| /******************************************************************************* | 
 | * | 
 | *   (c) 1998 by Computone Corporation | 
 | * | 
 | ******************************************************************************** | 
 | * | 
 | * | 
 | *   PACKAGE:     Linux tty Device Driver for IntelliPort family of multiport | 
 | *                serial I/O controllers. | 
 | * | 
 | *   DESCRIPTION: Low-level interface code for the device driver | 
 | *                (This is included source code, not a separate compilation | 
 | *                module.) | 
 | * | 
 | *******************************************************************************/ | 
 | //--------------------------------------------- | 
 | // Function declarations private to this module | 
 | //--------------------------------------------- | 
 | // Functions called only indirectly through i2eBordStr entries. | 
 |  | 
 | static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int); | 
 | static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int); | 
 | static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int); | 
 | static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int); | 
 |  | 
 | static unsigned short iiReadWord16(i2eBordStrPtr); | 
 | static unsigned short iiReadWord8(i2eBordStrPtr); | 
 | static void iiWriteWord16(i2eBordStrPtr, unsigned short); | 
 | static void iiWriteWord8(i2eBordStrPtr, unsigned short); | 
 |  | 
 | static int iiWaitForTxEmptyII(i2eBordStrPtr, int); | 
 | static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int); | 
 | static int iiTxMailEmptyII(i2eBordStrPtr); | 
 | static int iiTxMailEmptyIIEX(i2eBordStrPtr); | 
 | static int iiTrySendMailII(i2eBordStrPtr, unsigned char); | 
 | static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char); | 
 |  | 
 | static unsigned short iiGetMailII(i2eBordStrPtr); | 
 | static unsigned short iiGetMailIIEX(i2eBordStrPtr); | 
 |  | 
 | static void iiEnableMailIrqII(i2eBordStrPtr); | 
 | static void iiEnableMailIrqIIEX(i2eBordStrPtr); | 
 | static void iiWriteMaskII(i2eBordStrPtr, unsigned char); | 
 | static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char); | 
 |  | 
 | static void ii2Nop(void); | 
 |  | 
 | //*************** | 
 | //* Static Data * | 
 | //*************** | 
 |  | 
 | static int ii2Safe;         // Safe I/O address for delay routine | 
 |  | 
 | static int iiDelayed;	// Set when the iiResetDelay function is | 
 | 							// called. Cleared when ANY board is reset. | 
 | static DEFINE_RWLOCK(Dl_spinlock); | 
 |  | 
 | //******** | 
 | //* Code * | 
 | //******** | 
 |  | 
 | //======================================================= | 
 | // Initialization Routines | 
 | // | 
 | // iiSetAddress | 
 | // iiReset | 
 | // iiResetDelay | 
 | // iiInitialize | 
 | //======================================================= | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiSetAddress(pB, address, delay) | 
 | // Parameters: pB      - pointer to the board structure | 
 | //             address - the purported I/O address of the board | 
 | //             delay   - pointer to the 1-ms delay function to use | 
 | //                       in this and any future operations to this board | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // This routine (roughly) checks for address validity, sets the i2eValid OK and | 
 | // sets the state to II_STATE_COLD which means that we haven't even sent a reset | 
 | // yet. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay ) | 
 | { | 
 | 	// Should any failure occur before init is finished... | 
 | 	pB->i2eValid = I2E_INCOMPLETE; | 
 |  | 
 | 	// Cannot check upper limit except extremely: Might be microchannel | 
 | 	// Address must be on an 8-byte boundary | 
 |  | 
 | 	if ((unsigned int)address <= 0x100 | 
 | 		|| (unsigned int)address >= 0xfff8 | 
 | 		|| (address & 0x7) | 
 | 		) | 
 | 	{ | 
 | 		I2_COMPLETE(pB, I2EE_BADADDR); | 
 | 	} | 
 |  | 
 | 	// Initialize accelerators | 
 | 	pB->i2eBase    = address; | 
 | 	pB->i2eData    = address + FIFO_DATA; | 
 | 	pB->i2eStatus  = address + FIFO_STATUS; | 
 | 	pB->i2ePointer = address + FIFO_PTR; | 
 | 	pB->i2eXMail   = address + FIFO_MAIL; | 
 | 	pB->i2eXMask   = address + FIFO_MASK; | 
 |  | 
 | 	// Initialize i/o address for ii2DelayIO | 
 | 	ii2Safe = address + FIFO_NOP; | 
 |  | 
 | 	// Initialize the delay routine | 
 | 	pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop); | 
 |  | 
 | 	pB->i2eValid = I2E_MAGIC; | 
 | 	pB->i2eState = II_STATE_COLD; | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiReset(pB) | 
 | // Parameters: pB - pointer to the board structure | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Attempts to reset the board (see also i2hw.h). Normally, we would use this to | 
 | // reset a board immediately after iiSetAddress(), but it is valid to reset a | 
 | // board from any state, say, in order to change or re-load loadware. (Under | 
 | // such circumstances, no reason to re-run iiSetAddress(), which is why it is a | 
 | // separate routine and not included in this routine. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiReset(i2eBordStrPtr pB) | 
 | { | 
 | 	// Magic number should be set, else even the address is suspect | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 	{ | 
 | 		I2_COMPLETE(pB, I2EE_BADMAGIC); | 
 | 	} | 
 |  | 
 | 	outb(0, pB->i2eBase + FIFO_RESET);  /* Any data will do */ | 
 | 	iiDelay(pB, 50);                    // Pause between resets | 
 | 	outb(0, pB->i2eBase + FIFO_RESET);  /* Second reset */ | 
 |  | 
 | 	// We must wait before even attempting to read anything from the FIFO: the | 
 | 	// board's P.O.S.T may actually attempt to read and write its end of the | 
 | 	// FIFO in order to check flags, loop back (where supported), etc. On | 
 | 	// completion of this testing it would reset the FIFO, and on completion | 
