|  | /*---------------------------------------------------------------------------+ | 
|  | |  errors.c                                                                 | | 
|  | |                                                                           | | 
|  | |  The error handling functions for wm-FPU-emu                              | | 
|  | |                                                                           | | 
|  | | Copyright (C) 1992,1993,1994,1996                                         | | 
|  | |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
|  | |                  E-mail   [email protected]                | | 
|  | |                                                                           | | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  |  | 
|  | /*---------------------------------------------------------------------------+ | 
|  | | Note:                                                                     | | 
|  | |    The file contains code which accesses user memory.                     | | 
|  | |    Emulator static data may change when user memory is accessed, due to   | | 
|  | |    other processes using the emulator while swapping is in progress.      | | 
|  | +---------------------------------------------------------------------------*/ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include "fpu_emu.h" | 
|  | #include "fpu_system.h" | 
|  | #include "exception.h" | 
|  | #include "status_w.h" | 
|  | #include "control_w.h" | 
|  | #include "reg_constant.h" | 
|  | #include "version.h" | 
|  |  | 
|  | /* */ | 
|  | #undef PRINT_MESSAGES | 
|  | /* */ | 
|  |  | 
|  | #if 0 | 
|  | void Un_impl(void) | 
|  | { | 
|  | u_char byte1, FPU_modrm; | 
|  | unsigned long address = FPU_ORIG_EIP; | 
|  |  | 
|  | RE_ENTRANT_CHECK_OFF; | 
|  | /* No need to check access_ok(), we have previously fetched these bytes. */ | 
|  | printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *)address); | 
|  | if (FPU_CS == __USER_CS) { | 
|  | while (1) { | 
|  | FPU_get_user(byte1, (u_char __user *) address); | 
|  | if ((byte1 & 0xf8) == 0xd8) | 
|  | break; | 
|  | printk("[%02x]", byte1); | 
|  | address++; | 
|  | } | 
|  | printk("%02x ", byte1); | 
|  | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | 
|  |  | 
|  | if (FPU_modrm >= 0300) | 
|  | printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, | 
|  | FPU_modrm & 7); | 
|  | else | 
|  | printk("/%d\n", (FPU_modrm >> 3) & 7); | 
|  | } else { | 
|  | printk("cs selector = %04x\n", FPU_CS); | 
|  | } | 
|  |  | 
|  | RE_ENTRANT_CHECK_ON; | 
|  |  | 
|  | EXCEPTION(EX_Invalid); | 
|  |  | 
|  | } | 
|  | #endif /*  0  */ | 
|  |  | 
|  | /* | 
|  | Called for opcodes which are illegal and which are known to result in a | 
|  | SIGILL with a real 80486. | 
|  | */ | 
|  | void FPU_illegal(void) | 
|  | { | 
|  | math_abort(FPU_info, SIGILL); | 
|  | } | 
|  |  | 
|  | void FPU_printall(void) | 
|  | { | 
|  | int i; | 
|  | static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty", | 
|  | "DeNorm", "Inf", "NaN" | 
|  | }; | 
|  | u_char byte1, FPU_modrm; | 
|  | unsigned long address = FPU_ORIG_EIP; | 
|  |  | 
|  | RE_ENTRANT_CHECK_OFF; | 
|  | /* No need to check access_ok(), we have previously fetched these bytes. */ | 
|  | printk("At %p:", (void *)address); | 
|  | if (FPU_CS == __USER_CS) { | 
|  | #define MAX_PRINTED_BYTES 20 | 
|  | for (i = 0; i < MAX_PRINTED_BYTES; i++) { | 
|  | FPU_get_user(byte1, (u_char __user *) address); | 
