_cache = pheap->has_outer_cache;
return heap;
}
void ion_system_contig_heap_destroy(struct ion_heap *heap)
{
kfree(heap);
}