 | 	// of all // P.O.S.T., write the message. We must not mistake data which | 
 | 	// might have been sent for testing as part of the reset message. To | 
 | 	// better utilize time, say, when resetting several boards, we allow the | 
 | 	// delay to be performed externally; in this way the caller can reset  | 
 | 	// several boards, delay a single time, then call the initialization | 
 | 	// routine for all. | 
 |  | 
 | 	pB->i2eState = II_STATE_RESET; | 
 |  | 
 | 	iiDelayed = 0;	// i.e., the delay routine hasn't been called since the most | 
 | 					// recent reset. | 
 |  | 
 | 	// Ensure anything which would have been of use to standard loadware is | 
 | 	// blanked out, since board has now forgotten everything!. | 
 |  | 
 | 	pB->i2eUsingIrq = I2_IRQ_UNDEFINED; /* to not use an interrupt so far */ | 
 | 	pB->i2eWaitingForEmptyFifo = 0; | 
 | 	pB->i2eOutMailWaiting = 0; | 
 | 	pB->i2eChannelPtr = NULL; | 
 | 	pB->i2eChannelCnt = 0; | 
 |  | 
 | 	pB->i2eLeadoffWord[0] = 0; | 
 | 	pB->i2eFifoInInts = 0; | 
 | 	pB->i2eFifoOutInts = 0; | 
 | 	pB->i2eFatalTrap = NULL; | 
 | 	pB->i2eFatal = 0; | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiResetDelay(pB) | 
 | // Parameters: pB - pointer to the board structure | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Using the delay defined in board structure, waits two seconds (for board to | 
 | // reset). | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiResetDelay(i2eBordStrPtr pB) | 
 | { | 
 | 	if (pB->i2eValid != I2E_MAGIC) { | 
 | 		I2_COMPLETE(pB, I2EE_BADMAGIC); | 
 | 	} | 
 | 	if (pB->i2eState != II_STATE_RESET) { | 
 | 		I2_COMPLETE(pB, I2EE_BADSTATE); | 
 | 	} | 
 | 	iiDelay(pB,2000);       /* Now we wait for two seconds. */ | 
 | 	iiDelayed = 1;          /* Delay has been called: ok to initialize */ | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiInitialize(pB) | 
 | // Parameters: pB - pointer to the board structure | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Attempts to read the Power-on reset message. Initializes any remaining fields | 
 | // in the pB structure. | 
 | // | 
 | // This should be called as the third step of a process beginning with | 
 | // iiReset(), then iiResetDelay(). This routine checks to see that the structure | 
 | // is "valid" and in the reset state, also confirms that the delay routine has | 
 | // been called since the latest reset (to any board! overly strong!). | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiInitialize(i2eBordStrPtr pB) | 
 | { | 
 | 	int itemp; | 
 | 	unsigned char c; | 
 | 	unsigned short utemp; | 
 | 	unsigned int ilimit; | 
 |  | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 	{ | 
 | 		I2_COMPLETE(pB, I2EE_BADMAGIC); | 
 | 	} | 
 |  | 
 | 	if (pB->i2eState != II_STATE_RESET || !iiDelayed) | 
 | 	{ | 
 | 		I2_COMPLETE(pB, I2EE_BADSTATE); | 
 | 	} | 
 |  | 
 | 	// In case there is a failure short of our completely reading the power-up | 
 | 	// message. | 
 | 	pB->i2eValid = I2E_INCOMPLETE; | 
 |  | 
 |  | 
 | 	// Now attempt to read the message. | 
 |  | 
 | 	for (itemp = 0; itemp < sizeof(porStr); itemp++) | 
 | 	{ | 
 | 		// We expect the entire message is ready. | 
 | 		if (!I2_HAS_INPUT(pB)) { | 
 | 			pB->i2ePomSize = itemp; | 
 | 			I2_COMPLETE(pB, I2EE_PORM_SHORT); | 
 | 		} | 
 |  | 
 | 		pB->i2ePom.c[itemp] = c = inb(pB->i2eData); | 
 |  | 
 | 		// We check the magic numbers as soon as they are supposed to be read | 
 | 		// (rather than after) to minimize effect of reading something we | 
 | 		// already suspect can't be "us". | 
 | 		if (  (itemp == POR_1_INDEX && c != POR_MAGIC_1) || | 
 | 				(itemp == POR_2_INDEX && c != POR_MAGIC_2)) | 
 | 		{ | 
 | 			pB->i2ePomSize = itemp+1; | 
 | 			I2_COMPLETE(pB, I2EE_BADMAGIC); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pB->i2ePomSize = itemp; | 
 |  | 
 | 	// Ensure that this was all the data... | 
 | 	if (I2_HAS_INPUT(pB)) | 
 | 		I2_COMPLETE(pB, I2EE_PORM_LONG); | 
 |  | 
 | 	// For now, we'll fail to initialize if P.O.S.T reports bad chip mapper: | 
 | 	// Implying we will not be able to download any code either:  That's ok: the | 
 | 	// condition is pretty explicit. | 
 | 	if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER) | 
 | 	{ | 
 | 		I2_COMPLETE(pB, I2EE_POSTERR); | 
 | 	} | 
 |  | 
 | 	// Determine anything which must be done differently depending on the family | 
 | 	// of boards! | 
 | 	switch (pB->i2ePom.e.porID & POR_ID_FAMILY) | 
 | 	{ | 
 | 	case POR_ID_FII:  // IntelliPort-II | 
 |  | 
 | 		pB->i2eFifoStyle   = FIFO_II; | 
 | 		pB->i2eFifoSize    = 512;     // 512 bytes, always | 
 | 		pB->i2eDataWidth16 = false; | 
 |  | 
 | 		pB->i2eMaxIrq = 15;	// Because board cannot tell us it is in an 8-bit | 
 | 							// slot, we do allow it to be done (documentation!) | 
 |  | 
 | 		pB->i2eGoodMap[1] = | 
 | 		pB->i2eGoodMap[2] = | 
 | 		pB->i2eGoodMap[3] = | 
 | 		pB->i2eChannelMap[1] = | 
 | 		pB->i2eChannelMap[2] = | 
 | 		pB->i2eChannelMap[3] = 0; | 
 |  | 
 | 		switch (pB->i2ePom.e.porID & POR_ID_SIZE) | 
 | 		{ | 
 | 		case POR_ID_II_4: | 
 | 			pB->i2eGoodMap[0] = | 
 | 			pB->i2eChannelMap[0] = 0x0f;  // four-port | 
 |  | 
 | 			// Since porPorts1 is based on the Hardware ID register, the numbers | 
 | 			// should always be consistent for IntelliPort-II.  Ditto below... | 
 | 			if (pB->i2ePom.e.porPorts1 != 4) | 
 | 			{ | 
 | 				I2_COMPLETE(pB, I2EE_INCONSIST); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case POR_ID_II_8: | 
 | 		case POR_ID_II_8R: | 
 | 			pB->i2eGoodMap[0] = | 
 | 			pB->i2eChannelMap[0] = 0xff;  // Eight port | 
 | 			if (pB->i2ePom.e.porPorts1 != 8) | 
 | 			{ | 
 | 				I2_COMPLETE(pB, I2EE_INCONSIST); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case POR_ID_II_6: | 
 | 			pB->i2eGoodMap[0] = | 
 | 			pB->i2eChannelMap[0] = 0x3f;  // Six Port | 
 | 			if (pB->i2ePom.e.porPorts1 != 6) | 