|  | if ((byte1 & 0xf8) == 0xd8) { | 
|  | printk(" %02x", byte1); | 
|  | break; | 
|  | } | 
|  | printk(" [%02x]", byte1); | 
|  | address++; | 
|  | } | 
|  | if (i == MAX_PRINTED_BYTES) | 
|  | printk(" [more..]\n"); | 
|  | else { | 
|  | FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | 
|  |  | 
|  | if (FPU_modrm >= 0300) | 
|  | printk(" %02x (%02x+%d)\n", FPU_modrm, | 
|  | FPU_modrm & 0xf8, FPU_modrm & 7); | 
|  | else | 
|  | printk(" /%d, mod=%d rm=%d\n", | 
|  | (FPU_modrm >> 3) & 7, | 
|  | (FPU_modrm >> 6) & 3, FPU_modrm & 7); | 
|  | } | 
|  | } else { | 
|  | printk("%04x\n", FPU_CS); | 
|  | } | 
|  |  | 
|  | partial_status = status_word(); | 
|  |  | 
|  | #ifdef DEBUGGING | 
|  | if (partial_status & SW_Backward) | 
|  | printk("SW: backward compatibility\n"); | 
|  | if (partial_status & SW_C3) | 
|  | printk("SW: condition bit 3\n"); | 
|  | if (partial_status & SW_C2) | 
|  | printk("SW: condition bit 2\n"); | 
|  | if (partial_status & SW_C1) | 
|  | printk("SW: condition bit 1\n"); | 
|  | if (partial_status & SW_C0) | 
|  | printk("SW: condition bit 0\n"); | 
|  | if (partial_status & SW_Summary) | 
|  | printk("SW: exception summary\n"); | 
|  | if (partial_status & SW_Stack_Fault) | 
|  | printk("SW: stack fault\n"); | 
|  | if (partial_status & SW_Precision) | 
|  | printk("SW: loss of precision\n"); | 
|  | if (partial_status & SW_Underflow) | 
|  | printk("SW: underflow\n"); | 
|  | if (partial_status & SW_Overflow) | 
|  | printk("SW: overflow\n"); | 
|  | if (partial_status & SW_Zero_Div) | 
|  | printk("SW: divide by zero\n"); | 
|  | if (partial_status & SW_Denorm_Op) | 
|  | printk("SW: denormalized operand\n"); | 
|  | if (partial_status & SW_Invalid) | 
|  | printk("SW: invalid operation\n"); | 
|  | #endif /* DEBUGGING */ | 
|  |  | 
|  | printk(" SW: b=%d st=%d es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", partial_status & 0x8000 ? 1 : 0,	/* busy */ | 
|  | (partial_status & 0x3800) >> 11,	/* stack top pointer */ | 
|  | partial_status & 0x80 ? 1 : 0,	/* Error summary status */ | 
|  | partial_status & 0x40 ? 1 : 0,	/* Stack flag */ | 
|  | partial_status & SW_C3 ? 1 : 0, partial_status & SW_C2 ? 1 : 0,	/* cc */ | 
|  | partial_status & SW_C1 ? 1 : 0, partial_status & SW_C0 ? 1 : 0,	/* cc */ | 
|  | partial_status & SW_Precision ? 1 : 0, | 
|  | partial_status & SW_Underflow ? 1 : 0, | 
|  | partial_status & SW_Overflow ? 1 : 0, | 
|  | partial_status & SW_Zero_Div ? 1 : 0, | 
|  | partial_status & SW_Denorm_Op ? 1 : 0, | 
|  | partial_status & SW_Invalid ? 1 : 0); | 
|  |  | 
|  | printk(" CW: ic=%d rc=%d%d pc=%d%d iem=%d     ef=%d%d%d%d%d%d\n", | 
|  | control_word & 0x1000 ? 1 : 0, | 
|  | (control_word & 0x800) >> 11, (control_word & 0x400) >> 10, | 
|  | (control_word & 0x200) >> 9, (control_word & 0x100) >> 8, | 
|  | control_word & 0x80 ? 1 : 0, | 
|  | control_word & SW_Precision ? 1 : 0, | 
|  | control_word & SW_Underflow ? 1 : 0, | 
|  | control_word & SW_Overflow ? 1 : 0, | 
|  | control_word & SW_Zero_Div ? 1 : 0, | 
|  | control_word & SW_Denorm_Op ? 1 : 0, | 
|  | control_word & SW_Invalid ? 1 : 0); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | FPU_REG *r = &st(i); | 
|  | u_char tagi = FPU_gettagi(i); | 
|  | switch (tagi) { | 
|  | case TAG_Empty: | 
|  | continue; | 
|  | break; | 
|  | case TAG_Zero: | 
|  | case TAG_Special: | 
|  | tagi = FPU_Special(r); | 
|  | case TAG_Valid: | 
|  | printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i, | 
