|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <[email protected]> | 
|  | e1000-devel Mailing List <[email protected]> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | */ | 
|  |  | 
|  | /* e1000_hw.c | 
|  | * Shared functions for accessing and configuring the MAC | 
|  | */ | 
|  |  | 
|  | #include "e1000_hw.h" | 
|  |  | 
|  | static s32 e1000_check_downshift(struct e1000_hw *hw); | 
|  | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|  | e1000_rev_polarity *polarity); | 
|  | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 
|  | static void e1000_clear_vfta(struct e1000_hw *hw); | 
|  | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
|  | bool link_up); | 
|  | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | 
|  | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | 
|  | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | 
|  | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|  | u16 *max_length); | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 
|  | static s32 e1000_id_led_init(struct e1000_hw *hw); | 
|  | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info); | 
|  | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info); | 
|  | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 
|  | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | 
|  | static s32 e1000_set_phy_type(struct e1000_hw *hw); | 
|  | static void e1000_phy_init_script(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_copper_link(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | 
|  | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
|  | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | 
|  | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|  | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|  | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); | 
|  | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | 
|  | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | 
|  | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|  | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|  | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | 
|  | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 phy_data); | 
|  | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 *phy_data); | 
|  | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | 
|  | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | 
|  | static void e1000_release_eeprom(struct e1000_hw *hw); | 
|  | static void e1000_standby_eeprom(struct e1000_hw *hw); | 
|  | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 
|  | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 
|  | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 
|  | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  |  | 
|  | /* IGP cable length table */ | 
|  | static const | 
|  | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { | 
|  | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 
|  | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 
|  | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 
|  | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 
|  | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 
|  | 100, | 
|  | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 
|  | 110, 110, | 
|  | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, | 
|  | 120, 120 | 
|  | }; | 
|  |  | 
|  | static DEFINE_SPINLOCK(e1000_eeprom_lock); | 
|  |  | 
|  | /** | 
|  | * e1000_set_phy_type - Set the phy type member in the hw struct. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static s32 e1000_set_phy_type(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_set_phy_type"); | 
|  |  | 
|  | if (hw->mac_type == e1000_undefined) | 
|  | return -E1000_ERR_PHY_TYPE; | 
|  |  | 
|  | switch (hw->phy_id) { | 
|  | case M88E1000_E_PHY_ID: | 
|  | case M88E1000_I_PHY_ID: | 
|  | case M88E1011_I_PHY_ID: | 
|  | case M88E1111_I_PHY_ID: | 
|  | hw->phy_type = e1000_phy_m88; | 
|  | break; | 
|  | case IGP01E1000_I_PHY_ID: | 
|  | if (hw->mac_type == e1000_82541 || | 
|  | hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | hw->phy_type = e1000_phy_igp; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | /* Should never have loaded on this device */ | 
|  | hw->phy_type = e1000_phy_undefined; | 
|  | return -E1000_ERR_PHY_TYPE; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static void e1000_phy_init_script(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ret_val; | 
|  | u16 phy_saved_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_init_script"); | 
|  |  | 
|  | if (hw->phy_init_script) { | 
|  | msleep(20); | 
|  |  | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of this routine. */ | 
|  | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | /* Disabled the PHY transmitter */ | 
|  | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  | msleep(20); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x0000, 0x0140); | 
|  | msleep(5); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | 
|  | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | 
|  | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | 
|  | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 
|  | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 
|  | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 
|  | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 
|  | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | 
|  | e1000_write_phy_reg(hw, 0x2010, 0x0008); | 
|  | break; | 
|  |  | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x0000, 0x3300); | 
|  | msleep(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (hw->mac_type == e1000_82547) { | 
|  | u16 fused, fine, coarse; | 
|  |  | 
|  | /* Move to analog registers page */ | 
|  | e1000_read_phy_reg(hw, | 
|  | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, | 
|  | &fused); | 
|  |  | 
|  | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | 
|  | e1000_read_phy_reg(hw, | 
|  | IGP01E1000_ANALOG_FUSE_STATUS, | 
|  | &fused); | 
|  |  | 
|  | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 
|  | coarse = | 
|  | fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 
|  |  | 
|  | if (coarse > | 
|  | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 
|  | coarse -= | 
|  | IGP01E1000_ANALOG_FUSE_COARSE_10; | 
|  | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 
|  | } else if (coarse == | 
|  | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 
|  | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 
|  |  | 
|  | fused = | 
|  | (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 
|  | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 
|  | (coarse & | 
|  | IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 
|  |  | 
|  | e1000_write_phy_reg(hw, | 
|  | IGP01E1000_ANALOG_FUSE_CONTROL, | 
|  | fused); | 
|  | e1000_write_phy_reg(hw, | 
|  | IGP01E1000_ANALOG_FUSE_BYPASS, | 
|  | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_mac_type - Set the mac type member in the hw struct. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | s32 e1000_set_mac_type(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_set_mac_type"); | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | switch (hw->revision_id) { | 
|  | case E1000_82542_2_0_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_0; | 
|  | break; | 
|  | case E1000_82542_2_1_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_1; | 
|  | break; | 
|  | default: | 
|  | /* Invalid 82542 revision ID */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  | break; | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | hw->mac_type = e1000_82543; | 
|  | break; | 
|  | case E1000_DEV_ID_82544EI_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82544GC_COPPER: | 
|  | case E1000_DEV_ID_82544GC_LOM: | 
|  | hw->mac_type = e1000_82544; | 
|  | break; | 
|  | case E1000_DEV_ID_82540EM: | 
|  | case E1000_DEV_ID_82540EM_LOM: | 
|  | case E1000_DEV_ID_82540EP: | 
|  | case E1000_DEV_ID_82540EP_LOM: | 
|  | case E1000_DEV_ID_82540EP_LP: | 
|  | hw->mac_type = e1000_82540; | 
|  | break; | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | hw->mac_type = e1000_82545; | 
|  | break; | 
|  | case E1000_DEV_ID_82545GM_COPPER: | 
|  | case E1000_DEV_ID_82545GM_FIBER: | 
|  | case E1000_DEV_ID_82545GM_SERDES: | 
|  | hw->mac_type = e1000_82545_rev_3; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_COPPER: | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | hw->mac_type = e1000_82546; | 
|  | break; | 
|  | case E1000_DEV_ID_82546GB_COPPER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_SERDES: | 
|  | case E1000_DEV_ID_82546GB_PCIE: | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | hw->mac_type = e1000_82546_rev_3; | 
|  | break; | 
|  | case E1000_DEV_ID_82541EI: | 
|  | case E1000_DEV_ID_82541EI_MOBILE: | 
|  | case E1000_DEV_ID_82541ER_LOM: | 
|  | hw->mac_type = e1000_82541; | 
|  | break; | 
|  | case E1000_DEV_ID_82541ER: | 
|  | case E1000_DEV_ID_82541GI: | 
|  | case E1000_DEV_ID_82541GI_LF: | 
|  | case E1000_DEV_ID_82541GI_MOBILE: | 
|  | hw->mac_type = e1000_82541_rev_2; | 
|  | break; | 
|  | case E1000_DEV_ID_82547EI: | 
|  | case E1000_DEV_ID_82547EI_MOBILE: | 
|  | hw->mac_type = e1000_82547; | 
|  | break; | 
|  | case E1000_DEV_ID_82547GI: | 
|  | hw->mac_type = e1000_82547_rev_2; | 
|  | break; | 
|  | default: | 
|  | /* Should never have loaded on this device */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | hw->asf_firmware_present = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* The 82543 chip does not count tx_carrier_errors properly in | 
|  | * FD mode | 
|  | */ | 
|  | if (hw->mac_type == e1000_82543) | 
|  | hw->bad_tx_carr_stats_fd = true; | 
|  |  | 
|  | if (hw->mac_type > e1000_82544) | 
|  | hw->has_smbus = true; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_media_type - Set media type and TBI compatibility. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | void e1000_set_media_type(struct e1000_hw *hw) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_media_type"); | 
|  |  | 
|  | if (hw->mac_type != e1000_82543) { | 
|  | /* tbi_compatibility is only valid on 82543 */ | 
|  | hw->tbi_compatibility_en = false; | 
|  | } | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82545GM_SERDES: | 
|  | case E1000_DEV_ID_82546GB_SERDES: | 
|  | hw->media_type = e1000_media_type_internal_serdes; | 
|  | break; | 
|  | default: | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | break; | 
|  | default: | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_TBIMODE) { | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | /* tbi_compatibility not valid on fiber */ | 
|  | hw->tbi_compatibility_en = false; | 
|  | } else { | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_reset_hw: reset the hardware completely | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Reset the transmit and receive units; mask and clear all interrupts. | 
|  | */ | 
|  | s32 e1000_reset_hw(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 ctrl_ext; | 
|  | u32 icr; | 
|  | u32 manc; | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_reset_hw"); | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | e1000_pci_clear_mwi(hw); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | /* Disable the Transmit and Receive units.  Then delay to allow | 
|  | * any pending transactions to complete before we hit the MAC with | 
|  | * the global reset. | 
|  | */ | 
|  | ew32(RCTL, 0); | 
|  | ew32(TCTL, E1000_TCTL_PSP); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
|  | hw->tbi_compatibility_on = false; | 
|  |  | 
|  | /* Delay to allow any outstanding PCI transactions to complete before | 
|  | * resetting the device | 
|  | */ | 
|  | msleep(10); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Must reset the PHY before resetting the MAC */ | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 
|  | msleep(5); | 
|  | } | 
|  |  | 
|  | /* Issue a global reset to the MAC.  This will reset the chip's | 
|  | * transmit, receive, DMA, and link units.  It will not effect | 
|  | * the current PCI configuration.  The global reset bit is self- | 
|  | * clearing, and should clear within a microsecond. | 
|  | */ | 
|  | DEBUGOUT("Issuing a global reset to MAC\n"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82544: | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | /* These controllers can't ack the 64-bit write when issuing the | 
|  | * reset, so use IO-mapping as a workaround to issue the reset */ | 
|  | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | /* Reset is performed on a shadow of the control register */ | 
|  | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | default: | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* After MAC reset, force reload of EEPROM to restore power-on settings to | 
|  | * device.  Later controllers reload the EEPROM automatically, so just wait | 
|  | * for reload to complete. | 
|  | */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* Wait for reset to complete */ | 
|  | udelay(10); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | /* Wait for EEPROM reload */ | 
|  | msleep(2); | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | /* Wait for EEPROM reload */ | 
|  | msleep(20); | 
|  | break; | 
|  | default: | 
|  | /* Auto read done will delay 5ms or poll based on mac type */ | 
|  | ret_val = e1000_get_auto_rd_done(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Disable HW ARPs on ASF enabled adapters */ | 
|  | if (hw->mac_type >= e1000_82540) { | 
|  | manc = er32(MANC); | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  | ew32(MANC, manc); | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | e1000_phy_init_script(hw); | 
|  |  | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | icr = er32(ICR); | 
|  |  | 
|  | /* If MWI was previously enabled, reenable it. */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(hw); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_init_hw: Performs basic configuration of the adapter. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Assumes that the controller has previously been reset and is in a | 
|  | * post-reset uninitialized state. Initializes the receive address registers, | 
|  | * multicast table, and VLAN filter table. Calls routines to setup link | 
|  | * configuration and flow control settings. Clears all on-chip counters. Leaves | 
|  | * the transmit and receive units disabled and uninitialized. | 
|  | */ | 
|  | s32 e1000_init_hw(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 i; | 
|  | s32 ret_val; | 
|  | u32 mta_size; | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_hw"); | 
|  |  | 
|  | /* Initialize Identification LED */ | 
|  | ret_val = e1000_id_led_init(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Initializing Identification LED\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Set the media type and TBI compatibility */ | 
|  | e1000_set_media_type(hw); | 
|  |  | 
|  | /* Disabling VLAN filtering. */ | 
|  | DEBUGOUT("Initializing the IEEE VLAN\n"); | 
|  | if (hw->mac_type < e1000_82545_rev_3) | 
|  | ew32(VET, 0); | 
|  | e1000_clear_vfta(hw); | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | e1000_pci_clear_mwi(hw); | 
|  | ew32(RCTL, E1000_RCTL_RST); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(5); | 
|  | } | 
|  |  | 
|  | /* Setup the receive address. This involves initializing all of the Receive | 
|  | * Address Registers (RARs 0 - 15). | 
|  | */ | 
|  | e1000_init_rx_addrs(hw); | 
|  |  | 
|  | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | ew32(RCTL, 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(1); | 
|  | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(hw); | 
|  | } | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | DEBUGOUT("Zeroing the MTA\n"); | 
|  | mta_size = E1000_MC_TBL_SIZE; | 
|  | for (i = 0; i < mta_size; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  | /* use write flush to prevent Memory Write Block (MWB) from | 
|  | * occurring when accessing our register space */ | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /* Set the PCI priority bit correctly in the CTRL register.  This | 
|  | * determines if the adapter gives priority to receives, or if it | 
|  | * gives equal priority to transmits and receives.  Valid only on | 
|  | * 82542 and 82543 silicon. | 
|  | */ | 
|  | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | 
|  | ctrl = er32(CTRL); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 
|  | if (hw->bus_type == e1000_bus_type_pcix | 
|  | && e1000_pcix_get_mmrbc(hw) > 2048) | 
|  | e1000_pcix_set_mmrbc(hw, 2048); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Call a subroutine to configure the link and setup flow control. */ | 
|  | ret_val = e1000_setup_link(hw); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | ctrl = er32(TXDCTL); | 