 | 			{ | 
 | 				I2_COMPLETE(pB, I2EE_INCONSIST); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		// Fix up the "good channel list based on any errors reported. | 
 | 		if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1) | 
 | 		{ | 
 | 			pB->i2eGoodMap[0] &= ~0x0f; | 
 | 		} | 
 |  | 
 | 		if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2) | 
 | 		{ | 
 | 			pB->i2eGoodMap[0] &= ~0xf0; | 
 | 		} | 
 |  | 
 | 		break;   // POR_ID_FII case | 
 |  | 
 | 	case POR_ID_FIIEX:   // IntelliPort-IIEX | 
 |  | 
 | 		pB->i2eFifoStyle = FIFO_IIEX; | 
 |  | 
 | 		itemp = pB->i2ePom.e.porFifoSize; | 
 |  | 
 | 		// Implicit assumption that fifo would not grow beyond 32k,  | 
 | 		// nor would ever be less than 256. | 
 |  | 
 | 		if (itemp < 8 || itemp > 15) | 
 | 		{ | 
 | 			I2_COMPLETE(pB, I2EE_INCONSIST); | 
 | 		} | 
 | 		pB->i2eFifoSize = (1 << itemp); | 
 |  | 
 | 		// These are based on what P.O.S.T thinks should be there, based on | 
 | 		// box ID registers | 
 | 		ilimit = pB->i2ePom.e.porNumBoxes; | 
 | 		if (ilimit > ABS_MAX_BOXES) | 
 | 		{ | 
 | 			ilimit = ABS_MAX_BOXES; | 
 | 		} | 
 |  | 
 | 		// For as many boxes as EXIST, gives the type of box. | 
 | 		// Added 8/6/93: check for the ISA-4 (asic) which looks like an | 
 | 		// expandable but for whom "8 or 16?" is not the right question. | 
 |  | 
 | 		utemp = pB->i2ePom.e.porFlags; | 
 | 		if (utemp & POR_CEX4) | 
 | 		{ | 
 | 			pB->i2eChannelMap[0] = 0x000f; | 
 | 		} else { | 
 | 			utemp &= POR_BOXES; | 
 | 			for (itemp = 0; itemp < ilimit; itemp++) | 
 | 			{ | 
 | 				pB->i2eChannelMap[itemp] =  | 
 | 					((utemp & POR_BOX_16) ? 0xffff : 0x00ff); | 
 | 				utemp >>= 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// These are based on what P.O.S.T actually found. | 
 |  | 
 | 		utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1; | 
 |  | 
 | 		for (itemp = 0; itemp < ilimit; itemp++) | 
 | 		{ | 
 | 			pB->i2eGoodMap[itemp] = 0; | 
 | 			if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f; | 
 | 			if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0; | 
 | 			if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00; | 
 | 			if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000; | 
 | 			utemp >>= 4; | 
 | 		} | 
 |  | 
 | 		// Now determine whether we should transfer in 8 or 16-bit mode. | 
 | 		switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) ) | 
 | 		{ | 
 | 		case POR_BUS_SLOT16 | POR_BUS_DIP16: | 
 | 			pB->i2eDataWidth16 = true; | 
 | 			pB->i2eMaxIrq = 15; | 
 | 			break; | 
 |  | 
 | 		case POR_BUS_SLOT16: | 
 | 			pB->i2eDataWidth16 = false; | 
 | 			pB->i2eMaxIrq = 15; | 
 | 			break; | 
 |  | 
 | 		case 0: | 
 | 		case POR_BUS_DIP16:     // In an 8-bit slot, DIP switch don't care. | 
 | 		default: | 
 | 			pB->i2eDataWidth16 = false; | 
 | 			pB->i2eMaxIrq = 7; | 
 | 			break; | 
 | 		} | 
 | 		break;   // POR_ID_FIIEX case | 
 |  | 
 | 	default:    // Unknown type of board | 
 | 		I2_COMPLETE(pB, I2EE_BAD_FAMILY); | 
 | 		break; | 
 | 	}  // End the switch based on family | 
 |  | 
 | 	// Temporarily, claim there is no room in the outbound fifo.  | 
 | 	// We will maintain this whenever we check for an empty outbound FIFO. | 
 | 	pB->i2eFifoRemains = 0; | 
 |  | 
 | 	// Now, based on the bus type, should we expect to be able to re-configure | 
 | 	// interrupts (say, for testing purposes). | 
 | 	switch (pB->i2ePom.e.porBus & POR_BUS_TYPE) | 
 | 	{ | 
 | 	case POR_BUS_T_ISA: | 
 | 	case POR_BUS_T_UNK:  // If the type of bus is undeclared, assume ok. | 
 | 	case POR_BUS_T_MCA: | 
 | 	case POR_BUS_T_EISA: | 
 | 		break; | 
 | 	default: | 
 | 		I2_COMPLETE(pB, I2EE_BADBUS); | 
 | 	} | 
 |  | 
 | 	if (pB->i2eDataWidth16) | 
 | 	{ | 
 | 		pB->i2eWriteBuf  = iiWriteBuf16; | 
 | 		pB->i2eReadBuf   = iiReadBuf16; | 
 | 		pB->i2eWriteWord = iiWriteWord16; | 
 | 		pB->i2eReadWord  = iiReadWord16; | 
 | 	} else { | 
 | 		pB->i2eWriteBuf  = iiWriteBuf8; | 
 | 		pB->i2eReadBuf   = iiReadBuf8; | 
 | 		pB->i2eWriteWord = iiWriteWord8; | 
 | 		pB->i2eReadWord  = iiReadWord8; | 
 | 	} | 
 |  | 
 | 	switch(pB->i2eFifoStyle) | 
 | 	{ | 
 | 	case FIFO_II: | 
 | 		pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII; | 
 | 		pB->i2eTxMailEmpty    = iiTxMailEmptyII; | 
 | 		pB->i2eTrySendMail    = iiTrySendMailII; | 
 | 		pB->i2eGetMail        = iiGetMailII; | 
 | 		pB->i2eEnableMailIrq  = iiEnableMailIrqII; | 
 | 		pB->i2eWriteMask      = iiWriteMaskII; | 
 |  | 
 | 		break; | 
 |  | 
 | 	case FIFO_IIEX: | 
 | 		pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX; | 
 | 		pB->i2eTxMailEmpty    = iiTxMailEmptyIIEX; | 
 | 		pB->i2eTrySendMail    = iiTrySendMailIIEX; | 
 | 		pB->i2eGetMail        = iiGetMailIIEX; | 
 | 		pB->i2eEnableMailIrq  = iiEnableMailIrqIIEX; | 
 | 		pB->i2eWriteMask      = iiWriteMaskIIEX; | 
 |  | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		I2_COMPLETE(pB, I2EE_INCONSIST); | 
 | 	} | 
 |  | 
 | 	// Initialize state information. | 
 | 	pB->i2eState = II_STATE_READY;   // Ready to load loadware. | 
 |  | 
 | 	// Some Final cleanup: | 
 | 	// For some boards, the bootstrap firmware may perform some sort of test | 
 | 	// resulting in a stray character pending in the incoming mailbox. If one is | 
 | 	// there, it should be read and discarded, especially since for the standard | 
 | 	// firmware, it's the mailbox that interrupts the host. | 
 |  | 
 | 	pB->i2eStartMail = iiGetMail(pB); | 
 |  | 
 | 	// Throw it away and clear the mailbox structure element | 
 | 	pB->i2eStartMail = NO_MAIL_HERE; | 
 |  | 
 | 	// Everything is ok now, return with good status/ | 
 |  | 
 | 	pB->i2eValid = I2E_MAGIC; | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   ii2DelayTimer(mseconds) | 
 | // Parameters: mseconds - number of milliseconds to delay | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // This routine delays for approximately mseconds milliseconds and is intended | 