|  | getsign(r) ? '-' : '+', | 
|  | (long)(r->sigh >> 16), | 
|  | (long)(r->sigh & 0xFFFF), | 
|  | (long)(r->sigl >> 16), | 
|  | (long)(r->sigl & 0xFFFF), | 
|  | exponent(r) - EXP_BIAS + 1); | 
|  | break; | 
|  | default: | 
|  | printk("Whoops! Error in errors.c: tag%d is %d ", i, | 
|  | tagi); | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | printk("%s\n", tag_desc[(int)(unsigned)tagi]); | 
|  | } | 
|  |  | 
|  | RE_ENTRANT_CHECK_ON; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct { | 
|  | int type; | 
|  | const char *name; | 
|  | } exception_names[] = { | 
|  | { | 
|  | EX_StackOver, "stack overflow"}, { | 
|  | EX_StackUnder, "stack underflow"}, { | 
|  | EX_Precision, "loss of precision"}, { | 
|  | EX_Underflow, "underflow"}, { | 
|  | EX_Overflow, "overflow"}, { | 
|  | EX_ZeroDiv, "divide by zero"}, { | 
|  | EX_Denormal, "denormalized operand"}, { | 
|  | EX_Invalid, "invalid operation"}, { | 
|  | EX_INTERNAL, "INTERNAL BUG in " FPU_VERSION}, { | 
|  | 0, NULL} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | EX_INTERNAL is always given with a code which indicates where the | 
|  | error was detected. | 
|  |  | 
|  | Internal error types: | 
|  | 0x14   in fpu_etc.c | 
|  | 0x1nn  in a *.c file: | 
|  | 0x101  in reg_add_sub.c | 
|  | 0x102  in reg_mul.c | 
|  | 0x104  in poly_atan.c | 
|  | 0x105  in reg_mul.c | 
|  | 0x107  in fpu_trig.c | 
|  | 0x108  in reg_compare.c | 
|  | 0x109  in reg_compare.c | 
|  | 0x110  in reg_add_sub.c | 
|  | 0x111  in fpe_entry.c | 
|  | 0x112  in fpu_trig.c | 
|  | 0x113  in errors.c | 
|  | 0x115  in fpu_trig.c | 
|  | 0x116  in fpu_trig.c | 
|  | 0x117  in fpu_trig.c | 
|  | 0x118  in fpu_trig.c | 
|  | 0x119  in fpu_trig.c | 
|  | 0x120  in poly_atan.c | 
|  | 0x121  in reg_compare.c | 
|  | 0x122  in reg_compare.c | 
|  | 0x123  in reg_compare.c | 
|  | 0x125  in fpu_trig.c | 
|  | 0x126  in fpu_entry.c | 
|  | 0x127  in poly_2xm1.c | 
|  | 0x128  in fpu_entry.c | 
|  | 0x129  in fpu_entry.c | 
|  | 0x130  in get_address.c | 
|  | 0x131  in get_address.c | 
|  | 0x132  in get_address.c | 
|  | 0x133  in get_address.c | 
|  | 0x140  in load_store.c | 
|  | 0x141  in load_store.c | 
|  | 0x150  in poly_sin.c | 
|  | 0x151  in poly_sin.c | 
|  | 0x160  in reg_ld_str.c | 
|  | 0x161  in reg_ld_str.c | 
|  | 0x162  in reg_ld_str.c | 
|  | 0x163  in reg_ld_str.c | 
|  | 0x164  in reg_ld_str.c | 
|  | 0x170  in fpu_tags.c | 
|  | 0x171  in fpu_tags.c | 
|  | 0x172  in fpu_tags.c | 
|  | 0x180  in reg_convert.c | 
|  | 0x2nn  in an *.S file: | 
|  | 0x201  in reg_u_add.S | 
|  | 0x202  in reg_u_div.S | 
|  | 0x203  in reg_u_div.S | 
|  | 0x204  in reg_u_div.S | 
|  | 0x205  in reg_u_mul.S | 
|  | 0x206  in reg_u_sub.S | 
|  | 0x207  in wm_sqrt.S | 
|  | 0x208  in reg_div.S | 
|  | 0x209  in reg_u_sub.S | 
|  | 0x210  in reg_u_sub.S | 
|  | 0x211  in reg_u_sub.S | 
|  | 0x212  in reg_u_sub.S | 
|  | 0x213  in wm_sqrt.S | 
|  | 0x214  in wm_sqrt.S | 
|  | 0x215  in wm_sqrt.S | 
|  | 0x220  in reg_norm.S | 
|  | 0x221  in reg_norm.S | 
|  | 0x230  in reg_round.S | 
|  | 0x231  in reg_round.S | 
|  | 0x232  in reg_round.S | 
|  | 0x233  in reg_round.S | 
|  | 0x234  in reg_round.S | 
|  | 0x235  in reg_round.S | 
|  | 0x236  in reg_round.S | 
|  | 0x240  in div_Xsig.S | 
|  | 0x241  in div_Xsig.S | 
|  | 0x242  in div_Xsig.S | 
|  | */ | 
|  |  | 
|  | asmlinkage void FPU_exception(int n) | 
|  | { | 
|  | int i, int_type; | 
|  |  | 
|  | int_type = 0;		/* Needed only to stop compiler warnings */ | 