|  | ctrl = | 
|  | (ctrl & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | ew32(TXDCTL, ctrl); | 
|  | } | 
|  |  | 
|  | /* Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs(hw); | 
|  |  | 
|  | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 
|  | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | /* Relaxed ordering must be disabled to avoid a parity | 
|  | * error crash in a PCI slot. */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. | 
|  | * @hw: Struct containing variables accessed by shared code. | 
|  | */ | 
|  | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 
|  | { | 
|  | u16 eeprom_data; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_internal_serdes) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, | 
|  | &eeprom_data); | 
|  | if (ret_val) { | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (eeprom_data != EEPROM_RESERVED_WORD) { | 
|  | /* Adjust SERDES output amplitude only. */ | 
|  | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_link - Configures flow control and link settings. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Determines which flow control settings to use. Calls the appropriate media- | 
|  | * specific link configuration function. Configures the flow control settings. | 
|  | * Assuming the adapter has a valid link partner, a valid link should be | 
|  | * established. Assumes the hardware has previously been reset and the | 
|  | * transmitter and receiver are not enabled. | 
|  | */ | 
|  | s32 e1000_setup_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  | s32 ret_val; | 
|  | u16 eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_link"); | 
|  |  | 
|  | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | * a bit that determines whether the HW defaults to enabling or | 
|  | * disabling auto-negotiation, and the direction of the | 
|  | * SW defined pins. If there is no SW over-ride of the flow | 
|  | * control setting, then the variable hw->fc will | 
|  | * be initialized based on a value in the EEPROM. | 
|  | */ | 
|  | if (hw->fc == E1000_FC_DEFAULT) { | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|  | 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
|  | hw->fc = E1000_FC_NONE; | 
|  | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
|  | EEPROM_WORD0F_ASM_DIR) | 
|  | hw->fc = E1000_FC_TX_PAUSE; | 
|  | else | 
|  | hw->fc = E1000_FC_FULL; | 
|  | } | 
|  |  | 
|  | /* We want to save off the original Flow Control configuration just | 
|  | * in case we get disconnected and then reconnected into a different | 
|  | * hub or switch with different Flow Control capabilities. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | hw->fc &= (~E1000_FC_TX_PAUSE); | 
|  |  | 
|  | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
|  | hw->fc &= (~E1000_FC_RX_PAUSE); | 
|  |  | 
|  | hw->original_fc = hw->fc; | 
|  |  | 
|  | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 
|  |  | 
|  | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
|  | * polarity value for the SW controlled pins, and setup the | 
|  | * Extended Device Control reg with that info. | 
|  | * This is needed because one of the SW controlled pins is used for | 
|  | * signal detection.  So this should be done before e1000_setup_pcs_link() | 
|  | * or e1000_phy_setup() is called. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82543) { | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|  | 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
|  | SWDPIO__EXT_SHIFT); | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | /* Call the necessary subroutine to configure the link. */ | 
|  | ret_val = (hw->media_type == e1000_media_type_copper) ? | 
|  | e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); | 
|  |  | 
|  | /* Initialize the flow control address, type, and PAUSE timer | 
|  | * registers to their default values.  This is done even if flow | 
|  | * control is disabled, because it does not hurt anything to | 
|  | * initialize these registers. | 
|  | */ | 
|  | DEBUGOUT | 
|  | ("Initializing the Flow Control address, type and timer regs\n"); | 
|  |  | 
|  | ew32(FCT, FLOW_CONTROL_TYPE); | 
|  | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  |  | 
|  | ew32(FCTTV, hw->fc_pause_time); | 
|  |  | 
|  | /* Set the flow control receive threshold registers.  Normally, | 
|  | * these registers will be set to a default threshold that may be | 
|  | * adjusted later by the driver's runtime code.  However, if the | 
|  | * ability to transmit pause frames in not enabled, then these | 
|  | * registers will be set to 0. | 
|  | */ | 
|  | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | 
|  | ew32(FCRTL, 0); | 
|  | ew32(FCRTH, 0); | 
|  | } else { | 
|  | /* We need to set up the Receive Threshold high and low water marks | 
|  | * as well as (optionally) enabling the transmission of XON frames. | 
|  | */ | 
|  | if (hw->fc_send_xon) { | 
|  | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 
|  | ew32(FCRTH, hw->fc_high_water); | 
|  | } else { | 
|  | ew32(FCRTL, hw->fc_low_water); | 
|  | ew32(FCRTH, hw->fc_high_water); | 
|  | } | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_fiber_serdes_link - prepare fiber or serdes link | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Manipulates Physical Coding Sublayer functions in order to configure | 
|  | * link. Assumes the hardware has been previously reset and the transmitter | 
|  | * and receiver are not enabled. | 
|  | */ | 
|  | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | u32 txcw = 0; | 
|  | u32 i; | 
|  | u32 signal = 0; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 
|  |  | 
|  | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal.  This applies to fiber media only. | 
|  | * If we're on serdes media, adjust the output amplitude to value | 
|  | * set in the EEPROM. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | if (hw->media_type == e1000_media_type_fiber) | 
|  | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  |  | 
|  | ret_val = e1000_adjust_serdes_amplitude(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Take the link out of reset */ | 
|  | ctrl &= ~(E1000_CTRL_LRST); | 
|  |  | 
|  | /* Adjust VCO speed to improve BER performance */ | 
|  | ret_val = e1000_set_vco_speed(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and setup | 
|  | * the device accordingly.  If auto-negotiation is enabled, then software | 
|  | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 
|  | * Config Word Register (TXCW) and re-start auto-negotiation.  However, if | 
|  | * auto-negotiation is disabled, then software will have to manually | 
|  | * configure the two flow control enable bits in the CTRL register. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames, but | 
|  | *          not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames but we do | 
|  | *          not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE: | 
|  | /* Flow control is completely disabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE: | 
|  | /* RX Flow control is enabled and TX Flow control is disabled by a | 
|  | * software over-ride. Since there really isn't a way to advertise | 
|  | * that we are capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE. Later, we will | 
|  | *  disable the adapter's ability to send PAUSE frames. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE: | 
|  | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 
|  | * software over-ride. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|  | break; | 
|  | case E1000_FC_FULL: | 
|  | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Since auto-negotiation is enabled, take the link out of reset (the link | 
|  | * will be in reset, because we previously reset the chip). This will | 
|  | * restart auto-negotiation.  If auto-negotiation is successful then the | 
|  | * link-up status bit will be set and the flow control enable bits (RFCE | 
|  | * and TFCE) will be set according to their negotiated value. | 
|  | */ | 
|  | DEBUGOUT("Auto-negotiation enabled\n"); | 
|  |  | 
|  | ew32(TXCW, txcw); | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | hw->txcw = txcw; | 
|  | msleep(1); | 
|  |  | 
|  | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 
|  | * indication in the Device Status Register.  Time-out if a link isn't | 
|  | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 
|  | * less than 500 milliseconds even if the other end is doing it in SW). | 
|  | * For internal serdes, we just assume a signal is present, then poll. | 
|  | */ | 
|  | if (hw->media_type == e1000_media_type_internal_serdes || | 
|  | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
|  | DEBUGOUT("Looking for Link\n"); | 
|  | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
|  | msleep(10); | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | break; | 
|  | } | 
|  | if (i == (LINK_UP_TIMEOUT / 10)) { | 
|  | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
|  | hw->autoneg_failed = 1; | 
|  | /* AutoNeg failed to achieve a link, so we'll call | 
|  | * e1000_check_for_link. This routine will force the link up if | 
|  | * we detect a signal. This will allow us to communicate with | 
|  | * non-autonegotiating link partners. | 
|  | */ | 
|  | ret_val = e1000_check_for_link(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error while checking for link\n"); | 
|  | return ret_val; | 
|  | } | 
|  | hw->autoneg_failed = 0; | 
|  | } else { | 
|  | hw->autoneg_failed = 0; | 
|  | DEBUGOUT("Valid Link Found\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("No Signal Detected\n"); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_copper_link_preconfig - early configuration for copper | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Make sure we have a valid PHY and change PHY mode before link setup. | 
|  | */ | 
|  | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_preconfig"); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | /* With 82543, we need to force speed and duplex on the MAC equal to what | 
|  | * the PHY speed and duplex configuration is. In addition, we need to | 
|  | * perform a hardware reset on the PHY to take it out of reset. | 
|  | */ | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ew32(CTRL, ctrl); | 
|  | } else { | 
|  | ctrl |= | 
|  | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
|  | ew32(CTRL, ctrl); | 
|  | ret_val = e1000_phy_hw_reset(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Make sure we have a valid PHY */ | 
|  | ret_val = e1000_detect_gig_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error, did not detect valid phy.\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT1("Phy ID = %x\n", hw->phy_id); | 
|  |  | 
|  | /* Set PHY to class A mode (if necessary) */ | 
|  | ret_val = e1000_set_phy_mode(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82545_rev_3) || | 
|  | (hw->mac_type == e1000_82546_rev_3)) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | phy_data |= 0x00000008; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type <= e1000_82543 || | 
|  | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | 
|  | hw->mac_type == e1000_82541_rev_2 | 
|  | || hw->mac_type == e1000_82547_rev_2) | 
|  | hw->phy_reset_disable = false; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | 
|  | { | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_igp_setup"); | 
|  |  | 
|  | if (hw->phy_reset_disable) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 
|  | msleep(15); | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  |  | 
|  | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | /* disable lplu d3 during driver init */ | 
|  | ret_val = e1000_set_d3_lplu_state(hw, false); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Disabling LPLU D3\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure mdi-mdix settings */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | hw->dsp_config_state = e1000_dsp_config_disabled; | 
|  | /* Force MDI for earlier revs of the IGP PHY */ | 
|  | phy_data &= | 
|  | ~(IGP01E1000_PSCR_AUTO_MDIX | | 
|  | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 
|  | hw->mdix = 1; | 
|  |  | 
|  | } else { | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  |  | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* set auto-master slave resolution settings */ | 
|  | if (hw->autoneg) { | 
|  | e1000_ms_type phy_ms_setting = hw->master_slave; | 
|  |  | 
|  | if (hw->ffe_config_state == e1000_ffe_config_active) | 
|  | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  |  | 
|  | if (hw->dsp_config_state == e1000_dsp_config_activated) | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  |  | 
|  | /* when autonegotiation advertisement is only 1000Mbps then we | 
|  | * should disable SmartSpeed and enable Auto MasterSlave | 
|  | * resolution as hardware default. */ | 
|  | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|  | /* Disable SmartSpeed */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Set auto Master/Slave resolution process */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_data &= ~CR_1000T_MS_ENABLE; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* load defaults for future use */ | 
|  | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 
|  | ((phy_data & CR_1000T_MS_VALUE) ? | 
|  | e1000_ms_force_master : | 
|  | e1000_ms_force_slave) : e1000_ms_auto; | 
|  |  | 
|  | switch (phy_ms_setting) { | 
|  | case e1000_ms_force_master: | 
|  | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_force_slave: | 
|  | phy_data |= CR_1000T_MS_ENABLE; | 
|  | phy_data &= ~(CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_auto: | 
|  | phy_data &= ~CR_1000T_MS_ENABLE; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_mgp_setup"); | 
|  |  | 
|  | if (hw->phy_reset_disable) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | /* Options: | 
|  | *   MDI/MDI-X = 0 (default) | 
|  | *   0 - Auto for all speeds | 
|  | *   1 - MDI mode | 
|  | *   2 - MDI-X mode | 
|  | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  |  | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|  | break; | 
|  | case 3: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Options: | 
|  | *   disable_polarity_correction = 0 (default) | 
|  | *       Automatic Correction for Reversed Cable Polarity | 
|  | *   0 - Disabled | 
|  | *   1 - Enabled | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | if (hw->disable_polarity_correction == 1) | 
|  | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->phy_revision < M88E1011_I_REV_4) { | 
|  | /* Force TX_CLK in the Extended PHY Specific Control Register | 
|  | * to 25MHz clock. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  |  | 
|  | if ((hw->phy_revision == E1000_REVISION_2) && | 
|  | (hw->phy_id == M88E1111_I_PHY_ID)) { | 
|  | /* Vidalia Phy, set the downshift counter to 5x */ | 
|  | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | 
|  | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 
|  | ret_val = e1000_write_phy_reg(hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* Configure Master and Slave downshift values */ | 
|  | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
|  | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
|  | ret_val = e1000_write_phy_reg(hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* SW Reset the PHY so all changes take effect */ | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_copper_link_autoneg - setup auto-neg | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Setup auto-negotiation and flow control advertisements, | 
|  | * and then perform auto-negotiation. | 
|  | */ | 
|  | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_autoneg"); | 
|  |  | 
|  | /* Perform some bounds checking on the hw->autoneg_advertised | 
|  | * parameter.  If this variable is zero, then set it to the default. | 
|  | */ | 
|  | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | /* If autoneg_advertised is zero, we assume it was not defaulted | 
|  | * by the calling code so we set to advertise full capability. | 
|  | */ | 
|  | if (hw->autoneg_advertised == 0) | 
|  | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 
|  | ret_val = e1000_phy_setup_autoneg(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT("Restarting Auto-Neg\n"); | 
|  |  | 
|  | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|  | * the Auto Neg Restart bit in the PHY control register. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Does the user want to wait for Auto-Neg to complete here, or | 
|  | * check at a later time (for example, callback routine). | 
|  | */ | 
|  | if (hw->wait_autoneg_complete) { | 
|  | ret_val = e1000_wait_autoneg(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT | 