 | // to be called indirectly through i2Delay field in i2eBordStr. It uses the | 
 | // Linux timer_list mechanism. | 
 | // | 
 | // The Linux timers use a unit called "jiffies" which are 10mS in the Intel | 
 | // architecture. This function rounds the delay period up to the next "jiffy". | 
 | // In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended | 
 | // for Alpha platforms at this time. | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | ii2DelayTimer(unsigned int mseconds) | 
 | { | 
 | 	msleep_interruptible(mseconds); | 
 | } | 
 |  | 
 | #if 0 | 
 | //static void ii2DelayIO(unsigned int); | 
 | //****************************************************************************** | 
 | // !!! Not Used, this is DOS crap, some of you young folks may be interested in | 
 | //     in how things were done in the stone age of caculating machines       !!! | 
 | // Function:   ii2DelayIO(mseconds) | 
 | // Parameters: mseconds - number of milliseconds to delay | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // This routine delays for approximately mseconds milliseconds and is intended | 
 | // to be called indirectly through i2Delay field in i2eBordStr. It is intended | 
 | // for use where a clock-based function is impossible: for example, DOS drivers. | 
 | // | 
 | // This function uses the IN instruction to place bounds on the timing and | 
 | // assumes that ii2Safe has been set. This is because I/O instructions are not | 
 | // subject to caching and will therefore take a certain minimum time. To ensure | 
 | // the delay is at least long enough on fast machines, it is based on some | 
 | // fastest-case calculations.  On slower machines this may cause VERY long | 
 | // delays. (3 x fastest case). In the fastest case, everything is cached except | 
 | // the I/O instruction itself. | 
 | // | 
 | // Timing calculations: | 
 | // The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O | 
 | // operation in question is a byte operation to an odd address. For 8-bit | 
 | // operations, the architecture generally enforces two wait states. At 10 MHz, a | 
 | // single cycle time is 100nS. A read operation at two wait states takes 6 | 
 | // cycles for a total time of 600nS. Therefore approximately 1666 iterations | 
 | // would be required to generate a single millisecond delay. The worst | 
 | // (reasonable) case would be an 8MHz system with no cacheing. In this case, the | 
 | // I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code | 
 | // fetch of other instructions in the loop would take time (zero wait states, | 
 | // however) and would be hard to estimate. This is minimized by using in-line | 
 | // assembler for the in inner loop of IN instructions. This consists of just a | 
 | // few bytes. So we'll guess about four code fetches per loop. Each code fetch | 
 | // should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is | 
 | // that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS. | 
 | // | 
 | // So much for theoretical timings: results using 1666 value on some actual | 
 | // machines: | 
 | // IBM      286      6MHz     3.15 mS | 
 | // Zenith   386      33MHz    2.45 mS | 
 | // (brandX) 386      33MHz    1.90 mS  (has cache) | 
 | // (brandY) 486      33MHz    2.35 mS | 
 | // NCR      486      ??       1.65 mS (microchannel) | 
 | // | 
 | // For most machines, it is probably safe to scale this number back (remember, | 
 | // for robust operation use an actual timed delay if possible), so we are using | 
 | // a value of 1190. This yields 1.17 mS for the fastest machine in our sample, | 
 | // 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine. | 
 | // | 
 | // 1/29/93: | 
 | // The above timings are too slow. Actual cycle times might be faster. ISA cycle | 
 | // times could approach 500 nS, and ... | 
 | // The IBM model 77 being microchannel has no wait states for 8-bit reads and | 
 | // seems to be accessing the I/O at 440 nS per access (from start of one to | 
 | // start of next). This would imply we need 1000/.440 = 2272 iterations to | 
 | // guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in | 
 | // fact enough. For diagnostics, we keep the level at 1190, but developers note | 
 | // this needs tuning. | 
 | // | 
 | // Safe assumption:  2270 i/o reads = 1 millisecond | 
 | // | 
 | //****************************************************************************** | 
 |  | 
 |  | 
 | static int ii2DelValue = 1190;  // See timing calculations below | 
 | 						// 1666 for fastest theoretical machine | 
 | 						// 1190 safe for most fast 386 machines | 
 | 						// 1000 for fastest machine tested here | 
 | 						//  540 (sic) for AT286/6Mhz | 
 | static void | 
 | ii2DelayIO(unsigned int mseconds) | 
 | { | 
 | 	if (!ii2Safe)  | 
 | 		return;   /* Do nothing if this variable uninitialized */ | 
 |  | 
 | 	while(mseconds--) { | 
 | 		int i = ii2DelValue; | 
 | 		while ( i-- ) { | 
 | 			inb(ii2Safe); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif  | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   ii2Nop() | 
 | // Parameters: None | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // iiInitialize will set i2eDelay to this if the delay parameter is NULL. This | 
 | // saves checking for a NULL pointer at every call. | 
 | //****************************************************************************** | 
 | static void | 
 | ii2Nop(void) | 
 | { | 
 | 	return;	// no mystery here | 
 | } | 
 |  | 
 | //======================================================= | 
 | // Routines which are available in 8/16-bit versions, or | 
 | // in different fifo styles. These are ALL called | 
 | // indirectly through the board structure. | 
