|  | /*	tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. | 
|  |  | 
|  | Copyright 2000,2001  The Linux Kernel Team | 
|  | Written/copyright 1994-2001 by Donald Becker. | 
|  |  | 
|  | This software may be used and distributed according to the terms | 
|  | of the GNU General Public License, incorporated herein by reference. | 
|  |  | 
|  | Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html} | 
|  | for more information on this driver. | 
|  |  | 
|  | Please submit bugs to http://bugzilla.kernel.org/ . | 
|  | */ | 
|  |  | 
|  |  | 
|  | #define DRV_NAME	"tulip" | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | #define DRV_VERSION    "1.1.15-NAPI" /* Keep at least for test */ | 
|  | #else | 
|  | #define DRV_VERSION	"1.1.15" | 
|  | #endif | 
|  | #define DRV_RELDATE	"Feb 27, 2007" | 
|  |  | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include "tulip.h" | 
|  | #include <linux/init.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #ifdef CONFIG_SPARC | 
|  | #include <asm/prom.h> | 
|  | #endif | 
|  |  | 
|  | static char version[] __devinitdata = | 
|  | "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n"; | 
|  |  | 
|  |  | 
|  | /* A few user-configurable values. */ | 
|  |  | 
|  | /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ | 
|  | static unsigned int max_interrupt_work = 25; | 
|  |  | 
|  | #define MAX_UNITS 8 | 
|  | /* Used to pass the full-duplex flag, etc. */ | 
|  | static int full_duplex[MAX_UNITS]; | 
|  | static int options[MAX_UNITS]; | 
|  | static int mtu[MAX_UNITS];			/* Jumbo MTU for interfaces. */ | 
|  |  | 
|  | /*  The possible media types that can be set in options[] are: */ | 
|  | const char * const medianame[32] = { | 
|  | "10baseT", "10base2", "AUI", "100baseTx", | 
|  | "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx", | 
|  | "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII", | 
|  | "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4", | 
|  | "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19", | 
|  | "","","","", "","","","",  "","","","Transceiver reset", | 
|  | }; | 
|  |  | 
|  | /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ | 
|  | #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \ | 
|  | || defined(CONFIG_SPARC) || defined(__ia64__) \ | 
|  | || defined(__sh__) || defined(__mips__) | 
|  | static int rx_copybreak = 1518; | 
|  | #else | 
|  | static int rx_copybreak = 100; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | Set the bus performance register. | 
|  | Typical: Set 16 longword cache alignment, no burst limit. | 
|  | Cache alignment bits 15:14	     Burst length 13:8 | 
|  | 0000	No alignment  0x00000000 unlimited		0800 8 longwords | 
|  | 4000	8  longwords		0100 1 longword		1000 16 longwords | 
|  | 8000	16 longwords		0200 2 longwords	2000 32 longwords | 
|  | C000	32  longwords		0400 4 longwords | 
|  | Warning: many older 486 systems are broken and require setting 0x00A04800 | 
|  | 8 longword cache alignment, 8 longword burst. | 
|  | ToDo: Non-Intel setting could be better. | 
|  | */ | 
|  |  | 
|  | #if defined(__alpha__) || defined(__ia64__) | 
|  | static int csr0 = 0x01A00000 | 0xE000; | 
|  | #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__) | 
|  | static int csr0 = 0x01A00000 | 0x8000; | 
|  | #elif defined(CONFIG_SPARC) || defined(__hppa__) | 
|  | /* The UltraSparc PCI controllers will disconnect at every 64-byte | 
|  | * crossing anyways so it makes no sense to tell Tulip to burst | 
|  | * any more than that. | 
|  | */ | 
|  | static int csr0 = 0x01A00000 | 0x9000; | 
|  | #elif defined(__arm__) || defined(__sh__) | 
|  | static int csr0 = 0x01A00000 | 0x4800; | 
|  | #elif defined(__mips__) | 
|  | static int csr0 = 0x00200000 | 0x4000; | 
|  | #else | 
|  | #warning Processor architecture undefined! | 
|  | static int csr0 = 0x00A00000 | 0x4800; | 