|  | ("Error while waiting for autoneg to complete\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->get_link_status = true; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_copper_link_postconfig - post link setup | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Config the MAC and the PHY after link is up. | 
|  | *   1) Set up the MAC to the current PHY speed/duplex | 
|  | *      if we are on 82543.  If we | 
|  | *      are on newer silicon, we only need to configure | 
|  | *      collision distance in the Transmit Control Register. | 
|  | *   2) Set up flow control on the MAC to that established with | 
|  | *      the link partner. | 
|  | *   3) Config DSP to improve Gigabit link quality for some PHY revisions. | 
|  | */ | 
|  | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | DEBUGFUNC("e1000_copper_link_postconfig"); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82544) { | 
|  | e1000_config_collision_dist(hw); | 
|  | } else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Configuring Flow Control\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Config DSP to improve Giga link quality */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | ret_val = e1000_config_dsp_after_link_change(hw, true); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Configuring DSP after link up\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_copper_link - phy/speed/duplex setting | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Detects which PHY is present and sets up the speed and duplex | 
|  | */ | 
|  | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_copper_link"); | 
|  |  | 
|  | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 
|  | ret_val = e1000_copper_link_preconfig(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | ret_val = e1000_copper_link_igp_setup(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->phy_type == e1000_phy_m88) { | 
|  | ret_val = e1000_copper_link_mgp_setup(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (hw->autoneg) { | 
|  | /* Setup autoneg and flow control advertisement | 
|  | * and perform autonegotiation */ | 
|  | ret_val = e1000_copper_link_autoneg(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* PHY will be set to 10H, 10F, 100H,or 100F | 
|  | * depending on value from forced_speed_duplex. */ | 
|  | DEBUGOUT("Forcing speed and duplex\n"); | 
|  | ret_val = e1000_phy_force_speed_duplex(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check link status. Wait up to 100 microseconds for link to become | 
|  | * valid. | 
|  | */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | /* Config the MAC and PHY after link is up */ | 
|  | ret_val = e1000_copper_link_postconfig(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT("Valid link established!!!\n"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | DEBUGOUT("Unable to establish link!!!\n"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_setup_autoneg - phy settings | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Configures PHY autoneg and flow control advertisement settings | 
|  | */ | 
|  | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_autoneg_adv_reg; | 
|  | u16 mii_1000t_ctrl_reg; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_setup_autoneg"); | 
|  |  | 
|  | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Need to parse both autoneg_advertised and fc and set up | 
|  | * the appropriate PHY registers.  First we will parse for | 
|  | * autoneg_advertised software override.  Since we can advertise | 
|  | * a plethora of combinations, we need to check each bit | 
|  | * individually. | 
|  | */ | 
|  |  | 
|  | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | * the  1000Base-T Control Register (Address 9). | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
|  | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|  |  | 
|  | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
|  | DEBUGOUT("Advertise 10mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
|  | DEBUGOUT("Advertise 10mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
|  | DEBUGOUT("Advertise 100mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
|  | DEBUGOUT("Advertise 100mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
|  | DEBUGOUT | 
|  | ("Advertise 1000mb Half duplex requested, request denied!\n"); | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|  | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 
|  | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and | 
|  | * setup the PHY advertisement registers accordingly.  If | 
|  | * auto-negotiation is enabled, then software will have to set the | 
|  | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|  | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames | 
|  | *          but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          but we do not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | *  other:  No software override.  The flow control configuration | 
|  | *          in the EEPROM is used. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE:	/* 0 */ | 
|  | /* Flow control (RX & TX) is completely disabled by a | 
|  | * software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE:	/* 1 */ | 
|  | /* RX Flow control is enabled, and TX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | /* Since there really isn't a way to advertise that we are | 
|  | * capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE.  Later | 
|  | * (in e1000_config_fc_after_link_up) we will disable the | 
|  | *hw's ability to send PAUSE frames. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE:	/* 2 */ | 
|  | /* TX Flow control is enabled, and RX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|  | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|  | break; | 
|  | case E1000_FC_FULL:	/* 3 */ | 
|  | /* Flow control (both RX and TX) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_force_speed_duplex - force link settings | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 
|  | */ | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 mii_ctrl_reg; | 
|  | u16 mii_status_reg; | 
|  | u16 phy_data; | 
|  | u16 i; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_force_speed_duplex"); | 
|  |  | 
|  | /* Turn off Flow control if we are forcing speed and duplex. */ | 
|  | hw->fc = E1000_FC_NONE; | 
|  |  | 
|  | DEBUGOUT1("hw->fc = %d\n", hw->fc); | 
|  |  | 
|  | /* Read the Device Control Register. */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~(DEVICE_SPEED_MASK); | 
|  |  | 
|  | /* Clear the Auto Speed Detect Enable bit. */ | 
|  | ctrl &= ~E1000_CTRL_ASDE; | 
|  |  | 
|  | /* Read the MII Control Register. */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* We need to disable autoneg in order to force link and duplex. */ | 
|  |  | 
|  | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 
|  |  | 
|  | /* Are we forcing Full or Half Duplex? */ | 
|  | if (hw->forced_speed_duplex == e1000_100_full || | 
|  | hw->forced_speed_duplex == e1000_10_full) { | 
|  | /* We want to force full duplex so we SET the full duplex bits in the | 
|  | * Device and MII Control Registers. | 
|  | */ | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 
|  | DEBUGOUT("Full Duplex\n"); | 
|  | } else { | 
|  | /* We want to force half duplex so we CLEAR the full duplex bits in | 
|  | * the Device and MII Control Registers. | 
|  | */ | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 
|  | DEBUGOUT("Half Duplex\n"); | 
|  | } | 
|  |  | 
|  | /* Are we forcing 100Mbps??? */ | 
|  | if (hw->forced_speed_duplex == e1000_100_full || | 
|  | hw->forced_speed_duplex == e1000_100_half) { | 
|  | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  | mii_ctrl_reg |= MII_CR_SPEED_100; | 
|  | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
|  | DEBUGOUT("Forcing 100mb "); | 
|  | } else { | 
|  | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 
|  | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|  | mii_ctrl_reg |= MII_CR_SPEED_10; | 
|  | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
|  | DEBUGOUT("Forcing 10mb "); | 
|  | } | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Write the configured values back to the Device Control Reg. */ | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 
|  | * forced whenever speed are duplex are forced. | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT1("M88E1000 PSCR: %x\n", phy_data); | 
|  |  | 
|  | /* Need to reset the PHY or these changes will be ignored */ | 
|  | mii_ctrl_reg |= MII_CR_RESET; | 
|  |  | 
|  | /* Disable MDI-X support for 10/100 */ | 
|  | } else { | 
|  | /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
|  | * forced whenever speed or duplex are forced. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  |  | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Write back the modified PHY MII control register. */ | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | /* The wait_autoneg_complete flag may be a little misleading here. | 
|  | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 
|  | * But we do want to delay for a period while forcing only so we | 
|  | * don't generate false No Link messages.  So we will wait here | 
|  | * only if the user has set wait_autoneg_complete to 1, which is | 
|  | * the default. | 
|  | */ | 
|  | if (hw->wait_autoneg_complete) { | 
|  | /* We will wait for autoneg to complete. */ | 
|  | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 
|  | mii_status_reg = 0; | 
|  |  | 
|  | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | * to be set. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|  | break; | 
|  | msleep(100); | 
|  | } | 
|  | if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { | 
|  | /* We didn't get link.  Reset the DSP and wait again for link. */ | 
|  | ret_val = e1000_phy_reset_dsp(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting PHY DSP\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | /* This loop will early-out if the link condition has been met.  */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|  | break; | 
|  | msleep(100); | 
|  | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | * to be set. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
|  | * Extended PHY Specific Control Register to 25MHz clock.  This value | 
|  | * defaults back to a 2.5MHz clock when the PHY is reset. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* In addition, because of the s/w reset above, we need to enable CRS on | 
|  | * TX.  This must be set for both full and half duplex operation. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) | 
|  | && (!hw->autoneg) | 
|  | && (hw->forced_speed_duplex == e1000_10_full | 
|  | || hw->forced_speed_duplex == e1000_10_half)) { | 
|  | ret_val = e1000_polarity_reversal_workaround(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_config_collision_dist - set collision distance register | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets the collision distance in the Transmit Control register. | 
|  | * Link should have been established previously. Reads the speed and duplex | 
|  | * information from the Device Status register. | 
|  | */ | 
|  | void e1000_config_collision_dist(struct e1000_hw *hw) | 
|  | { | 
|  | u32 tctl, coll_dist; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_collision_dist"); | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | coll_dist = E1000_COLLISION_DISTANCE_82542; | 
|  | else | 
|  | coll_dist = E1000_COLLISION_DISTANCE; | 
|  |  | 
|  | tctl = er32(TCTL); | 
|  |  | 
|  | tctl &= ~E1000_TCTL_COLD; | 
|  | tctl |= coll_dist << E1000_COLD_SHIFT; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_config_mac_to_phy - sync phy and mac settings | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @mii_reg: data to write to the MII control register | 
|  | * | 
|  | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
|  | * The contents of the PHY register containing the needed information need to | 
|  | * be passed in. | 
|  | */ | 
|  | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_mac_to_phy"); | 
|  |  | 
|  | /* 82544 or newer MAC, Auto Speed Detection takes care of | 
|  | * MAC speed/duplex configuration.*/ | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Read the Device Control Register and set the bits to Force Speed | 
|  | * and Duplex. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
|  |  | 
|  | /* Set up duplex in the Device Control and Transmit Control | 
|  | * registers depending on negotiated values. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & M88E1000_PSSR_DPLX) | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Set up speed in the Device Control register depending on | 
|  | * negotiated values. | 
|  | */ | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
|  | ctrl |= E1000_CTRL_SPD_1000; | 
|  | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  |  | 
|  | /* Write the configured values back to the Device Control Reg. */ | 
|  | ew32(CTRL, ctrl); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_force_mac_fc - force flow control settings | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Forces the MAC's flow control settings. | 
|  | * Sets the TFCE and RFCE bits in the device control register to reflect | 
|  | * the adapter settings. TFCE and RFCE need to be explicitly set by | 
|  | * software when a Copper PHY is used because autonegotiation is managed | 
|  | * by the PHY rather than the MAC. Software must also configure these | 
|  | * bits when link is forced on a fiber connection. | 
|  | */ | 
|  | s32 e1000_force_mac_fc(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | DEBUGFUNC("e1000_force_mac_fc"); | 
|  |  | 
|  | /* Get the current configuration of the Device Control Register */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Because we didn't get link via the internal auto-negotiation | 
|  | * mechanism (we either forced link or we got link via PHY | 
|  | * auto-neg), we have to manually enable/disable transmit an | 
|  | * receive flow control. | 
|  | * | 
|  | * The "Case" statement below enables/disable flow control | 
|  | * according to the "hw->fc" parameter. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause | 
|  | *          frames but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          frames but we do not receive pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | *  other:  No other values should be possible at this point. | 
|  | */ | 
|  |  | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE: | 
|  | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE: | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  | ctrl |= E1000_CTRL_RFCE; | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE: | 
|  | ctrl &= (~E1000_CTRL_RFCE); | 
|  | ctrl |= E1000_CTRL_TFCE; | 
|  | break; | 
|  | case E1000_FC_FULL: | 
|  | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_config_fc_after_link_up - configure flow control after autoneg | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Configures flow control settings after link is established | 
|  | * Should be called immediately after a valid link has been established. | 
|  | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
|  | * and autonegotiation is enabled, the MAC flow control settings will be set | 
|  | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
|  | * and RFCE bits will be automatically set to the negotiated flow control mode. | 
|  | */ | 
|  | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_status_reg; | 
|  | u16 mii_nway_adv_reg; | 
|  | u16 mii_nway_lp_ability_reg; | 
|  | u16 speed; | 
|  | u16 duplex; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_fc_after_link_up"); | 
|  |  | 
|  | /* Check for the case where we have fiber media and auto-neg failed | 
|  | * so we had to force link.  In this case, we need to force the | 
|  | * configuration of the MAC to match the "fc" parameter. | 
|  | */ | 
|  | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) | 
|  | || ((hw->media_type == e1000_media_type_internal_serdes) | 
|  | && (hw->autoneg_failed)) | 
|  | || ((hw->media_type == e1000_media_type_copper) | 
|  | && (!hw->autoneg))) { | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for the case where we have copper media and auto-neg is | 
|  | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | * has completed, and if so, how the PHY and link partner has | 
|  | * flow control configured. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 
|  | /* Read the MII Status Register and check to see if AutoNeg | 
|  | * has completed.  We read this twice because this reg has | 
|  | * some "sticky" (latched) bits. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
|  | /* The AutoNeg process has completed, so we now need to | 