 | //======================================================= | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteBuf16(pB, address, count) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             address - address of data to write | 
 | //             count   - number of data bytes to write | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes 'count' bytes from 'address' to the data fifo specified by the board | 
 | // structure pointer pB. Should count happen to be odd, an extra pad byte is | 
 | // sent (identity unknown...). Uses 16-bit (word) operations. Is called | 
 | // indirectly through pB->i2eWriteBuf. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count) | 
 | { | 
 | 	// Rudimentary sanity checking here. | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 		I2_COMPLETE(pB, I2EE_INVALID); | 
 |  | 
 | 	I2_OUTSW(pB->i2eData, address, count); | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteBuf8(pB, address, count) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             address - address of data to write | 
 | //             count   - number of data bytes to write | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes 'count' bytes from 'address' to the data fifo specified by the board | 
 | // structure pointer pB. Should count happen to be odd, an extra pad byte is | 
 | // sent (identity unknown...). This is to be consistent with the 16-bit version. | 
 | // Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count) | 
 | { | 
 | 	/* Rudimentary sanity checking here */ | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 		I2_COMPLETE(pB, I2EE_INVALID); | 
 |  | 
 | 	I2_OUTSB(pB->i2eData, address, count); | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiReadBuf16(pB, address, count) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             address - address to put data read | 
 | //             count   - number of data bytes to read | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Reads 'count' bytes into 'address' from the data fifo specified by the board | 
 | // structure pointer pB. Should count happen to be odd, an extra pad byte is | 
 | // received (identity unknown...). Uses 16-bit (word) operations. Is called | 
 | // indirectly through pB->i2eReadBuf. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count) | 
 | { | 
 | 	// Rudimentary sanity checking here. | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 		I2_COMPLETE(pB, I2EE_INVALID); | 
 |  | 
 | 	I2_INSW(pB->i2eData, address, count); | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiReadBuf8(pB, address, count) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             address - address to put data read | 
 | //             count   - number of data bytes to read | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Reads 'count' bytes into 'address' from the data fifo specified by the board | 
 | // structure pointer pB. Should count happen to be odd, an extra pad byte is | 
 | // received (identity unknown...). This to match the 16-bit behaviour. Uses | 
 | // 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count) | 
 | { | 
 | 	// Rudimentary sanity checking here. | 
 | 	if (pB->i2eValid != I2E_MAGIC) | 
 | 		I2_COMPLETE(pB, I2EE_INVALID); | 
 |  | 
 | 	I2_INSB(pB->i2eData, address, count); | 
 |  | 
 | 	I2_COMPLETE(pB, I2EE_GOOD); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiReadWord16(pB) | 
 | // Parameters: pB      - pointer to board structure | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Returns the word read from the data fifo specified by the board-structure | 
 | // pointer pB. Uses a 16-bit operation. Is called indirectly through | 
 | // pB->i2eReadWord. | 
 | // | 
 | //****************************************************************************** | 
 | static unsigned short | 
 | iiReadWord16(i2eBordStrPtr pB) | 
 | { | 
 | 	return inw(pB->i2eData); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiReadWord8(pB) | 
 | // Parameters: pB      - pointer to board structure | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Returns the word read from the data fifo specified by the board-structure | 
 | // pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is | 
 | // called indirectly through pB->i2eReadWord. | 
 | // | 
 | //****************************************************************************** | 
 | static unsigned short | 
 | iiReadWord8(i2eBordStrPtr pB) | 
 | { | 
 | 	unsigned short urs; | 
 |  | 
 | 	urs = inb(pB->i2eData); | 
 |  | 
 | 	return (inb(pB->i2eData) << 8) | urs; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteWord16(pB, value) | 
 | // Parameters: pB    - pointer to board structure | 
 | //             value - data to write | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes the word 'value' to the data fifo specified by the board-structure | 
 | // pointer pB. Uses 16-bit operation. Is called indirectly through | 
 | // pB->i2eWriteWord. | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiWriteWord16(i2eBordStrPtr pB, unsigned short value) | 
 | { | 
 | 	outw((int)value, pB->i2eData); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteWord8(pB, value) | 
 | // Parameters: pB    - pointer to board structure | 
 | //             value - data to write | 
 | // | 
 | // Returns:    True if everything appears copacetic. | 
 | //             False if there is any error: the pB->i2eError field has the error | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes the word 'value' to the data fifo specified by the board-structure | 
 | // pointer pB. Uses two 8-bit operations (writes LSB first). Is called | 
 | // indirectly through pB->i2eWriteWord. | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiWriteWord8(i2eBordStrPtr pB, unsigned short value) | 
 | { | 
 | 	outb((char)value, pB->i2eData); | 