|  | if (n & EX_INTERNAL) { | 
|  | int_type = n - EX_INTERNAL; | 
|  | n = EX_INTERNAL; | 
|  | /* Set lots of exception bits! */ | 
|  | partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward); | 
|  | } else { | 
|  | /* Extract only the bits which we use to set the status word */ | 
|  | n &= (SW_Exc_Mask); | 
|  | /* Set the corresponding exception bit */ | 
|  | partial_status |= n; | 
|  | /* Set summary bits iff exception isn't masked */ | 
|  | if (partial_status & ~control_word & CW_Exceptions) | 
|  | partial_status |= (SW_Summary | SW_Backward); | 
|  | if (n & (SW_Stack_Fault | EX_Precision)) { | 
|  | if (!(n & SW_C1)) | 
|  | /* This bit distinguishes over- from underflow for a stack fault, | 
|  | and roundup from round-down for precision loss. */ | 
|  | partial_status &= ~SW_C1; | 
|  | } | 
|  | } | 
|  |  | 
|  | RE_ENTRANT_CHECK_OFF; | 
|  | if ((~control_word & n & CW_Exceptions) || (n == EX_INTERNAL)) { | 
|  | #ifdef PRINT_MESSAGES | 
|  | /* My message from the sponsor */ | 
|  | printk(FPU_VERSION " " __DATE__ " (C) W. Metzenthen.\n"); | 
|  | #endif /* PRINT_MESSAGES */ | 
|  |  | 
|  | /* Get a name string for error reporting */ | 
|  | for (i = 0; exception_names[i].type; i++) | 
|  | if ((exception_names[i].type & n) == | 
|  | exception_names[i].type) | 
|  | break; | 
|  |  | 
|  | if (exception_names[i].type) { | 
|  | #ifdef PRINT_MESSAGES | 
|  | printk("FP Exception: %s!\n", exception_names[i].name); | 
|  | #endif /* PRINT_MESSAGES */ | 
|  | } else | 
|  | printk("FPU emulator: Unknown Exception: 0x%04x!\n", n); | 
|  |  | 
|  | if (n == EX_INTERNAL) { | 
|  | printk("FPU emulator: Internal error type 0x%04x\n", | 
|  | int_type); | 
|  | FPU_printall(); | 
|  | } | 
|  | #ifdef PRINT_MESSAGES | 
|  | else | 
|  | FPU_printall(); | 
|  | #endif /* PRINT_MESSAGES */ | 
|  |  | 
|  | /* | 
|  | * The 80486 generates an interrupt on the next non-control FPU | 
|  | * instruction. So we need some means of flagging it. | 
|  | * We use the ES (Error Summary) bit for this. | 
|  | */ | 
|  | } | 
|  | RE_ENTRANT_CHECK_ON; | 
|  |  | 
|  | #ifdef __DEBUG__ | 
|  | math_abort(FPU_info, SIGFPE); | 
|  | #endif /* __DEBUG__ */ | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Real operation attempted on a NaN. */ | 
|  | /* Returns < 0 if the exception is unmasked */ | 
|  | int real_1op_NaN(FPU_REG *a) | 
|  | { | 
|  | int signalling, isNaN; | 
|  |  | 
|  | isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000); | 
|  |  | 
|  | /* The default result for the case of two "equal" NaNs (signs may | 
|  | differ) is chosen to reproduce 80486 behaviour */ | 
|  | signalling = isNaN && !(a->sigh & 0x40000000); | 
|  |  | 
|  | if (!signalling) { | 
|  | if (!isNaN) {	/* pseudo-NaN, or other unsupported? */ | 
|  | if (control_word & CW_Invalid) { | 
|  | /* Masked response */ | 
|  | reg_copy(&CONST_QNaN, a); | 
|  | } | 
|  | EXCEPTION(EX_Invalid); | 
|  | return (!(control_word & CW_Invalid) ? FPU_Exception : | 
|  | 0) | TAG_Special; | 
|  | } | 
|  | return TAG_Special; | 
|  | } | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | if (!(a->sigh & 0x80000000)) {	/* pseudo-NaN ? */ | 
|  | reg_copy(&CONST_QNaN, a); | 
|  | } | 
|  | /* ensure a Quiet NaN */ | 
|  | a->sigh |= 0x40000000; | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_Invalid); | 
|  |  | 
|  | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
|  | } | 
|  |  | 
|  | /* Real operation attempted on two operands, one a NaN. */ | 