|  | * read both the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and the Auto_Negotiation Base Page Ability | 
|  | * Register (Address 5) to determine how flow control was | 
|  | * negotiated. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|  | &mii_nway_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 
|  | &mii_nway_lp_ability_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Two bits in the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | * Page Ability Register (Address 5) determine flow control | 
|  | * for both the PHY and the link partner.  The following | 
|  | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | * 1999, describes these PAUSE resolution bits and how flow | 
|  | * control is determined based upon these settings. | 
|  | * NOTE:  DC = Don't Care | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    0    |  DC   |   DC    | E1000_FC_NONE | 
|  | *   0   |    1    |   0   |   DC    | E1000_FC_NONE | 
|  | *   0   |    1    |   1   |    0    | E1000_FC_NONE | 
|  | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|  | *   1   |    0    |   0   |   DC    | E1000_FC_NONE | 
|  | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|  | *   1   |    1    |   0   |    0    | E1000_FC_NONE | 
|  | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|  | * | 
|  | */ | 
|  | /* Are both PAUSE bits set to 1?  If so, this implies | 
|  | * Symmetric Flow Control is enabled at both ends.  The | 
|  | * ASM_DIR bits are irrelevant per the spec. | 
|  | * | 
|  | * For Symmetric Flow Control: | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|  | * | 
|  | */ | 
|  | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | /* Now we need to check if the user selected RX ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise RX | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->original_fc == E1000_FC_FULL) { | 
|  | hw->fc = E1000_FC_FULL; | 
|  | DEBUGOUT("Flow Control = FULL.\n"); | 
|  | } else { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  | } | 
|  | /* For receiving PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|  | * | 
|  | */ | 
|  | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | 
|  | { | 
|  | hw->fc = E1000_FC_TX_PAUSE; | 
|  | DEBUGOUT | 
|  | ("Flow Control = TX PAUSE frames only.\n"); | 
|  | } | 
|  | /* For transmitting PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|  | * | 
|  | */ | 
|  | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | 
|  | { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  | /* Per the IEEE spec, at this point flow control should be | 
|  | * disabled.  However, we want to consider that we could | 
|  | * be connected to a legacy switch that doesn't advertise | 
|  | * desired flow control, but can be forced on the link | 
|  | * partner.  So if we advertised no flow control, that is | 
|  | * what we will resolve to.  If we advertised some kind of | 
|  | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | * and the link partner advertised none, we will configure | 
|  | * ourselves to enable Rx Flow Control only.  We can do | 
|  | * this safely for two reasons:  If the link partner really | 
|  | * didn't want flow control enabled, and we enable Rx, no | 
|  | * harm done since we won't be receiving any PAUSE frames | 
|  | * anyway.  If the intent on the link partner was to have | 
|  | * flow control enabled, then by us enabling RX only, we | 
|  | * can at least receive pause frames and process them. | 
|  | * This is a good idea because in most cases, since we are | 
|  | * predominantly a server NIC, more times than not we will | 
|  | * be asked to delay transmission of packets than asking | 
|  | * our link partner to pause transmission of frames. | 
|  | */ | 
|  | else if ((hw->original_fc == E1000_FC_NONE || | 
|  | hw->original_fc == E1000_FC_TX_PAUSE) || | 
|  | hw->fc_strict_ieee) { | 
|  | hw->fc = E1000_FC_NONE; | 
|  | DEBUGOUT("Flow Control = NONE.\n"); | 
|  | } else { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  |  | 
|  | /* Now we need to do one last check...  If we auto- | 
|  | * negotiated to HALF DUPLEX, flow control should not be | 
|  | * enabled per IEEE 802.3 spec. | 
|  | */ | 
|  | ret_val = | 
|  | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT | 
|  | ("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | hw->fc = E1000_FC_NONE; | 
|  |  | 
|  | /* Now we call a subroutine to actually force the MAC | 
|  | * controller to use the correct flow control settings. | 
|  | */ | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT | 
|  | ("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT | 
|  | ("Copper PHY and Auto Neg has not completed.\n"); | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_for_serdes_link_generic - Check for link (Serdes) | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * Checks for link up on the hardware.  If link is not up and we have | 
|  | * a signal, then we need to force link up. | 
|  | */ | 
|  | static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 rxcw; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_for_serdes_link_generic"); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | /* | 
|  | * If we don't have link (auto-negotiation failed or link partner | 
|  | * cannot auto-negotiate), and our link partner is not trying to | 
|  | * auto-negotiate with us (we are receiving idles or data), | 
|  | * we need to force link up. We also need to give auto-negotiation | 
|  | * time to complete. | 
|  | */ | 
|  | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|  | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | 
|  | if (hw->autoneg_failed == 0) { | 
|  | hw->autoneg_failed = 1; | 
|  | goto out; | 
|  | } | 
|  | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | 
|  |  | 
|  | /* Disable auto-negotiation in the TXCW register */ | 
|  | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
|  |  | 
|  | /* Force link-up and also force full-duplex. */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after forcing link up. */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | goto out; | 
|  | } | 
|  | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | /* | 
|  | * If we are forcing link and we are receiving /C/ ordered | 
|  | * sets, re-enable auto-negotiation in the TXCW register | 
|  | * and disable forced link in the Device Control register | 
|  | * in an attempt to auto-negotiate with our link partner. | 
|  | */ | 
|  | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
|  | ew32(TXCW, hw->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  |  | 
|  | hw->serdes_has_link = true; | 
|  | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | 
|  | /* | 
|  | * If we force link for non-auto-negotiation switch, check | 
|  | * link status based on MAC synchronization for internal | 
|  | * serdes media type. | 
|  | */ | 
|  | /* SYNCH bit and IV bit are sticky. */ | 
|  | udelay(10); | 
|  | rxcw = er32(RXCW); | 
|  | if (rxcw & E1000_RXCW_SYNCH) { | 
|  | if (!(rxcw & E1000_RXCW_IV)) { | 
|  | hw->serdes_has_link = true; | 
|  | DEBUGOUT("SERDES: Link up - forced.\n"); | 
|  | } | 
|  | } else { | 
|  | hw->serdes_has_link = false; | 
|  | DEBUGOUT("SERDES: Link down - force failed.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E1000_TXCW_ANE & er32(TXCW)) { | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) { | 
|  | /* SYNCH bit and IV bit are sticky, so reread rxcw. */ | 
|  | udelay(10); | 
|  | rxcw = er32(RXCW); | 
|  | if (rxcw & E1000_RXCW_SYNCH) { | 
|  | if (!(rxcw & E1000_RXCW_IV)) { | 
|  | hw->serdes_has_link = true; | 
|  | DEBUGOUT("SERDES: Link up - autoneg " | 
|  | "completed successfully.\n"); | 
|  | } else { | 
|  | hw->serdes_has_link = false; | 
|  | DEBUGOUT("SERDES: Link down - invalid" | 
|  | "codewords detected in autoneg.\n"); | 
|  | } | 
|  | } else { | 
|  | hw->serdes_has_link = false; | 
|  | DEBUGOUT("SERDES: Link down - no sync.\n"); | 
|  | } | 
|  | } else { | 
|  | hw->serdes_has_link = false; | 
|  | DEBUGOUT("SERDES: Link down - autoneg failed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_for_link | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Checks to see if the link status of the hardware has changed. | 
|  | * Called by any function that needs to check the link status of the adapter. | 
|  | */ | 
|  | s32 e1000_check_for_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 rxcw = 0; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | u32 rctl; | 
|  | u32 icr; | 
|  | u32 signal = 0; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_for_link"); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  |  | 
|  | /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal.  This applies to fiber media only. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_fiber) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) { | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | signal = | 
|  | (hw->mac_type > | 
|  | e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  | if (status & E1000_STATUS_LU) | 
|  | hw->get_link_status = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we have a copper PHY then we only want to go out to the PHY | 
|  | * registers to see if Auto-Neg has completed and/or if our link | 
|  | * status has changed.  The get_link_status flag will be set if we | 
|  | * receive a Link Status Change interrupt or we have Rx Sequence | 
|  | * Errors. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
|  | /* First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | * Read the register twice since the link bit is sticky. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | hw->get_link_status = false; | 
|  | /* Check if there was DownShift, must be checked immediately after | 
|  | * link-up */ | 
|  | e1000_check_downshift(hw); | 
|  |  | 
|  | /* If we are on 82544 or 82543 silicon and speed/duplex | 
|  | * are forced to 10H or 10F, then we will implement the polarity | 
|  | * reversal workaround.  We disable interrupts first, and upon | 
|  | * returning, place the devices interrupt state to its previous | 
|  | * value except for the link status change interrupt which will | 
|  | * happen due to the execution of this workaround. | 
|  | */ | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544 | 
|  | || hw->mac_type == e1000_82543) && (!hw->autoneg) | 
|  | && (hw->forced_speed_duplex == e1000_10_full | 
|  | || hw->forced_speed_duplex == e1000_10_half)) { | 
|  | ew32(IMC, 0xffffffff); | 
|  | ret_val = | 
|  | e1000_polarity_reversal_workaround(hw); | 
|  | icr = er32(ICR); | 
|  | ew32(ICS, (icr & ~E1000_ICS_LSC)); | 
|  | ew32(IMS, IMS_ENABLE_MASK); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* No link detected */ | 
|  | e1000_config_dsp_after_link_change(hw, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If we are forcing speed/duplex, then we simply return since | 
|  | * we have already determined whether we have link or not. | 
|  | */ | 
|  | if (!hw->autoneg) | 
|  | return -E1000_ERR_CONFIG; | 
|  |  | 
|  | /* optimize the dsp settings for the igp phy */ | 
|  | e1000_config_dsp_after_link_change(hw, true); | 
|  |  | 
|  | /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
|  | * have Si on board that is 82544 or newer, Auto | 
|  | * Speed Detection takes care of MAC speed/duplex | 
|  | * configuration.  So we only need to configure Collision | 
|  | * Distance in the MAC.  Otherwise, we need to force | 
|  | * speed/duplex on the MAC to the current PHY speed/duplex | 
|  | * settings. | 
|  | */ | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | e1000_config_collision_dist(hw); | 
|  | else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT | 
|  | ("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure Flow Control now that Auto-Neg has completed. First, we | 
|  | * need to restore the desired flow control settings because we may | 
|  | * have had to re-autoneg with a different link partner. | 
|  | */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* At this point we know that we are on copper and we have | 
|  | * auto-negotiated link.  These are conditions for checking the link | 
|  | * partner capability register.  We use the link speed to determine if | 
|  | * TBI compatibility needs to be turned on or off.  If the link is not | 
|  | * at gigabit speed, then TBI compatibility is not needed.  If we are | 
|  | * at gigabit speed, we turn on TBI compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_en) { | 
|  | u16 speed, duplex; | 
|  | ret_val = | 
|  | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT | 
|  | ("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  | if (speed != SPEED_1000) { | 
|  | /* If link speed is not set to gigabit speed, we do not need | 
|  | * to enable TBI compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_on) { | 
|  | /* If we previously were in the mode, turn it off. */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  | ew32(RCTL, rctl); | 
|  | hw->tbi_compatibility_on = false; | 
|  | } | 
|  | } else { | 
|  | /* If TBI compatibility is was previously off, turn it on. For | 
|  | * compatibility with a TBI link partner, we will store bad | 
|  | * packets. Some frames have an additional byte on the end and | 
|  | * will look like CRC errors to to the hardware. | 
|  | */ | 
|  | if (!hw->tbi_compatibility_on) { | 
|  | hw->tbi_compatibility_on = true; | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((hw->media_type == e1000_media_type_fiber) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) | 
|  | e1000_check_for_serdes_link_generic(hw); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_speed_and_duplex | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @speed: Speed of the connection | 
|  | * @duplex: Duplex setting of the connection | 
|  |  | 
|  | * Detects the current speed and duplex settings of the hardware. | 
|  | */ | 
|  | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | u32 status; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_speed_and_duplex"); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | DEBUGOUT("1000 Mbs, "); | 
|  | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | DEBUGOUT("100 Mbs, "); | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | DEBUGOUT("10 Mbs, "); | 
|  | } | 
|  |  | 
|  | if (status & E1000_STATUS_FD) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | DEBUGOUT("Full Duplex\n"); | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | DEBUGOUT(" Half Duplex\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("1000 Mbs, Full Duplex\n"); | 
|  | *speed = SPEED_1000; | 
|  | *duplex = FULL_DUPLEX; | 
|  | } | 
|  |  | 
|  | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 
|  | * if it is operating at half duplex.  Here we set the duplex settings to | 
|  | * match the duplex in the link partner's capabilities. | 
|  | */ | 
|  | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 
|  | *duplex = HALF_DUPLEX; | 
|  | else { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if ((*speed == SPEED_100 | 
|  | && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) | 
|  | || (*speed == SPEED_10 | 
|  | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 
|  | *duplex = HALF_DUPLEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_wait_autoneg | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Blocks until autoneg completes or times out (~4.5 seconds) | 
|  | */ | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_wait_autoneg"); | 
|  | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 
|  |  | 
|  | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Auto-Neg | 
|  | * Complete bit to be set. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | msleep(100); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_raise_mdi_clk - Raises the Management Data Clock | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @ctrl: Device control register's current value | 
|  | */ | 
|  | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|  | { | 
|  | /* Raise the clock input to the Management Data Clock (by setting the MDC | 
|  | * bit), and then delay 10 microseconds. | 
|  | */ | 
|  | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_lower_mdi_clk - Lowers the Management Data Clock | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @ctrl: Device control register's current value | 
|  | */ | 
|  | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|  | { | 
|  | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 
|  | * bit), and then delay 10 microseconds. | 
|  | */ | 
|  | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @data: Data to send out to the PHY | 
|  | * @count: Number of bits to shift out | 
|  | * | 
|  | * Bits are shifted out in MSB to LSB order. | 
|  | */ | 