 | 	outb((char)(value >> 8), pB->i2eData); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWaitForTxEmptyII(pB, mSdelay) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             mSdelay - period to wait before returning | 
 | // | 
 | // Returns:    True if the FIFO is empty. | 
 | //             False if it not empty in the required time: the pB->i2eError | 
 | //             field has the error. | 
 | // | 
 | // Description: | 
 | // | 
 | // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if | 
 | // not empty by the required time, returns false and error in pB->i2eError, | 
 | // otherwise returns true. | 
 | // | 
 | // mSdelay == 0 is taken to mean must be empty on the first test. | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | // Note this routine is organized so that if status is ok there is no delay at | 
 | // all called either before or after the test.  Is called indirectly through | 
 | // pB->i2eWaitForTxEmpty. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay) | 
 | { | 
 | 	unsigned long	flags; | 
 | 	int itemp; | 
 |  | 
 | 	for (;;) | 
 | 	{ | 
 | 		// This routine hinges on being able to see the "other" status register | 
 | 		// (as seen by the local processor).  His incoming fifo is our outgoing | 
 | 		// FIFO. | 
 | 		// | 
 | 		// By the nature of this routine, you would be using this as part of a | 
 | 		// larger atomic context: i.e., you would use this routine to ensure the | 
 | 		// fifo empty, then act on this information. Between these two halves,  | 
 | 		// you will generally not want to service interrupts or in any way  | 
 | 		// disrupt the assumptions implicit in the larger context. | 
 | 		// | 
 | 		// Even worse, however, this routine "shifts" the status register to  | 
 | 		// point to the local status register which is not the usual situation. | 
 | 		// Therefore for extra safety, we force the critical section to be | 
 | 		// completely atomic, and pick up after ourselves before allowing any | 
 | 		// interrupts of any kind. | 
 |  | 
 |  | 
 | 		write_lock_irqsave(&Dl_spinlock, flags); | 
 | 		outb(SEL_COMMAND, pB->i2ePointer); | 
 | 		outb(SEL_CMD_SH, pB->i2ePointer); | 
 |  | 
 | 		itemp = inb(pB->i2eStatus); | 
 |  | 
 | 		outb(SEL_COMMAND, pB->i2ePointer); | 
 | 		outb(SEL_CMD_UNSH, pB->i2ePointer); | 
 |  | 
 | 		if (itemp & ST_IN_EMPTY) | 
 | 		{ | 
 | 			I2_UPDATE_FIFO_ROOM(pB); | 
 | 			write_unlock_irqrestore(&Dl_spinlock, flags); | 
 | 			I2_COMPLETE(pB, I2EE_GOOD); | 
 | 		} | 
 |  | 
 | 		write_unlock_irqrestore(&Dl_spinlock, flags); | 
 |  | 
 | 		if (mSdelay-- == 0) | 
 | 			break; | 
 |  | 
 | 		iiDelay(pB, 1);      /* 1 mS granularity on checking condition */ | 
 | 	} | 
 | 	I2_COMPLETE(pB, I2EE_TXE_TIME); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWaitForTxEmptyIIEX(pB, mSdelay) | 
 | // Parameters: pB      - pointer to board structure | 
 | //             mSdelay - period to wait before returning | 
 | // | 
 | // Returns:    True if the FIFO is empty. | 
 | //             False if it not empty in the required time: the pB->i2eError | 
 | //             field has the error. | 
 | // | 
 | // Description: | 
 | // | 
 | // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if | 
 | // not empty by the required time, returns false and error in pB->i2eError, | 
 | // otherwise returns true. | 
 | // | 
 | // mSdelay == 0 is taken to mean must be empty on the first test. | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | // Note this routine is organized so that if status is ok there is no delay at | 
 | // all called either before or after the test.  Is called indirectly through | 
 | // pB->i2eWaitForTxEmpty. | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay) | 
 | { | 
 | 	unsigned long	flags; | 
 |  | 
 | 	for (;;) | 
 | 	{ | 
 | 		// By the nature of this routine, you would be using this as part of a | 
 | 		// larger atomic context: i.e., you would use this routine to ensure the | 
 | 		// fifo empty, then act on this information. Between these two halves, | 
 | 		// you will generally not want to service interrupts or in any way | 
 | 		// disrupt the assumptions implicit in the larger context. | 
 |  | 
 | 		write_lock_irqsave(&Dl_spinlock, flags); | 
 |  | 
 | 		if (inb(pB->i2eStatus) & STE_OUT_MT) { | 
 | 			I2_UPDATE_FIFO_ROOM(pB); | 
 | 			write_unlock_irqrestore(&Dl_spinlock, flags); | 
 | 			I2_COMPLETE(pB, I2EE_GOOD); | 
 | 		} | 
 | 		write_unlock_irqrestore(&Dl_spinlock, flags); | 
 |  | 
 | 		if (mSdelay-- == 0) | 
 | 			break; | 
 |  | 
 | 		iiDelay(pB, 1);      // 1 mS granularity on checking condition | 
 | 	} | 
 | 	I2_COMPLETE(pB, I2EE_TXE_TIME); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiTxMailEmptyII(pB) | 
 | // Parameters: pB      - pointer to board structure | 
 | // | 
 | // Returns:    True if the transmit mailbox is empty. | 
 | //             False if it not empty. | 
 | // | 
 | // Description: | 
 | // | 
 | // Returns true or false according to whether the transmit mailbox is empty (and | 
 | // therefore able to accept more mail) | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiTxMailEmptyII(i2eBordStrPtr pB) | 
 | { | 
 | 	int port = pB->i2ePointer; | 
 | 	outb(SEL_OUTMAIL, port); | 
 | 	return inb(port) == 0; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiTxMailEmptyIIEX(pB) | 
 | // Parameters: pB      - pointer to board structure | 
 | // | 
 | // Returns:    True if the transmit mailbox is empty. | 
 | //             False if it not empty. | 
 | // | 
 | // Description: | 
 | // | 
 | // Returns true or false according to whether the transmit mailbox is empty (and | 
 | // therefore able to accept more mail) | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiTxMailEmptyIIEX(i2eBordStrPtr pB) | 
 | { | 
 | 	return !(inb(pB->i2eStatus) & STE_OUT_MAIL); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiTrySendMailII(pB,mail) | 
 | // Parameters: pB   - pointer to board structure | 