|  | /* Returns < 0 if the exception is unmasked */ | 
|  | int real_2op_NaN(FPU_REG const *b, u_char tagb, | 
|  | int deststnr, FPU_REG const *defaultNaN) | 
|  | { | 
|  | FPU_REG *dest = &st(deststnr); | 
|  | FPU_REG const *a = dest; | 
|  | u_char taga = FPU_gettagi(deststnr); | 
|  | FPU_REG const *x; | 
|  | int signalling, unsupported; | 
|  |  | 
|  | if (taga == TAG_Special) | 
|  | taga = FPU_Special(a); | 
|  | if (tagb == TAG_Special) | 
|  | tagb = FPU_Special(b); | 
|  |  | 
|  | /* TW_NaN is also used for unsupported data types. */ | 
|  | unsupported = ((taga == TW_NaN) | 
|  | && !((exponent(a) == EXP_OVER) | 
|  | && (a->sigh & 0x80000000))) | 
|  | || ((tagb == TW_NaN) | 
|  | && !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000))); | 
|  | if (unsupported) { | 
|  | if (control_word & CW_Invalid) { | 
|  | /* Masked response */ | 
|  | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | 
|  | } | 
|  | EXCEPTION(EX_Invalid); | 
|  | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | | 
|  | TAG_Special; | 
|  | } | 
|  |  | 
|  | if (taga == TW_NaN) { | 
|  | x = a; | 
|  | if (tagb == TW_NaN) { | 
|  | signalling = !(a->sigh & b->sigh & 0x40000000); | 
|  | if (significand(b) > significand(a)) | 
|  | x = b; | 
|  | else if (significand(b) == significand(a)) { | 
|  | /* The default result for the case of two "equal" NaNs (signs may | 
|  | differ) is chosen to reproduce 80486 behaviour */ | 
|  | x = defaultNaN; | 
|  | } | 
|  | } else { | 
|  | /* return the quiet version of the NaN in a */ | 
|  | signalling = !(a->sigh & 0x40000000); | 
|  | } | 
|  | } else | 
|  | #ifdef PARANOID | 
|  | if (tagb == TW_NaN) | 
|  | #endif /* PARANOID */ | 
|  | { | 
|  | signalling = !(b->sigh & 0x40000000); | 
|  | x = b; | 
|  | } | 
|  | #ifdef PARANOID | 
|  | else { | 
|  | signalling = 0; | 
|  | EXCEPTION(EX_INTERNAL | 0x113); | 
|  | x = &CONST_QNaN; | 
|  | } | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | if ((!signalling) || (control_word & CW_Invalid)) { | 
|  | if (!x) | 
|  | x = b; | 
|  |  | 
|  | if (!(x->sigh & 0x80000000))	/* pseudo-NaN ? */ | 
|  | x = &CONST_QNaN; | 
|  |  | 
|  | FPU_copy_to_regi(x, TAG_Special, deststnr); | 
|  |  | 
|  | if (!signalling) | 
|  | return TAG_Special; | 
|  |  | 
|  | /* ensure a Quiet NaN */ | 
|  | dest->sigh |= 0x40000000; | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_Invalid); | 
|  |  | 
|  | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
|  | } | 
|  |  | 
|  | /* Invalid arith operation on Valid registers */ | 
|  | /* Returns < 0 if the exception is unmasked */ | 
|  | asmlinkage int arith_invalid(int deststnr) | 
|  | { | 
|  |  | 
|  | EXCEPTION(EX_Invalid); | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | 
|  | } | 
|  |  | 
|  | return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Divide a finite number by zero */ | 
|  | asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign) | 
|  | { | 
|  | FPU_REG *dest = &st(deststnr); | 
|  | int tag = TAG_Valid; | 
|  |  | 
|  | if (control_word & CW_ZeroDiv) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr); | 
|  | setsign(dest, sign); | 
|  | tag = TAG_Special; | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_ZeroDiv); | 
|  |  | 
|  | return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* This may be called often, so keep it lean */ | 
|  | int set_precision_flag(int flags) | 
|  | { | 
|  | if (control_word & CW_Precision) { | 
|  | partial_status &= ~(SW_C1 & flags); | 