|  | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 mask; | 
|  |  | 
|  | /* We need to shift "count" number of bits out to the PHY. So, the value | 
|  | * in the "data" parameter will be shifted out to the PHY one bit at a | 
|  | * time. In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01; | 
|  | mask <<= (count - 1); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
|  | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
|  |  | 
|  | while (mask) { | 
|  | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 
|  | * then raising and lowering the Management Data Clock. A "0" is | 
|  | * shifted out to the PHY by setting the MDIO bit to "0" and then | 
|  | * raising and lowering the clock. | 
|  | */ | 
|  | if (data & mask) | 
|  | ctrl |= E1000_CTRL_MDIO; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | udelay(10); | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | mask = mask >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Bits are shifted in in MSB to LSB order. | 
|  | */ | 
|  | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u16 data = 0; | 
|  | u8 i; | 
|  |  | 
|  | /* In order to read a register from the PHY, we need to shift in a total | 
|  | * of 18 bits from the PHY. The first two bit (turnaround) times are used | 
|  | * to avoid contention on the MDIO pin when a read operation is performed. | 
|  | * These two bits are ignored by us and thrown away. Bits are "shifted in" | 
|  | * by raising the input to the Management Data Clock (setting the MDC bit), | 
|  | * and then reading the value of the MDIO bit. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 
|  | ctrl &= ~E1000_CTRL_MDIO_DIR; | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | /* Raise and Lower the clock before reading in the data. This accounts for | 
|  | * the turnaround bits. The first clock occurred when we clocked out the | 
|  | * last bit of the Register Address. | 
|  | */ | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | for (data = 0, i = 0; i < 16; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | ctrl = er32(CTRL); | 
|  | /* Check to see if we shifted in a "1". */ | 
|  | if (ctrl & E1000_CTRL_MDIO) | 
|  | data |= 1; | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | } | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * e1000_read_phy_reg - read a phy register | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @reg_addr: address of the PHY register to read | 
|  | * | 
|  | * Reads the value from a PHY register, if the value is on a specific non zero | 
|  | * page, sets the page first. | 
|  | */ | 
|  | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | 
|  | { | 
|  | u32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_phy_reg"); | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_igp) && | 
|  | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16) reg_addr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | phy_data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 *phy_data) | 
|  | { | 
|  | u32 i; | 
|  | u32 mdic = 0; | 
|  | const u32 phy_addr = 1; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_phy_reg_ex"); | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, and register address in the MDI | 
|  | * Control register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_READ)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | udelay(50); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Read did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (mdic & E1000_MDIC_ERROR) { | 
|  | DEBUGOUT("MDI Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | *phy_data = (u16) mdic; | 
|  | } else { | 
|  | /* We must first send a preamble through the MDIO pin to signal the | 
|  | * beginning of an MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the next few fields that are required for a read | 
|  | * operation.  We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine five different times. The format of | 
|  | * a MII read instruction consists of a shift out of 14 bits and is | 
|  | * defined as follows: | 
|  | *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
|  | * followed by a shift in of 18 bits.  This first two bits shifted in | 
|  | * are TurnAround bits used to avoid contention on the MDIO pin when a | 
|  | * READ operation is performed.  These two bits are thrown away | 
|  | * followed by a shift in of 16 bits which contains the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr) | (phy_addr << 5) | | 
|  | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 14); | 
|  |  | 
|  | /* Now that we've shifted out the read command to the MII, we need to | 
|  | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 
|  | * register address. | 
|  | */ | 
|  | *phy_data = e1000_shift_in_mdi_bits(hw); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_phy_reg - write a phy register | 
|  | * | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @reg_addr: address of the PHY register to write | 
|  | * @data: data to write to the PHY | 
|  |  | 
|  | * Writes a value to a PHY register | 
|  | */ | 
|  | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | 
|  | { | 
|  | u32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_phy_reg"); | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_igp) && | 
|  | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16) reg_addr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | phy_data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 phy_data) | 
|  | { | 
|  | u32 i; | 
|  | u32 mdic = 0; | 
|  | const u32 phy_addr = 1; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_phy_reg_ex"); | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, register address, and data intended | 
|  | * for the PHY register in the MDI Control register.  The MAC will take | 
|  | * care of interfacing with the PHY to send the desired data. | 
|  | */ | 
|  | mdic = (((u32) phy_data) | | 
|  | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_WRITE)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 641; i++) { | 
|  | udelay(5); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Write did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | } else { | 
|  | /* We'll need to use the SW defined pins to shift the write command | 
|  | * out to the PHY. We first send a preamble to the PHY to signal the | 
|  | * beginning of the MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the remaining required fields that will indicate a | 
|  | * write operation. We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine for each field in the command. The | 
|  | * format of a MII write instruction is as follows: | 
|  | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 
|  | */ | 
|  | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
|  | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
|  | mdic <<= 16; | 
|  | mdic |= (u32) phy_data; | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 32); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_hw_reset - reset the phy, hardware style | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Returns the PHY to the power-on reset state | 
|  | */ | 
|  | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, ctrl_ext; | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_hw_reset"); | 
|  |  | 
|  | DEBUGOUT("Resetting Phy...\n"); | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 
|  | * bit. Then, take it out of reset. | 
|  | * For e1000 hardware, we delay for 10ms between the assert | 
|  | * and deassert. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | } else { | 
|  | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 
|  | * bit to put the PHY into reset. Then, take it out of reset. | 
|  | */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
|  | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(10); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | udelay(150); | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | } | 
|  |  | 
|  | /* Wait for FW to finish PHY configuration. */ | 
|  | ret_val = e1000_get_phy_cfg_done(hw); | 
|  | if (ret_val != E1000_SUCCESS) | 
|  | return ret_val; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_reset - reset the phy to commit settings | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Resets the PHY | 
|  | * Sets bit 15 of the MII Control register | 
|  | */ | 
|  | s32 e1000_phy_reset(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_reset"); | 
|  |  | 
|  | switch (hw->phy_type) { | 
|  | case e1000_phy_igp: | 
|  | ret_val = e1000_phy_hw_reset(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | default: | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= MII_CR_RESET; | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | udelay(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp) | 
|  | e1000_phy_init_script(hw); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_detect_gig_phy - check the phy type | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Probes the expected PHY address for known PHY IDs | 
|  | */ | 
|  | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | 
|  | { | 
|  | s32 phy_init_status, ret_val; | 
|  | u16 phy_id_high, phy_id_low; | 
|  | bool match = false; | 
|  |  | 
|  | DEBUGFUNC("e1000_detect_gig_phy"); | 
|  |  | 
|  | if (hw->phy_id != 0) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_id = (u32) (phy_id_high << 16); | 
|  | udelay(20); | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); | 
|  | hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82543: | 
|  | if (hw->phy_id == M88E1000_E_PHY_ID) | 
|  | match = true; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->phy_id == M88E1000_I_PHY_ID) | 
|  | match = true; | 
|  | break; | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | if (hw->phy_id == M88E1011_I_PHY_ID) | 
|  | match = true; | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (hw->phy_id == IGP01E1000_I_PHY_ID) | 
|  | match = true; | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | phy_init_status = e1000_set_phy_type(hw); | 
|  |  | 
|  | if ((match) && (phy_init_status == E1000_SUCCESS)) { | 
|  | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_reset_dsp - reset DSP | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Resets the PHY's DSP | 
|  | */ | 
|  | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | DEBUGFUNC("e1000_phy_reset_dsp"); | 
|  |  | 
|  | do { | 
|  | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 
|  | if (ret_val) | 
|  | break; | 
|  | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 
|  | if (ret_val) | 
|  | break; | 
|  | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 
|  | if (ret_val) | 
|  | break; | 
|  | ret_val = E1000_SUCCESS; | 
|  | } while (0); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_igp_get_info - get igp specific registers | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @phy_info: PHY information structure | 
|  | * | 
|  | * Get PHY information from various PHY registers for igp PHY only. | 
|  | */ | 
|  | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data, min_length, max_length, average; | 
|  | e1000_rev_polarity polarity; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_igp_get_info"); | 
|  |  | 
|  | /* The downshift status is checked only once, after link is established, | 
|  | * and it stored in the hw->speed_downgraded parameter. */ | 
|  | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | 
|  |  | 
|  | /* IGP01E1000 does not need to support it. */ | 
|  | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
|  |  | 
|  | /* IGP01E1000 always correct polarity reversal */ | 
|  | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 
|  |  | 
|  | /* Check polarity status */ | 
|  | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->cable_polarity = polarity; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->mdix_mode = | 
|  | (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> | 
|  | IGP01E1000_PSSR_MDIX_SHIFT); | 
|  |  | 
|  | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | /* Get cable length */ | 
|  | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Translate to old method */ | 
|  | average = (max_length + min_length) / 2; | 
|  |  | 
|  | if (average <= e1000_igp_cable_length_50) | 
|  | phy_info->cable_length = e1000_cable_length_50; | 
|  | else if (average <= e1000_igp_cable_length_80) | 
|  | phy_info->cable_length = e1000_cable_length_50_80; | 
|  | else if (average <= e1000_igp_cable_length_110) | 
|  | phy_info->cable_length = e1000_cable_length_80_110; | 
|  | else if (average <= e1000_igp_cable_length_140) | 
|  | phy_info->cable_length = e1000_cable_length_110_140; | 
|  | else | 
|  | phy_info->cable_length = e1000_cable_length_140; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_m88_get_info - get m88 specific registers | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @phy_info: PHY information structure | 
|  | * | 
|  | * Get PHY information from various PHY registers for m88 PHY only. | 
|  | */ | 
|  | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | e1000_rev_polarity polarity; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_m88_get_info"); | 
|  |  | 
|  | /* The downshift status is checked only once, after link is established, | 
|  | * and it stored in the hw->speed_downgraded parameter. */ | 
|  | phy_info->downshift = (e1000_downshift) hw->speed_downgraded; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->extended_10bt_distance = | 
|  | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 
|  | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? | 
|  | e1000_10bt_ext_dist_enable_lower : | 
|  | e1000_10bt_ext_dist_enable_normal; | 
|  |  | 
|  | phy_info->polarity_correction = | 
|  | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 
|  | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? | 
|  | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 
|  |  | 
|  | /* Check polarity status */ | 
|  | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_info->cable_polarity = polarity; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->mdix_mode = | 
|  | (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> | 
|  | M88E1000_PSSR_MDIX_SHIFT); | 
|  |  | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
|  | /* Cable Length Estimation and Local/Remote Receiver Information | 
|  | * are only valid at 1000 Mbps. | 
|  | */ | 
|  | phy_info->cable_length = | 
|  | (e1000_cable_length) ((phy_data & | 
|  | M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_get_info - request phy info | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @phy_info: PHY information structure | 
|  | * | 
|  | * Get PHY information from various PHY registers | 
|  | */ | 
|  | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_get_info"); | 
|  |  | 
|  | phy_info->cable_length = e1000_cable_length_undefined; | 
|  | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 
|  | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 
|  | phy_info->downshift = e1000_downshift_undefined; | 
|  | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 
|  | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 
|  | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_copper) { | 
|  | DEBUGOUT("PHY info is only valid for copper media\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 
|  | DEBUGOUT("PHY info is only valid if link is up\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp) | 
|  | return e1000_phy_igp_get_info(hw, phy_info); | 
|  | else | 
|  | return e1000_phy_m88_get_info(hw, phy_info); | 
|  | } | 
|  |  | 
|  | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_validate_mdi_settings"); | 
|  |  | 
|  | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | 
|  | DEBUGOUT("Invalid MDI setting detected\n"); | 
|  | hw->mdix = 1; | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_init_eeprom_params - initialize sw eeprom vars | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets up eeprom variables in the hw struct.  Must be called after mac_type | 
|  | * is configured. | 
|  | */ | 
|  | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd = er32(EECD); | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 eeprom_size; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_eeprom_params"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->word_size = 64; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->address_bits = 6; | 
|  | eeprom->delay_usec = 50; | 
|  | break; | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->delay_usec = 50; | 
|  | if (eecd & E1000_EECD_SIZE) { | 
|  | eeprom->word_size = 256; | 
|  | eeprom->address_bits = 8; | 
|  | } else { | 
|  | eeprom->word_size = 64; | 
|  | eeprom->address_bits = 6; | 
|  | } | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (eecd & E1000_EECD_TYPE) { | 
|  | eeprom->type = e1000_eeprom_spi; | 