 | //             mail - value to write to mailbox | 
 | // | 
 | // Returns:    True if the transmit mailbox is empty, and mail is sent. | 
 | //             False if it not empty. | 
 | // | 
 | // Description: | 
 | // | 
 | // If outgoing mailbox is empty, sends mail and returns true. If outgoing | 
 | // mailbox is not empty, returns false. | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail) | 
 | { | 
 | 	int port = pB->i2ePointer; | 
 |  | 
 | 	outb(SEL_OUTMAIL, port); | 
 | 	if (inb(port) == 0) { | 
 | 		outb(SEL_OUTMAIL, port); | 
 | 		outb(mail, port); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiTrySendMailIIEX(pB,mail) | 
 | // Parameters: pB   - pointer to board structure | 
 | //             mail - value to write to mailbox | 
 | // | 
 | // Returns:    True if the transmit mailbox is empty, and mail is sent. | 
 | //             False if it not empty. | 
 | // | 
 | // Description: | 
 | // | 
 | // If outgoing mailbox is empty, sends mail and returns true. If outgoing | 
 | // mailbox is not empty, returns false. | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail) | 
 | { | 
 | 	if (inb(pB->i2eStatus) & STE_OUT_MAIL) | 
 | 		return 0; | 
 | 	outb(mail, pB->i2eXMail); | 
 | 	return 1; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiGetMailII(pB,mail) | 
 | // Parameters: pB   - pointer to board structure | 
 | // | 
 | // Returns:    Mailbox data or NO_MAIL_HERE. | 
 | // | 
 | // Description: | 
 | // | 
 | // If no mail available, returns NO_MAIL_HERE otherwise returns the data from | 
 | // the mailbox, which is guaranteed != NO_MAIL_HERE. | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static unsigned short | 
 | iiGetMailII(i2eBordStrPtr pB) | 
 | { | 
 | 	if (I2_HAS_MAIL(pB)) { | 
 | 		outb(SEL_INMAIL, pB->i2ePointer); | 
 | 		return inb(pB->i2ePointer); | 
 | 	} else { | 
 | 		return NO_MAIL_HERE; | 
 | 	} | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiGetMailIIEX(pB,mail) | 
 | // Parameters: pB   - pointer to board structure | 
 | // | 
 | // Returns:    Mailbox data or NO_MAIL_HERE. | 
 | // | 
 | // Description: | 
 | // | 
 | // If no mail available, returns NO_MAIL_HERE otherwise returns the data from | 
 | // the mailbox, which is guaranteed != NO_MAIL_HERE. | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static unsigned short | 
 | iiGetMailIIEX(i2eBordStrPtr pB) | 
 | { | 
 | 	if (I2_HAS_MAIL(pB)) | 
 | 		return inb(pB->i2eXMail); | 
 | 	else | 
 | 		return NO_MAIL_HERE; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiEnableMailIrqII(pB) | 
 | // Parameters: pB - pointer to board structure | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // Enables board to interrupt host (only) by writing to host's in-bound mailbox. | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiEnableMailIrqII(i2eBordStrPtr pB) | 
 | { | 
 | 	outb(SEL_MASK, pB->i2ePointer); | 
 | 	outb(ST_IN_MAIL, pB->i2ePointer); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiEnableMailIrqIIEX(pB) | 
 | // Parameters: pB - pointer to board structure | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // Enables board to interrupt host (only) by writing to host's in-bound mailbox. | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiEnableMailIrqIIEX(i2eBordStrPtr pB) | 
 | { | 
 | 	outb(MX_IN_MAIL, pB->i2eXMask); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteMaskII(pB) | 
 | // Parameters: pB - pointer to board structure | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes arbitrary value to the mask register. | 
 | // | 
 | // This version operates on IntelliPort-II - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiWriteMaskII(i2eBordStrPtr pB, unsigned char value) | 
 | { | 
 | 	outb(SEL_MASK, pB->i2ePointer); | 
 | 	outb(value, pB->i2ePointer); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiWriteMaskIIEX(pB) | 
 | // Parameters: pB - pointer to board structure | 
 | // | 
 | // Returns:    Nothing | 
 | // | 
 | // Description: | 
 | // | 
 | // Writes arbitrary value to the mask register. | 
 | // | 
 | // This version operates on IntelliPort-IIEX - style FIFO's | 
 | // | 
 | //****************************************************************************** | 
 | static void | 
 | iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value) | 
 | { | 
 | 	outb(value, pB->i2eXMask); | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiDownloadBlock(pB, pSource, isStandard) | 
 | // Parameters: pB         - pointer to board structure | 
 | //             pSource    - loadware block to download | 
 | //             isStandard - True if "standard" loadware, else false. | 
 | // | 
 | // Returns:    Success or Failure | 
 | // | 
 | // Description: | 
 | // | 
 | // Downloads a single block (at pSource)to the board referenced by pB. Caller | 
 | // sets isStandard to true/false according to whether the "standard" loadware is | 
 | // what's being loaded. The normal process, then, is to perform an iiInitialize | 
 | // to the board, then perform some number of iiDownloadBlocks using the returned | 
 | // state to determine when download is complete. | 
 | // | 
 | // Possible return values: (see I2ELLIS.H) | 
 | // II_DOWN_BADVALID | 
 | // II_DOWN_BADFILE | 
 | // II_DOWN_CONTINUING | 
 | // II_DOWN_GOOD | 
 | // II_DOWN_BAD | 
 | // II_DOWN_BADSTATE | 
 | // II_DOWN_TIMEOUT | 
 | // | 
 | // Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to | 
 | // determine whether this is the first block, whether to check for magic | 
 | // numbers, how many blocks there are to go... | 
 | // | 
 | //****************************************************************************** | 
 | static int | 
 | iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard) | 
 | { | 
 | 	int itemp; | 
 | 	int loadedFirst; | 
 |  | 
 | 	if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID; | 
 |  | 
 | 	switch(pB->i2eState) | 