|  | #endif | 
|  |  | 
|  | /* Operational parameters that usually are not changed. */ | 
|  | /* Time in jiffies before concluding the transmitter is hung. */ | 
|  | #define TX_TIMEOUT  (4*HZ) | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("The Linux Kernel Team"); | 
|  | MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | module_param(tulip_debug, int, 0); | 
|  | module_param(max_interrupt_work, int, 0); | 
|  | module_param(rx_copybreak, int, 0); | 
|  | module_param(csr0, int, 0); | 
|  | module_param_array(options, int, NULL, 0); | 
|  | module_param_array(full_duplex, int, NULL, 0); | 
|  |  | 
|  | #define PFX DRV_NAME ": " | 
|  |  | 
|  | #ifdef TULIP_DEBUG | 
|  | int tulip_debug = TULIP_DEBUG; | 
|  | #else | 
|  | int tulip_debug = 1; | 
|  | #endif | 
|  |  | 
|  | static void tulip_timer(unsigned long data) | 
|  | { | 
|  | struct net_device *dev = (struct net_device *)data; | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | schedule_work(&tp->media_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This table use during operation for capabilities and media timer. | 
|  | * | 
|  | * It is indexed via the values in 'enum chips' | 
|  | */ | 
|  |  | 
|  | struct tulip_chip_table tulip_tbl[] = { | 
|  | { }, /* placeholder for array, slot unused currently */ | 
|  | { }, /* placeholder for array, slot unused currently */ | 
|  |  | 
|  | /* DC21140 */ | 
|  | { "Digital DS21140 Tulip", 128, 0x0001ebef, | 
|  | HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer, | 
|  | tulip_media_task }, | 
|  |  | 
|  | /* DC21142, DC21143 */ | 
|  | { "Digital DS21142/43 Tulip", 128, 0x0801fbff, | 
|  | HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY | 
|  | | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task }, | 
|  |  | 
|  | /* LC82C168 */ | 
|  | { "Lite-On 82c168 PNIC", 256, 0x0001fbef, | 
|  | HAS_MII | HAS_PNICNWAY, pnic_timer, }, | 
|  |  | 
|  | /* MX98713 */ | 
|  | { "Macronix 98713 PMAC", 128, 0x0001ebef, | 
|  | HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, | 
|  |  | 
|  | /* MX98715 */ | 
|  | { "Macronix 98715 PMAC", 256, 0x0001ebef, | 
|  | HAS_MEDIA_TABLE, mxic_timer, }, | 
|  |  | 
|  | /* MX98725 */ | 
|  | { "Macronix 98725 PMAC", 256, 0x0001ebef, | 
|  | HAS_MEDIA_TABLE, mxic_timer, }, | 
|  |  | 
|  | /* AX88140 */ | 
|  | { "ASIX AX88140", 128, 0x0001fbff, | 
|  | HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY | 
|  | | IS_ASIX, tulip_timer, tulip_media_task }, | 
|  |  | 
|  | /* PNIC2 */ | 
|  | { "Lite-On PNIC-II", 256, 0x0801fbff, | 
|  | HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, }, | 
|  |  | 
|  | /* COMET */ | 
|  | { "ADMtek Comet", 256, 0x0001abef, | 
|  | HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, }, | 
|  |  | 
|  | /* COMPEX9881 */ | 
|  | { "Compex 9881 PMAC", 128, 0x0001ebef, | 
|  | HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, | 
|  |  | 
|  | /* I21145 */ | 
|  | { "Intel DS21145 Tulip", 128, 0x0801fbff, | 
|  | HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | 
|  | | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task }, | 
|  |  | 
|  | /* DM910X */ | 
|  | { "Davicom DM9102/DM9102A", 128, 0x0001ebef, | 
|  | HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI, | 
|  | tulip_timer, tulip_media_task }, | 
|  |  | 
|  | /* RS7112 */ | 
|  | { "Conexant LANfinity", 256, 0x0001ebef, | 
|  | HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task }, | 
|  |  | 
|  | }; | 
|  |  | 
|  |  | 
|  | static struct pci_device_id tulip_pci_tbl[] = { | 
|  | { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 }, | 
|  | { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 }, | 
|  | { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 }, | 
|  | { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 }, | 
|  | { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, | 