|  | eeprom->opcode_bits = 8; | 
|  | eeprom->delay_usec = 1; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->page_size = 32; | 
|  | eeprom->address_bits = 16; | 
|  | } else { | 
|  | eeprom->page_size = 8; | 
|  | eeprom->address_bits = 8; | 
|  | } | 
|  | } else { | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->delay_usec = 50; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->word_size = 256; | 
|  | eeprom->address_bits = 8; | 
|  | } else { | 
|  | eeprom->word_size = 64; | 
|  | eeprom->address_bits = 6; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 
|  | * 32KB (incremented by powers of 2). | 
|  | */ | 
|  | /* Set to default value for initial eeprom read. */ | 
|  | eeprom->word_size = 64; | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | eeprom_size = | 
|  | (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 
|  | /* 256B eeprom size was not supported in earlier hardware, so we | 
|  | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 
|  | * is never the result used in the shifting logic below. */ | 
|  | if (eeprom_size) | 
|  | eeprom_size++; | 
|  |  | 
|  | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_raise_ee_clk - Raises the EEPROM's clock input. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @eecd: EECD's current value | 
|  | */ | 
|  | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
|  | * wait <delay> microseconds. | 
|  | */ | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_lower_ee_clk - Lowers the EEPROM's clock input. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @eecd: EECD's current value | 
|  | */ | 
|  | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 
|  | * wait 50 microseconds. | 
|  | */ | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @data: data to send to the EEPROM | 
|  | * @count: number of bits to shift out | 
|  | */ | 
|  | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  | u32 mask; | 
|  |  | 
|  | /* We need to shift "count" bits out to the EEPROM. So, value in the | 
|  | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | * In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01 << (count - 1); | 
|  | eecd = er32(EECD); | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | eecd &= ~E1000_EECD_DO; | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | eecd |= E1000_EECD_DO; | 
|  | } | 
|  | do { | 
|  | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 
|  | * and then raising and then lowering the clock (the SK bit controls | 
|  | * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM | 
|  | * by setting "DI" to "0" and then raising and then lowering the clock. | 
|  | */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  |  | 
|  | mask = mask >> 1; | 
|  |  | 
|  | } while (mask); | 
|  |  | 
|  | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @count: number of bits to shift in | 
|  | */ | 
|  | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | 
|  | { | 
|  | u32 eecd; | 
|  | u32 i; | 
|  | u16 data; | 
|  |  | 
|  | /* In order to read a register from the EEPROM, we need to shift 'count' | 
|  | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 
|  | * input to the EEPROM (setting the SK bit), and then reading the value of | 
|  | * the "DO" bit.  During this "shifting in" process the "DI" bit should | 
|  | * always be clear. | 
|  | */ | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DI); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_acquire_eeprom - Prepares EEPROM for access | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
|  | * function should be called before issuing a command to the EEPROM. | 
|  | */ | 
|  | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd, i = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_acquire_eeprom"); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | /* Request EEPROM Access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd |= E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | eecd = er32(EECD); | 
|  | while ((!(eecd & E1000_EECD_GNT)) && | 
|  | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 
|  | i++; | 
|  | udelay(5); | 
|  | eecd = er32(EECD); | 
|  | } | 
|  | if (!(eecd & E1000_EECD_GNT)) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | DEBUGOUT("Could not acquire EEPROM grant\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Setup EEPROM for Read/Write */ | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | /* Clear SK and DI */ | 
|  | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | /* Set CS */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* Clear SK and CS */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_standby_eeprom - Returns EEPROM to a "standby" state | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static void e1000_standby_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Clock high */ | 
|  | eecd |= E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Select EEPROM */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Clock low */ | 
|  | eecd &= ~E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* Toggle CS to flush commands */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | eecd &= ~E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_release_eeprom - drop chip select | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Terminates a command by inverting the EEPROM's chip select pin | 
|  | */ | 
|  | static void e1000_release_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | DEBUGFUNC("e1000_release_eeprom"); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | if (hw->eeprom.type == e1000_eeprom_spi) { | 
|  | eecd |= E1000_EECD_CS;	/* Pull CS high */ | 
|  | eecd &= ~E1000_EECD_SK;	/* Lower SCK */ | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | 
|  | /* cleanup eeprom */ | 
|  |  | 
|  | /* CS on Microwire is active-high */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | /* Rising edge of clock */ | 
|  | eecd |= E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  |  | 
|  | /* Falling edge of clock */ | 
|  | eecd &= ~E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /* Stop requesting EEPROM access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | 
|  | { | 
|  | u16 retry_count = 0; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  | DEBUGFUNC("e1000_spi_eeprom_ready"); | 
|  |  | 
|  | /* Read "Status Register" repeatedly until the LSB is cleared.  The | 
|  | * EEPROM will signal that the command has been completed by clearing | 
|  | * bit 0 of the internal status register.  If it's not cleared within | 
|  | * 5 milliseconds, then error out. | 
|  | */ | 
|  | retry_count = 0; | 
|  | do { | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 
|  | hw->eeprom.opcode_bits); | 
|  | spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); | 
|  | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | udelay(5); | 
|  | retry_count += 5; | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  | } while (retry_count < EEPROM_MAX_RETRY_SPI); | 
|  |  | 
|  | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 
|  | * only 0-5mSec on 5V devices) | 
|  | */ | 
|  | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | 
|  | DEBUGOUT("SPI EEPROM Status error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: offset of  word in the EEPROM to read | 
|  | * @data: word read from the EEPROM | 
|  | * @words: number of words to read | 
|  | */ | 
|  | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | s32 ret; | 
|  | spin_lock(&e1000_eeprom_lock); | 
|  | ret = e1000_do_read_eeprom(hw, offset, words, data); | 
|  | spin_unlock(&e1000_eeprom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 i = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_eeprom"); | 
|  |  | 
|  | /* If eeprom is not yet detected, do so now */ | 
|  | if (eeprom->word_size == 0) | 
|  | e1000_init_eeprom_params(hw); | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, and not | 
|  | * enough words. | 
|  | */ | 
|  | if ((offset >= eeprom->word_size) | 
|  | || (words > eeprom->word_size - offset) || (words == 0)) { | 
|  | DEBUGOUT2 | 
|  | ("\"words\" parameter out of bounds. Words = %d, size = %d\n", | 
|  | offset, eeprom->word_size); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | 
|  | * directly. In this case, we need to acquire the EEPROM so that | 
|  | * FW or other port software does not interrupt. | 
|  | */ | 
|  | /* Prepare the EEPROM for bit-bang reading */ | 
|  | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | return -E1000_ERR_EEPROM; | 
|  |  | 
|  | /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have | 
|  | * acquired the EEPROM at this point, so any returns should release it */ | 
|  | if (eeprom->type == e1000_eeprom_spi) { | 
|  | u16 word_in; | 
|  | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | 
|  |  | 
|  | if (e1000_spi_eeprom_ready(hw)) { | 
|  | e1000_release_eeprom(hw); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | read_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the READ command (opcode + addr)  */ | 
|  | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | 
|  | e1000_shift_out_ee_bits(hw, (u16) (offset * 2), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Read the data.  The address of the eeprom internally increments with | 
|  | * each byte (spi) being read, saving on the overhead of eeprom setup | 
|  | * and tear-down.  The address counter will roll over if reading beyond | 
|  | * the size of the eeprom, thus allowing the entire memory to be read | 
|  | * starting from any offset. */ | 
|  | for (i = 0; i < words; i++) { | 
|  | word_in = e1000_shift_in_ee_bits(hw, 16); | 
|  | data[i] = (word_in >> 8) | (word_in << 8); | 
|  | } | 
|  | } else if (eeprom->type == e1000_eeprom_microwire) { | 
|  | for (i = 0; i < words; i++) { | 
|  | /* Send the READ command (opcode + addr)  */ | 
|  | e1000_shift_out_ee_bits(hw, | 
|  | EEPROM_READ_OPCODE_MICROWIRE, | 
|  | eeprom->opcode_bits); | 
|  | e1000_shift_out_ee_bits(hw, (u16) (offset + i), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Read the data.  For microwire, each word requires the overhead | 
|  | * of eeprom setup and tear-down. */ | 
|  | data[i] = e1000_shift_in_ee_bits(hw, 16); | 
|  | e1000_standby_eeprom(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* End this read operation */ | 
|  | e1000_release_eeprom(hw); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
|  | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
|  | * valid. | 
|  | */ | 
|  | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | u16 checksum = 0; | 
|  | u16 i, eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 
|  |  | 
|  | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | checksum += eeprom_data; | 
|  | } | 
|  |  | 
|  | if (checksum == (u16) EEPROM_SUM) | 
|  | return E1000_SUCCESS; | 
|  | else { | 
|  | DEBUGOUT("EEPROM Checksum Invalid\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 
|  | * Writes the difference to word offset 63 of the EEPROM. | 
|  | */ | 
|  | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | u16 checksum = 0; | 
|  | u16 i, eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_update_eeprom_checksum"); | 
|  |  | 
|  | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
|  | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | checksum += eeprom_data; | 
|  | } | 
|  | checksum = (u16) EEPROM_SUM - checksum; | 
|  | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 
|  | DEBUGOUT("EEPROM Write Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_eeprom - write words to the different EEPROM types. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: offset within the EEPROM to be written to | 
|  | * @words: number of words to write | 
|  | * @data: 16 bit word to be written to the EEPROM | 
|  | * | 
|  | * If e1000_update_eeprom_checksum is not called after this function, the | 
|  | * EEPROM will most likely contain an invalid checksum. | 
|  | */ | 
|  | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | s32 ret; | 
|  | spin_lock(&e1000_eeprom_lock); | 
|  | ret = e1000_do_write_eeprom(hw, offset, words, data); | 
|  | spin_unlock(&e1000_eeprom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | s32 status = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom"); | 
|  |  | 
|  | /* If eeprom is not yet detected, do so now */ | 
|  | if (eeprom->word_size == 0) | 
|  | e1000_init_eeprom_params(hw); | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, and not | 
|  | * enough words. | 
|  | */ | 
|  | if ((offset >= eeprom->word_size) | 
|  | || (words > eeprom->word_size - offset) || (words == 0)) { | 
|  | DEBUGOUT("\"words\" parameter out of bounds\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* Prepare the EEPROM for writing  */ | 
|  | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | return -E1000_ERR_EEPROM; | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 
|  | } else { | 
|  | status = e1000_write_eeprom_spi(hw, offset, words, data); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | /* Done with writing */ | 
|  | e1000_release_eeprom(hw); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: offset within the EEPROM to be written to | 
|  | * @words: number of words to write | 
|  | * @data: pointer to array of 8 bit words to be written to the EEPROM | 
|  | */ | 
|  | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u16 widx = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom_spi"); | 
|  |  | 
|  | while (widx < words) { | 
|  | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | if (e1000_spi_eeprom_ready(hw)) | 
|  | return -E1000_ERR_EEPROM; | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 
|  | eeprom->opcode_bits); | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Send the data */ | 
|  |  | 
|  | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 
|  | while (widx < words) { | 
|  | u16 word_out = data[widx]; | 
|  | word_out = (word_out >> 8) | (word_out << 8); | 
|  | e1000_shift_out_ee_bits(hw, word_out, 16); | 
|  | widx++; | 
|  |  | 
|  | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 
|  | * operation, while the smaller eeproms are capable of an 8-byte | 
|  | * PAGE WRITE operation.  Break the inner loop to pass new address | 
|  | */ | 
|  | if ((((offset + widx) * 2) % eeprom->page_size) == 0) { | 
|  | e1000_standby_eeprom(hw); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: offset within the EEPROM to be written to | 
|  | * @words: number of words to write | 
|  | * @data: pointer to array of 8 bit words to be written to the EEPROM | 
|  | */ | 
|  | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  | u16 words_written = 0; | 
|  | u16 i = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom_microwire"); | 
|  |  | 
|  | /* Send the write enable command to the EEPROM (3-bit opcode plus | 
|  | * 6/8-bit dummy address beginning with 11).  It's less work to include | 
|  | * the 11 of the dummy address as part of the opcode than it is to shift | 
|  | * it over the correct number of bits for the address.  This puts the | 
|  | * EEPROM into write/erase mode. | 
|  | */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 
|  | (u16) (eeprom->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); | 
|  |  | 
|  | /* Prepare the EEPROM */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | while (words_written < words) { | 
|  | /* Send the Write command (3-bit opcode + addr) */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 
|  | eeprom->opcode_bits); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Send the data */ | 
|  | e1000_shift_out_ee_bits(hw, data[words_written], 16); | 
|  |  | 
|  | /* Toggle the CS line.  This in effect tells the EEPROM to execute | 
|  | * the previous command. | 
|  | */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will | 
|  | * signal that the command has been completed by raising the DO signal. | 
|  | * If DO does not go high in 10 milliseconds, then error out. | 
|  | */ | 
|  | for (i = 0; i < 200; i++) { | 
|  | eecd = er32(EECD); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | break; | 
|  | udelay(50); | 
|  | } | 
|  | if (i == 200) { | 
|  | DEBUGOUT("EEPROM Write did not complete\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* Recover from write */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | words_written++; | 
|  | } | 
|  |  | 
|  | /* Send the write disable command to the EEPROM (3-bit opcode plus | 
|  | * 6/8-bit dummy address beginning with 10).  It's less work to include | 
|  | * the 10 of the dummy address as part of the opcode than it is to shift | 
|  | * it over the correct number of bits for the address.  This takes the | 
|  | * EEPROM out of write/erase mode. | 
|  | */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 