 | 	{ | 
 | 	case II_STATE_READY: | 
 |  | 
 | 		// Loading the first block after reset. Must check the magic number of the | 
 | 		// loadfile, store the number of blocks we expect to load. | 
 | 		if (pSource->e.loadMagic != MAGIC_LOADFILE) | 
 | 		{ | 
 | 			return II_DOWN_BADFILE; | 
 | 		} | 
 |  | 
 | 		// Next we store the total number of blocks to load, including this one. | 
 | 		pB->i2eToLoad = 1 + pSource->e.loadBlocksMore; | 
 |  | 
 | 		// Set the state, store the version numbers. ('Cause this may have come | 
 | 		// from a file - we might want to report these versions and revisions in | 
 | 		// case of an error! | 
 | 		pB->i2eState = II_STATE_LOADING; | 
 | 		pB->i2eLVersion = pSource->e.loadVersion; | 
 | 		pB->i2eLRevision = pSource->e.loadRevision; | 
 | 		pB->i2eLSub = pSource->e.loadSubRevision; | 
 |  | 
 | 		// The time and date of compilation is also available but don't bother | 
 | 		// storing it for normal purposes. | 
 | 		loadedFirst = 1; | 
 | 		break; | 
 |  | 
 | 	case II_STATE_LOADING: | 
 | 		loadedFirst = 0; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		return II_DOWN_BADSTATE; | 
 | 	} | 
 |  | 
 | 	// Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad | 
 | 	// must be positive still, because otherwise we would have cleaned up last | 
 | 	// time and set the state to II_STATE_LOADED. | 
 | 	if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { | 
 | 		return II_DOWN_TIMEOUT; | 
 | 	} | 
 |  | 
 | 	if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) { | 
 | 		return II_DOWN_BADVALID; | 
 | 	} | 
 |  | 
 | 	// If we just loaded the first block, wait for the fifo to empty an extra | 
 | 	// long time to allow for any special startup code in the firmware, like | 
 | 	// sending status messages to the LCD's. | 
 |  | 
 | 	if (loadedFirst) { | 
 | 		if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) { | 
 | 			return II_DOWN_TIMEOUT; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// Determine whether this was our last block! | 
 | 	if (--(pB->i2eToLoad)) { | 
 | 		return II_DOWN_CONTINUING;    // more to come... | 
 | 	} | 
 |  | 
 | 	// It WAS our last block: Clean up operations... | 
 | 	// ...Wait for last buffer to drain from the board... | 
 | 	if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { | 
 | 		return II_DOWN_TIMEOUT; | 
 | 	} | 
 | 	// If there were only a single block written, this would come back | 
 | 	// immediately and be harmless, though not strictly necessary. | 
 | 	itemp = MAX_DLOAD_ACK_TIME/10; | 
 | 	while (--itemp) { | 
 | 		if (I2_HAS_INPUT(pB)) { | 
 | 			switch (inb(pB->i2eData)) { | 
 | 			case LOADWARE_OK: | 
 | 				pB->i2eState = | 
 | 					isStandard ? II_STATE_STDLOADED :II_STATE_LOADED; | 
 |  | 
 | 				// Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2) | 
 | 				// will, // if there is a debug port attached, require some | 
 | 				// time to send information to the debug port now. It will do | 
 | 				// this before // executing any of the code we just downloaded. | 
 | 				// It may take up to 700 milliseconds. | 
 | 				if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) { | 
 | 					iiDelay(pB, 700); | 
 | 				} | 
 |  | 
 | 				return II_DOWN_GOOD; | 
 |  | 
 | 			case LOADWARE_BAD: | 
 | 			default: | 
 | 				return II_DOWN_BAD; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		iiDelay(pB, 10);      // 10 mS granularity on checking condition | 
 | 	} | 
 |  | 
 | 	// Drop-through --> timed out waiting for firmware confirmation | 
 |  | 
 | 	pB->i2eState = II_STATE_BADLOAD; | 
 | 	return II_DOWN_TIMEOUT; | 
 | } | 
 |  | 
 | //****************************************************************************** | 
 | // Function:   iiDownloadAll(pB, pSource, isStandard, size) | 
 | // Parameters: pB         - pointer to board structure | 
 | //             pSource    - loadware block to download | 
 | //             isStandard - True if "standard" loadware, else false. | 
 | //             size       - size of data to download (in bytes) | 
 | // | 
 | // Returns:    Success or Failure | 
 | // | 
 | // Description: | 
 | // | 
 | // Given a pointer to a board structure, a pointer to the beginning of some | 
 | // loadware, whether it is considered the "standard loadware", and the size of | 
 | // the array in bytes loads the entire array to the board as loadware. | 
 | // | 
 | // Assumes the board has been freshly reset and the power-up reset message read. | 
 | // (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be | 
 | // too much or too little data to load, or if iiDownloadBlock complains. | 
 | //****************************************************************************** | 
 | static int | 
 | iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	// We know (from context) board should be ready for the first block of | 
 | 	// download.  Complain if not. | 
 | 	if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE; | 
 |  | 
 | 	while (size > 0) { | 
 | 		size -= LOADWARE_BLOCK_SIZE;	// How much data should there be left to | 
 | 										// load after the following operation ? | 
 |  | 
 | 		// Note we just bump pSource by "one", because its size is actually that | 
 | 		// of an entire block, same as LOADWARE_BLOCK_SIZE. | 
 | 		status = iiDownloadBlock(pB, pSource++, isStandard); | 
 |  | 
 | 		switch(status) | 
 | 		{ | 
 | 		case II_DOWN_GOOD: | 
 | 			return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD); | 
 |  | 
 | 		case II_DOWN_CONTINUING: | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			return status; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// We shouldn't drop out: it means "while" caught us with nothing left to | 
 | 	// download, yet the previous DownloadBlock did not return complete. Ergo, | 
 | 	// not enough data to match the size byte in the header. | 
 | 	return II_DOWN_UNDER; | 
 | } |