|  | /*	{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/ | 
|  | { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 }, | 
|  | { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 }, | 
|  | { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 }, | 
|  | { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 }, | 
|  | { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, | 
|  | { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, | 
|  | { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, | 
|  | { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT }, | 
|  | { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */ | 
|  | { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */ | 
|  | { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, | 
|  | { } /* terminate list */ | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, tulip_pci_tbl); | 
|  |  | 
|  |  | 
|  | /* A full-duplex map for media types. */ | 
|  | const char tulip_media_cap[32] = | 
|  | {0,0,0,16,  3,19,16,24,  27,4,7,5, 0,20,23,20,  28,31,0,0, }; | 
|  |  | 
|  | static void tulip_tx_timeout(struct net_device *dev); | 
|  | static void tulip_init_ring(struct net_device *dev); | 
|  | static void tulip_free_ring(struct net_device *dev); | 
|  | static netdev_tx_t tulip_start_xmit(struct sk_buff *skb, | 
|  | struct net_device *dev); | 
|  | static int tulip_open(struct net_device *dev); | 
|  | static int tulip_close(struct net_device *dev); | 
|  | static void tulip_up(struct net_device *dev); | 
|  | static void tulip_down(struct net_device *dev); | 
|  | static struct net_device_stats *tulip_get_stats(struct net_device *dev); | 
|  | static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | 
|  | static void set_rx_mode(struct net_device *dev); | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | static void poll_tulip(struct net_device *dev); | 
|  | #endif | 
|  |  | 
|  | static void tulip_set_power_state (struct tulip_private *tp, | 
|  | int sleep, int snooze) | 
|  | { | 
|  | if (tp->flags & HAS_ACPI) { | 
|  | u32 tmp, newtmp; | 
|  | pci_read_config_dword (tp->pdev, CFDD, &tmp); | 
|  | newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze); | 
|  | if (sleep) | 
|  | newtmp |= CFDD_Sleep; | 
|  | else if (snooze) | 
|  | newtmp |= CFDD_Snooze; | 
|  | if (tmp != newtmp) | 
|  | pci_write_config_dword (tp->pdev, CFDD, newtmp); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tulip_up(struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  | int next_tick = 3*HZ; | 
|  | u32 reg; | 
|  | int i; | 
|  |  | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | napi_enable(&tp->napi); | 
|  | #endif | 
|  |  | 
|  | /* Wake the chip from sleep/snooze mode. */ | 
|  | tulip_set_power_state (tp, 0, 0); | 
|  |  | 
|  | /* On some chip revs we must set the MII/SYM port before the reset!? */ | 
|  | if (tp->mii_cnt  ||  (tp->mtable  &&  tp->mtable->has_mii)) | 
|  | iowrite32(0x00040000, ioaddr + CSR6); | 
|  |  | 
|  | /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ | 
|  | iowrite32(0x00000001, ioaddr + CSR0); | 
|  | pci_read_config_dword(tp->pdev, PCI_COMMAND, ®);  /* flush write */ | 
|  | udelay(100); | 
|  |  | 
|  | /* Deassert reset. | 
|  | Wait the specified 50 PCI cycles after a reset by initializing | 
|  | Tx and Rx queues and the address filter list. */ | 
|  | iowrite32(tp->csr0, ioaddr + CSR0); | 
|  | pci_read_config_dword(tp->pdev, PCI_COMMAND, ®);  /* flush write */ | 
|  | udelay(100); | 
|  |  | 
|  | if (tulip_debug > 1) | 
|  | printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq); | 
|  |  | 
|  | iowrite32(tp->rx_ring_dma, ioaddr + CSR3); | 
|  | iowrite32(tp->tx_ring_dma, ioaddr + CSR4); | 
|  | tp->cur_rx = tp->cur_tx = 0; | 
|  | tp->dirty_rx = tp->dirty_tx = 0; | 
|  |  | 
|  | if (tp->flags & MC_HASH_ONLY) { | 
|  | u32 addr_low = get_unaligned_le32(dev->dev_addr); | 