|  | (u16) (eeprom->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_read_mac_addr - read the adapters MAC from eeprom | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
|  | * second function of dual function devices | 
|  | */ | 
|  | s32 e1000_read_mac_addr(struct e1000_hw *hw) | 
|  | { | 
|  | u16 offset; | 
|  | u16 eeprom_data, i; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_mac_addr"); | 
|  |  | 
|  | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
|  | offset = i >> 1; | 
|  | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); | 
|  | hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | break; | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
|  | hw->perm_mac_addr[5] ^= 0x01; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | 
|  | hw->mac_addr[i] = hw->perm_mac_addr[i]; | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_init_rx_addrs - Initializes receive address filters. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Places the MAC address in receive address register 0 and clears the rest | 
|  | * of the receive address registers. Clears the multicast table. Assumes | 
|  | * the receiver is in reset when the routine is called. | 
|  | */ | 
|  | static void e1000_init_rx_addrs(struct e1000_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_num; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_rx_addrs"); | 
|  |  | 
|  | /* Setup the receive address. */ | 
|  | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
|  |  | 
|  | e1000_rar_set(hw, hw->mac_addr, 0); | 
|  |  | 
|  | rar_num = E1000_RAR_ENTRIES; | 
|  |  | 
|  | /* Zero out the other 15 receive addresses. */ | 
|  | DEBUGOUT("Clearing RAR[1-15]\n"); | 
|  | for (i = 1; i < rar_num; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @mc_addr: the multicast address to hash | 
|  | */ | 
|  | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 hash_value = 0; | 
|  |  | 
|  | /* The portion of the address that is used for the hash table is | 
|  | * determined by the mc_filter_type setting. | 
|  | */ | 
|  | switch (hw->mc_filter_type) { | 
|  | /* [0] [1] [2] [3] [4] [5] | 
|  | * 01  AA  00  12  34  56 | 
|  | * LSB                 MSB | 
|  | */ | 
|  | case 0: | 
|  | /* [47:36] i.e. 0x563 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); | 
|  | break; | 
|  | case 1: | 
|  | /* [46:35] i.e. 0xAC6 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); | 
|  | break; | 
|  | case 2: | 
|  | /* [45:34] i.e. 0x5D8 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); | 
|  | break; | 
|  | case 3: | 
|  | /* [43:32] i.e. 0x634 for above example address */ | 
|  | hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | hash_value &= 0xFFF; | 
|  | return hash_value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_rar_set - Puts an ethernet address into a receive address register. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @addr: Address to put into receive address register | 
|  | * @index: Receive address register to write | 
|  | */ | 
|  | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  |  | 
|  | /* HW expects these in little endian so we reverse the byte order | 
|  | * from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | | 
|  | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | 
|  | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | 
|  |  | 
|  | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | 
|  | * unit hang. | 
|  | * | 
|  | * Description: | 
|  | * If there are any Rx frames queued up or otherwise present in the HW | 
|  | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | 
|  | * hang.  To work around this issue, we have to disable receives and | 
|  | * flush out all Rx frames before we enable RSS. To do so, we modify we | 
|  | * redirect all Rx traffic to manageability and then reset the HW. | 
|  | * This flushes away Rx frames, and (since the redirections to | 
|  | * manageability persists across resets) keeps new ones from coming in | 
|  | * while we work.  Then, we clear the Address Valid AV bit for all MAC | 
|  | * addresses and undo the re-direction to manageability. | 
|  | * Now, frames are coming in again, but the MAC won't accept them, so | 
|  | * far so good.  We now proceed to initialize RSS (if necessary) and | 
|  | * configure the Rx unit.  Last, we re-enable the AV bits and continue | 
|  | * on our merry way. | 
|  | */ | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | /* Indicate to hardware the Address is Valid. */ | 
|  | rar_high |= E1000_RAH_AV; | 
|  | break; | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: Offset in VLAN filer table to write | 
|  | * @value: Value to write into VLAN filter table | 
|  | */ | 
|  | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 
|  | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } else { | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clear_vfta - Clears the VLAN filer table | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static void e1000_clear_vfta(struct e1000_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  | u32 vfta_value = 0; | 
|  | u32 vfta_offset = 0; | 
|  | u32 vfta_bit_in_reg = 0; | 
|  |  | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | /* If the offset we want to clear is the same offset of the | 
|  | * manageability VLAN ID, then clear all bits except that of the | 
|  | * manageability unit */ | 
|  | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static s32 e1000_id_led_init(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl; | 
|  | const u32 ledctl_mask = 0x000000FF; | 
|  | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | u16 eeprom_data, i, temp; | 
|  | const u16 led_mask = 0x0F; | 
|  |  | 
|  | DEBUGFUNC("e1000_id_led_init"); | 
|  |  | 
|  | if (hw->mac_type < e1000_82540) { | 
|  | /* Nothing to do */ | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | ledctl = er32(LEDCTL); | 
|  | hw->ledctl_default = ledctl; | 
|  | hw->ledctl_mode1 = hw->ledctl_default; | 
|  | hw->ledctl_mode2 = hw->ledctl_default; | 
|  |  | 
|  | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | if ((eeprom_data == ID_LED_RESERVED_0000) || | 
|  | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 
|  | eeprom_data = ID_LED_DEFAULT; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | temp = (eeprom_data >> (i << 2)) & led_mask; | 
|  | switch (temp) { | 
|  | case ID_LED_ON1_DEF2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_OFF1_DEF2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | switch (temp) { | 
|  | case ID_LED_DEF1_ON2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_DEF1_OFF2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_led | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Prepares SW controlable LED for use and saves the current state of the LED. | 
|  | */ | 
|  | s32 e1000_setup_led(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_led"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* No setup necessary */ | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | /* Turn off PHY Smart Power Down (if enabled) */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | &hw->phy_spd_default); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | (u16) (hw->phy_spd_default & | 
|  | ~IGP01E1000_GMII_SPD)); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Fall Through */ | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | ledctl = er32(LEDCTL); | 
|  | /* Save current LEDCTL settings */ | 
|  | hw->ledctl_default = ledctl; | 
|  | /* Turn off LED0 */ | 
|  | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
|  | E1000_LEDCTL_LED0_BLINK | | 
|  | E1000_LEDCTL_LED0_MODE_MASK); | 
|  | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
|  | E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | ew32(LEDCTL, ledctl); | 
|  | } else if (hw->media_type == e1000_media_type_copper) | 
|  | ew32(LEDCTL, hw->ledctl_mode1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_cleanup_led - Restores the saved state of the SW controlable LED. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | s32 e1000_cleanup_led(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_cleanup_led"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* No cleanup necessary */ | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | /* Turn on PHY Smart Power Down (if previously enabled) */ | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | hw->phy_spd_default); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Fall Through */ | 
|  | default: | 
|  | /* Restore LEDCTL settings */ | 
|  | ew32(LEDCTL, hw->ledctl_default); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_led_on - Turns on the software controllable LED | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | s32 e1000_led_on(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | DEBUGFUNC("e1000_led_on"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else { | 
|  | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else if (hw->media_type == e1000_media_type_copper) { | 
|  | ew32(LEDCTL, hw->ledctl_mode2); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_led_off - Turns off the software controllable LED | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | s32 e1000_led_off(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | DEBUGFUNC("e1000_led_off"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else { | 
|  | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else if (hw->media_type == e1000_media_type_copper) { | 
|  | ew32(LEDCTL, hw->ledctl_mode1); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clear_hw_cntrs - Clears all hardware statistics counters. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | */ | 
|  | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | 
|  | { | 
|  | volatile u32 temp; | 
|  |  | 
|  | temp = er32(CRCERRS); | 
|  | temp = er32(SYMERRS); | 
|  | temp = er32(MPC); | 
|  | temp = er32(SCC); | 
|  | temp = er32(ECOL); | 
|  | temp = er32(MCC); | 
|  | temp = er32(LATECOL); | 
|  | temp = er32(COLC); | 
|  | temp = er32(DC); | 
|  | temp = er32(SEC); | 
|  | temp = er32(RLEC); | 
|  | temp = er32(XONRXC); | 
|  | temp = er32(XONTXC); | 
|  | temp = er32(XOFFRXC); | 
|  | temp = er32(XOFFTXC); | 
|  | temp = er32(FCRUC); | 
|  |  | 
|  | temp = er32(PRC64); | 
|  | temp = er32(PRC127); | 
|  | temp = er32(PRC255); | 
|  | temp = er32(PRC511); | 
|  | temp = er32(PRC1023); | 
|  | temp = er32(PRC1522); | 
|  |  | 
|  | temp = er32(GPRC); | 
|  | temp = er32(BPRC); | 
|  | temp = er32(MPRC); | 
|  | temp = er32(GPTC); | 
|  | temp = er32(GORCL); | 
|  | temp = er32(GORCH); | 
|  | temp = er32(GOTCL); | 
|  | temp = er32(GOTCH); | 
|  | temp = er32(RNBC); | 
|  | temp = er32(RUC); | 
|  | temp = er32(RFC); | 
|  | temp = er32(ROC); | 
|  | temp = er32(RJC); | 
|  | temp = er32(TORL); | 
|  | temp = er32(TORH); | 
|  | temp = er32(TOTL); | 
|  | temp = er32(TOTH); | 
|  | temp = er32(TPR); | 
|  | temp = er32(TPT); | 
|  |  | 
|  | temp = er32(PTC64); | 
|  | temp = er32(PTC127); | 
|  | temp = er32(PTC255); | 
|  | temp = er32(PTC511); | 
|  | temp = er32(PTC1023); | 
|  | temp = er32(PTC1522); | 
|  |  | 
|  | temp = er32(MPTC); | 
|  | temp = er32(BPTC); | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | return; | 
|  |  | 
|  | temp = er32(ALGNERRC); | 
|  | temp = er32(RXERRC); | 
|  | temp = er32(TNCRS); | 
|  | temp = er32(CEXTERR); | 
|  | temp = er32(TSCTC); | 
|  | temp = er32(TSCTFC); | 
|  |  | 
|  | if (hw->mac_type <= e1000_82544) | 
|  | return; | 
|  |  | 
|  | temp = er32(MGTPRC); | 
|  | temp = er32(MGTPDC); | 
|  | temp = er32(MGTPTC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_reset_adaptive - Resets Adaptive IFS to its default state. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 
|  | * hw->ifs_params_forced to true. However, you must initialize hw-> | 
|  | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 
|  | * before calling this function. | 
|  | */ | 
|  | void e1000_reset_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_reset_adaptive"); | 
|  |  | 
|  | if (hw->adaptive_ifs) { | 
|  | if (!hw->ifs_params_forced) { | 
|  | hw->current_ifs_val = 0; | 
|  | hw->ifs_min_val = IFS_MIN; | 
|  | hw->ifs_max_val = IFS_MAX; | 
|  | hw->ifs_step_size = IFS_STEP; | 
|  | hw->ifs_ratio = IFS_RATIO; | 
|  | } | 
|  | hw->in_ifs_mode = false; | 
|  | ew32(AIT, 0); | 
|  | } else { | 
|  | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_adaptive - update adaptive IFS | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @tx_packets: Number of transmits since last callback | 
|  | * @total_collisions: Number of collisions since last callback | 
|  | * | 
|  | * Called during the callback/watchdog routine to update IFS value based on | 
|  | * the ratio of transmits to collisions. | 
|  | */ | 
|  | void e1000_update_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_update_adaptive"); | 
|  |  | 
|  | if (hw->adaptive_ifs) { | 
|  | if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { | 
|  | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | hw->in_ifs_mode = true; | 
|  | if (hw->current_ifs_val < hw->ifs_max_val) { | 
|  | if (hw->current_ifs_val == 0) | 
|  | hw->current_ifs_val = | 
|  | hw->ifs_min_val; | 
|  | else | 
|  | hw->current_ifs_val += | 
|  | hw->ifs_step_size; | 
|  | ew32(AIT, hw->current_ifs_val); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (hw->in_ifs_mode | 
|  | && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | hw->current_ifs_val = 0; | 
|  | hw->in_ifs_mode = false; | 
|  | ew32(AIT, 0); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tbi_adjust_stats | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @frame_len: The length of the frame in question | 
|  | * @mac_addr: The Ethernet destination address of the frame in question | 
|  | * | 
|  | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 
|  | */ | 
|  | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | 
|  | u32 frame_len, u8 *mac_addr) | 
|  | { | 
|  | u64 carry_bit; | 
|  |  | 
|  | /* First adjust the frame length. */ | 
|  | frame_len--; | 
|  | /* We need to adjust the statistics counters, since the hardware | 
|  | * counters overcount this packet as a CRC error and undercount | 
|  | * the packet as a good packet | 
|  | */ | 
|  | /* This packet should not be counted as a CRC error.    */ | 
|  | stats->crcerrs--; | 
|  | /* This packet does count as a Good Packet Received.    */ | 
|  | stats->gprc++; | 
|  |  | 
|  | /* Adjust the Good Octets received counters             */ | 
|  | carry_bit = 0x80000000 & stats->gorcl; | 
|  | stats->gorcl += frame_len; | 
|  | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 
|  | * Received Count) was one before the addition, | 
|  | * AND it is zero after, then we lost the carry out, | 
|  | * need to add one to Gorch (Good Octets Received Count High). | 
|  | * This could be simplified if all environments supported | 
|  | * 64-bit integers. | 
|  | */ | 
|  | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 
|  | stats->gorch++; | 
|  | /* Is this a broadcast or multicast?  Check broadcast first, | 
|  | * since the test for a multicast frame will test positive on | 
|  | * a broadcast frame. | 
|  | */ | 
|  | if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) | 
|  | /* Broadcast packet */ | 
|  | stats->bprc++; | 
|  | else if (*mac_addr & 0x01) | 
|  | /* Multicast packet */ | 
|  | stats->mprc++; | 
|  |  | 
|  | if (frame_len == hw->max_frame_size) { | 
|  | /* In this case, the hardware has overcounted the number of | 
|  | * oversize frames. | 
|  | */ | 
|  | if (stats->roc > 0) | 
|  | stats->roc--; | 
|  | } | 
|  |  | 
|  | /* Adjust the bin counters when the extra byte put the frame in the | 
|  | * wrong bin. Remember that the frame_len was adjusted above. | 
|  | */ | 
|  | if (frame_len == 64) { | 
|  | stats->prc64++; | 
|  | stats->prc127--; | 
|  | } else if (frame_len == 127) { | 
|  | stats->prc127++; | 
|  | stats->prc255--; | 
|  | } else if (frame_len == 255) { | 
|  | stats->prc255++; | 
|  | stats->prc511--; | 
|  | } else if (frame_len == 511) { | 
|  | stats->prc511++; | 
|  | stats->prc1023--; | 
|  | } else if (frame_len == 1023) { | 
|  | stats->prc1023++; | 
|  | stats->prc1522--; | 
|  | } else if (frame_len == 1522) { | 
|  | stats->prc1522++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_bus_info | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Gets the current PCI bus type, speed, and width of the hardware | 
|  | */ | 
|  | void e1000_get_bus_info(struct e1000_hw *hw) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | hw->bus_type = e1000_bus_type_pci; | 
|  | hw->bus_speed = e1000_bus_speed_unknown; | 
|  | hw->bus_width = e1000_bus_width_unknown; | 
|  | break; | 
|  | default: | 
|  | status = er32(STATUS); | 
|  | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
|  | e1000_bus_type_pcix : e1000_bus_type_pci; | 
|  |  | 