|  | partial_status |= flags;	/* The masked response */ | 
|  | return 0; | 
|  | } else { | 
|  | EXCEPTION(flags); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This may be called often, so keep it lean */ | 
|  | asmlinkage void set_precision_flag_up(void) | 
|  | { | 
|  | if (control_word & CW_Precision) | 
|  | partial_status |= (SW_Precision | SW_C1);	/* The masked response */ | 
|  | else | 
|  | EXCEPTION(EX_Precision | SW_C1); | 
|  | } | 
|  |  | 
|  | /* This may be called often, so keep it lean */ | 
|  | asmlinkage void set_precision_flag_down(void) | 
|  | { | 
|  | if (control_word & CW_Precision) {	/* The masked response */ | 
|  | partial_status &= ~SW_C1; | 
|  | partial_status |= SW_Precision; | 
|  | } else | 
|  | EXCEPTION(EX_Precision); | 
|  | } | 
|  |  | 
|  | asmlinkage int denormal_operand(void) | 
|  | { | 
|  | if (control_word & CW_Denormal) {	/* The masked response */ | 
|  | partial_status |= SW_Denorm_Op; | 
|  | return TAG_Special; | 
|  | } else { | 
|  | EXCEPTION(EX_Denormal); | 
|  | return TAG_Special | FPU_Exception; | 
|  | } | 
|  | } | 
|  |  | 
|  | asmlinkage int arith_overflow(FPU_REG *dest) | 
|  | { | 
|  | int tag = TAG_Valid; | 
|  |  | 
|  | if (control_word & CW_Overflow) { | 
|  | /* The masked response */ | 
|  | /* ###### The response here depends upon the rounding mode */ | 
|  | reg_copy(&CONST_INF, dest); | 
|  | tag = TAG_Special; | 
|  | } else { | 
|  | /* Subtract the magic number from the exponent */ | 
|  | addexponent(dest, (-3 * (1 << 13))); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_Overflow); | 
|  | if (control_word & CW_Overflow) { | 
|  | /* The overflow exception is masked. */ | 
|  | /* By definition, precision is lost. | 
|  | The roundup bit (C1) is also set because we have | 
|  | "rounded" upwards to Infinity. */ | 
|  | EXCEPTION(EX_Precision | SW_C1); | 
|  | return tag; | 
|  | } | 
|  |  | 
|  | return tag; | 
|  |  | 
|  | } | 
|  |  | 
|  | asmlinkage int arith_underflow(FPU_REG *dest) | 
|  | { | 
|  | int tag = TAG_Valid; | 
|  |  | 
|  | if (control_word & CW_Underflow) { | 
|  | /* The masked response */ | 
|  | if (exponent16(dest) <= EXP_UNDER - 63) { | 
|  | reg_copy(&CONST_Z, dest); | 
|  | partial_status &= ~SW_C1;	/* Round down. */ | 
|  | tag = TAG_Zero; | 
|  | } else { | 
|  | stdexp(dest); | 
|  | } | 
|  | } else { | 
|  | /* Add the magic number to the exponent. */ | 
|  | addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_Underflow); | 
|  | if (control_word & CW_Underflow) { | 
|  | /* The underflow exception is masked. */ | 
|  | EXCEPTION(EX_Precision); | 
|  | return tag; | 
|  | } | 
|  |  | 
|  | return tag; | 
|  |  | 
|  | } | 
|  |  | 
|  | void FPU_stack_overflow(void) | 
|  | { | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | top--; | 
|  | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_StackOver); | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | void FPU_stack_underflow(void) | 
|  | { | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_StackUnder); | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | void FPU_stack_underflow_i(int i) | 
|  | { | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_StackUnder); | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | void FPU_stack_underflow_pop(int i) | 
|  | { | 
|  |  | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 
|  | FPU_pop(); | 
|  | } | 
|  |  | 
|  | EXCEPTION(EX_StackUnder); | 
|  |  | 
|  | return; | 
|  |  | 
|  | } |