|  | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 
|  | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 
|  | e1000_bus_speed_66 : e1000_bus_speed_120; | 
|  | } else if (hw->bus_type == e1000_bus_type_pci) { | 
|  | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 
|  | e1000_bus_speed_66 : e1000_bus_speed_33; | 
|  | } else { | 
|  | switch (status & E1000_STATUS_PCIX_SPEED) { | 
|  | case E1000_STATUS_PCIX_SPEED_66: | 
|  | hw->bus_speed = e1000_bus_speed_66; | 
|  | break; | 
|  | case E1000_STATUS_PCIX_SPEED_100: | 
|  | hw->bus_speed = e1000_bus_speed_100; | 
|  | break; | 
|  | case E1000_STATUS_PCIX_SPEED_133: | 
|  | hw->bus_speed = e1000_bus_speed_133; | 
|  | break; | 
|  | default: | 
|  | hw->bus_speed = e1000_bus_speed_reserved; | 
|  | break; | 
|  | } | 
|  | } | 
|  | hw->bus_width = (status & E1000_STATUS_BUS64) ? | 
|  | e1000_bus_width_64 : e1000_bus_width_32; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_write_reg_io | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @offset: offset to write to | 
|  | * @value: value to write | 
|  | * | 
|  | * Writes a value to one of the devices registers using port I/O (as opposed to | 
|  | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
|  | */ | 
|  | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | unsigned long io_addr = hw->io_base; | 
|  | unsigned long io_data = hw->io_base + 4; | 
|  |  | 
|  | e1000_io_write(hw, io_addr, offset); | 
|  | e1000_io_write(hw, io_data, value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_cable_length - Estimates the cable length. | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @min_length: The estimated minimum length | 
|  | * @max_length: The estimated maximum length | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * This function always returns a ranged length (minimum & maximum). | 
|  | * So for M88 phy's, this function interprets the one value returned from the | 
|  | * register to the minimum and maximum range. | 
|  | * For IGP phy's, the function calculates the range by the AGC registers. | 
|  | */ | 
|  | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|  | u16 *max_length) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 agc_value = 0; | 
|  | u16 i, phy_data; | 
|  | u16 cable_length; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_cable_length"); | 
|  |  | 
|  | *min_length = *max_length = 0; | 
|  |  | 
|  | /* Use old method for Phy older than IGP */ | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 
|  |  | 
|  | /* Convert the enum value to ranged values */ | 
|  | switch (cable_length) { | 
|  | case e1000_cable_length_50: | 
|  | *min_length = 0; | 
|  | *max_length = e1000_igp_cable_length_50; | 
|  | break; | 
|  | case e1000_cable_length_50_80: | 
|  | *min_length = e1000_igp_cable_length_50; | 
|  | *max_length = e1000_igp_cable_length_80; | 
|  | break; | 
|  | case e1000_cable_length_80_110: | 
|  | *min_length = e1000_igp_cable_length_80; | 
|  | *max_length = e1000_igp_cable_length_110; | 
|  | break; | 
|  | case e1000_cable_length_110_140: | 
|  | *min_length = e1000_igp_cable_length_110; | 
|  | *max_length = e1000_igp_cable_length_140; | 
|  | break; | 
|  | case e1000_cable_length_140: | 
|  | *min_length = e1000_igp_cable_length_140; | 
|  | *max_length = e1000_igp_cable_length_170; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */ | 
|  | u16 cur_agc_value; | 
|  | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 
|  | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | { IGP01E1000_PHY_AGC_A, | 
|  | IGP01E1000_PHY_AGC_B, | 
|  | IGP01E1000_PHY_AGC_C, | 
|  | IGP01E1000_PHY_AGC_D | 
|  | }; | 
|  | /* Read the AGC registers for all channels */ | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  |  | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 
|  |  | 
|  | /* Value bound check. */ | 
|  | if ((cur_agc_value >= | 
|  | IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) | 
|  | || (cur_agc_value == 0)) | 
|  | return -E1000_ERR_PHY; | 
|  |  | 
|  | agc_value += cur_agc_value; | 
|  |  | 
|  | /* Update minimal AGC value. */ | 
|  | if (min_agc_value > cur_agc_value) | 
|  | min_agc_value = cur_agc_value; | 
|  | } | 
|  |  | 
|  | /* Remove the minimal AGC result for length < 50m */ | 
|  | if (agc_value < | 
|  | IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 
|  | agc_value -= min_agc_value; | 
|  |  | 
|  | /* Get the average length of the remaining 3 channels */ | 
|  | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 
|  | } else { | 
|  | /* Get the average length of all the 4 channels. */ | 
|  | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 
|  | } | 
|  |  | 
|  | /* Set the range of the calculated length. */ | 
|  | *min_length = ((e1000_igp_cable_length_table[agc_value] - | 
|  | IGP01E1000_AGC_RANGE) > 0) ? | 
|  | (e1000_igp_cable_length_table[agc_value] - | 
|  | IGP01E1000_AGC_RANGE) : 0; | 
|  | *max_length = e1000_igp_cable_length_table[agc_value] + | 
|  | IGP01E1000_AGC_RANGE; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_polarity - Check the cable polarity | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @polarity: output parameter : 0 - Polarity is not reversed | 
|  | *                               1 - Polarity is reversed. | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * For phy's older than IGP, this function simply reads the polarity bit in the | 
|  | * Phy Status register.  For IGP phy's, this bit is valid only if link speed is | 
|  | * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will | 
|  | * return 0.  If the link speed is 1000 Mbps the polarity status is in the | 
|  | * IGP01E1000_PHY_PCS_INIT_REG. | 
|  | */ | 
|  | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|  | e1000_rev_polarity *polarity) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_polarity"); | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  | /* return the Polarity bit in the Status register. */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> | 
|  | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  |  | 
|  | } else if (hw->phy_type == e1000_phy_igp) { | 
|  | /* Read the Status register to check the speed */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 
|  | * find the polarity status */ | 
|  | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  |  | 
|  | /* Read the GIG initialization PCS register (0x00B4) */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Check the polarity bits */ | 
|  | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | 
|  | e1000_rev_polarity_reversed : | 
|  | e1000_rev_polarity_normal; | 
|  | } else { | 
|  | /* For 10 Mbps, read the polarity bit in the status register. (for | 
|  | * 100 Mbps this bit is always 0) */ | 
|  | *polarity = | 
|  | (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 
|  | e1000_rev_polarity_reversed : | 
|  | e1000_rev_polarity_normal; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_downshift - Check if Downshift occurred | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @downshift: output parameter : 0 - No Downshift occurred. | 
|  | *                                1 - Downshift occurred. | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * For phy's older than IGP, this function reads the Downshift bit in the Phy | 
|  | * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the | 
|  | * Link Health register.  In IGP this bit is latched high, so the driver must | 
|  | * read it immediately after link is established. | 
|  | */ | 
|  | static s32 e1000_check_downshift(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_downshift"); | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->speed_downgraded = | 
|  | (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 
|  | } else if (hw->phy_type == e1000_phy_m88) { | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 
|  | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_config_dsp_after_link_change | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @link_up: was link up at the time this was called | 
|  | * | 
|  | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 
|  | * gigabit link is achieved to improve link quality. | 
|  | */ | 
|  |  | 
|  | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data, phy_saved_data, speed, duplex, i; | 
|  | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | { IGP01E1000_PHY_AGC_PARAM_A, | 
|  | IGP01E1000_PHY_AGC_PARAM_B, | 
|  | IGP01E1000_PHY_AGC_PARAM_C, | 
|  | IGP01E1000_PHY_AGC_PARAM_D | 
|  | }; | 
|  | u16 min_length, max_length; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_dsp_after_link_change"); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | if (link_up) { | 
|  | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (speed == SPEED_1000) { | 
|  |  | 
|  | ret_val = | 
|  | e1000_get_cable_length(hw, &min_length, | 
|  | &max_length); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->dsp_config_state == e1000_dsp_config_enabled) | 
|  | && min_length >= e1000_igp_cable_length_50) { | 
|  |  | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, | 
|  | dsp_reg_array[i], | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= | 
|  | ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  |  | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, | 
|  | dsp_reg_array | 
|  | [i], phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | hw->dsp_config_state = | 
|  | e1000_dsp_config_activated; | 
|  | } | 
|  |  | 
|  | if ((hw->ffe_config_state == e1000_ffe_config_enabled) | 
|  | && (min_length < e1000_igp_cable_length_50)) { | 
|  |  | 
|  | u16 ffe_idle_err_timeout = | 
|  | FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 
|  | u32 idle_errs = 0; | 
|  |  | 
|  | /* clear previous idle error counts */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | for (i = 0; i < ffe_idle_err_timeout; i++) { | 
|  | udelay(1000); | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, | 
|  | PHY_1000T_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | idle_errs += | 
|  | (phy_data & | 
|  | SR_1000T_IDLE_ERROR_CNT); | 
|  | if (idle_errs > | 
|  | SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) | 
|  | { | 
|  | hw->ffe_config_state = | 
|  | e1000_ffe_config_active; | 
|  |  | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, | 
|  | IGP01E1000_PHY_DSP_FFE, | 
|  | IGP01E1000_PHY_DSP_FFE_CM_CP); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (idle_errs) | 
|  | ffe_idle_err_timeout = | 
|  | FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (hw->dsp_config_state == e1000_dsp_config_activated) { | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of the routines. */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Disable the PHY transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, dsp_reg_array[i], | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 
|  |  | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, dsp_reg_array[i], | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | } | 
|  |  | 
|  | if (hw->ffe_config_state == e1000_ffe_config_active) { | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of the routines. */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Disable the PHY transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 
|  | IGP01E1000_PHY_DSP_FFE_DEFAULT); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_phy_mode - Set PHY to class A mode | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Assumes the following operations will follow to enable the new class mode. | 
|  | *  1. Do a PHY soft reset | 
|  | *  2. Restart auto-negotiation or force link. | 
|  | */ | 
|  | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_phy_mode"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_82545_rev_3) && | 
|  | (hw->media_type == e1000_media_type_copper)) { | 
|  | ret_val = | 
|  | e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, | 
|  | &eeprom_data); | 
|  | if (ret_val) { | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if ((eeprom_data != EEPROM_RESERVED_WORD) && | 
|  | (eeprom_data & EEPROM_PHY_CLASS_A)) { | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, | 
|  | 0x000B); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, | 
|  | 0x8104); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_reset_disable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_d3_lplu_state - set d3 link power state | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @active: true to enable lplu false to disable lplu. | 
|  | * | 
|  | * This function sets the lplu state according to the active flag.  When | 
|  | * activating lplu this function also disables smart speed and vise versa. | 
|  | * lplu will not be activated unless the device autonegotiation advertisement | 
|  | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | * | 
|  | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | *            E1000_SUCCESS at any other case. | 
|  | */ | 
|  | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | DEBUGFUNC("e1000_set_d3_lplu_state"); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* During driver activity LPLU should not be used or it will attain link | 
|  | * from the lowest speeds starting from 10Mbps. The capability is used for | 
|  | * Dx transitions and states */ | 
|  | if (hw->mac_type == e1000_82541_rev_2 | 
|  | || hw->mac_type == e1000_82547_rev_2) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (!active) { | 
|  | if (hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
|  | * Dx states where the power conservation is most important.  During | 
|  | * driver activity we should enable SmartSpeed, so performance is | 
|  | * maintained. */ | 
|  | if (hw->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) | 
|  | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) | 
|  | || (hw->autoneg_advertised == | 
|  | AUTONEG_ADVERTISE_10_100_ALL)) { | 
|  |  | 
|  | if (hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* When LPLU is enabled we should disable SmartSpeed */ | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_vco_speed | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 
|  | */ | 
|  | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 default_page = 0; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_vco_speed"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Set PHY register 30, page 5, bit 8 to 0 */ | 
|  |  | 
|  | ret_val = | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Set PHY register 30, page 4, bit 11 to 1 */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = | 
|  | e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * e1000_enable_mng_pass_thru - check for bmc pass through | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Verifies the hardware needs to allow ARPs to be processed by the host | 
|  | * returns: - true/false | 
|  | */ | 
|  | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc; | 
|  |  | 
|  | if (hw->asf_firmware_present) { | 
|  | manc = er32(MANC); | 
|  |  | 
|  | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | return false; | 
|  | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_status_reg; | 
|  | u16 i; | 
|  |  | 
|  | /* Polarity reversal workaround for forced 10F/10H links. */ | 
|  |  | 
|  | /* Disable the transmitter on the PHY */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* This loop will early-out if the NO link condition has been met. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Link Status bit | 
|  | * to be clear. | 
|  | */ | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) | 
|  | break; | 
|  | mdelay(100); | 
|  | } | 
|  |  | 
|  | /* Recommended delay time after link has been lost */ | 
|  | mdelay(1000); | 
|  |  | 
|  | /* Now we will re-enable th transmitter on the PHY */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* This loop will early-out if the link condition has been met. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Link Status bit | 
|  | * to be set. | 
|  | */ | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) | 
|  | break; | 
|  | mdelay(100); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_auto_rd_done | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Check for EEPROM Auto Read bit done. | 
|  | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | *            E1000_SUCCESS at any other case. | 
|  | */ | 
|  | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_get_auto_rd_done"); | 
|  | msleep(5); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_phy_cfg_done | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * Checks if the PHY configuration is done | 
|  | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | *            E1000_SUCCESS at any other case. | 
|  | */ | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_get_phy_cfg_done"); | 
|  | mdelay(10); | 
|  | return E1000_SUCCESS; | 
|  | } |