|  | u32 addr_high = get_unaligned_le16(dev->dev_addr + 4); | 
|  | if (tp->chip_id == AX88140) { | 
|  | iowrite32(0, ioaddr + CSR13); | 
|  | iowrite32(addr_low,  ioaddr + CSR14); | 
|  | iowrite32(1, ioaddr + CSR13); | 
|  | iowrite32(addr_high, ioaddr + CSR14); | 
|  | } else if (tp->flags & COMET_MAC_ADDR) { | 
|  | iowrite32(addr_low,  ioaddr + 0xA4); | 
|  | iowrite32(addr_high, ioaddr + 0xA8); | 
|  | iowrite32(0, ioaddr + 0xAC); | 
|  | iowrite32(0, ioaddr + 0xB0); | 
|  | } | 
|  | } else { | 
|  | /* This is set_rx_mode(), but without starting the transmitter. */ | 
|  | u16 *eaddrs = (u16 *)dev->dev_addr; | 
|  | u16 *setup_frm = &tp->setup_frame[15*6]; | 
|  | dma_addr_t mapping; | 
|  |  | 
|  | /* 21140 bug: you must add the broadcast address. */ | 
|  | memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame)); | 
|  | /* Fill the final entry of the table with our physical address. */ | 
|  | *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; | 
|  | *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; | 
|  | *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; | 
|  |  | 
|  | mapping = pci_map_single(tp->pdev, tp->setup_frame, | 
|  | sizeof(tp->setup_frame), | 
|  | PCI_DMA_TODEVICE); | 
|  | tp->tx_buffers[tp->cur_tx].skb = NULL; | 
|  | tp->tx_buffers[tp->cur_tx].mapping = mapping; | 
|  |  | 
|  | /* Put the setup frame on the Tx list. */ | 
|  | tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192); | 
|  | tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping); | 
|  | tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned); | 
|  |  | 
|  | tp->cur_tx++; | 
|  | } | 
|  |  | 
|  | tp->saved_if_port = dev->if_port; | 
|  | if (dev->if_port == 0) | 
|  | dev->if_port = tp->default_port; | 
|  |  | 
|  | /* Allow selecting a default media. */ | 
|  | i = 0; | 
|  | if (tp->mtable == NULL) | 
|  | goto media_picked; | 
|  | if (dev->if_port) { | 
|  | int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 : | 
|  | (dev->if_port == 12 ? 0 : dev->if_port); | 
|  | for (i = 0; i < tp->mtable->leafcount; i++) | 
|  | if (tp->mtable->mleaf[i].media == looking_for) { | 
|  | printk(KERN_INFO "%s: Using user-specified media %s.\n", | 
|  | dev->name, medianame[dev->if_port]); | 
|  | goto media_picked; | 
|  | } | 
|  | } | 
|  | if ((tp->mtable->defaultmedia & 0x0800) == 0) { | 
|  | int looking_for = tp->mtable->defaultmedia & MEDIA_MASK; | 
|  | for (i = 0; i < tp->mtable->leafcount; i++) | 
|  | if (tp->mtable->mleaf[i].media == looking_for) { | 
|  | printk(KERN_INFO "%s: Using EEPROM-set media %s.\n", | 
|  | dev->name, medianame[looking_for]); | 
|  | goto media_picked; | 
|  | } | 
|  | } | 
|  | /* Start sensing first non-full-duplex media. */ | 
|  | for (i = tp->mtable->leafcount - 1; | 
|  | (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--) | 
|  | ; | 
|  | media_picked: | 
|  |  | 
|  | tp->csr6 = 0; | 
|  | tp->cur_index = i; | 
|  | tp->nwayset = 0; | 
|  |  | 
|  | if (dev->if_port) { | 
|  | if (tp->chip_id == DC21143  && | 
|  | (tulip_media_cap[dev->if_port] & MediaIsMII)) { | 
|  | /* We must reset the media CSRs when we force-select MII mode. */ | 
|  | iowrite32(0x0000, ioaddr + CSR13); | 
|  | iowrite32(0x0000, ioaddr + CSR14); | 
|  | iowrite32(0x0008, ioaddr + CSR15); | 
|  | } | 
|  | tulip_select_media(dev, 1); | 
|  | } else if (tp->chip_id == DC21142) { | 
|  | if (tp->mii_cnt) { | 
|  | tulip_select_media(dev, 1); | 
|  | if (tulip_debug > 1) | 
|  | printk(KERN_INFO "%s: Using MII transceiver %d, status " | 
|  | "%4.4x.\n", | 
|  | dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1)); | 
|  | iowrite32(csr6_mask_defstate, ioaddr + CSR6); | 
|  | tp->csr6 = csr6_mask_hdcap; | 
|  | dev->if_port = 11; | 
|  | iowrite32(0x0000, ioaddr + CSR13); | 
|  | iowrite32(0x0000, ioaddr + CSR14); | 
|  | } else | 
|  | t21142_start_nway(dev); | 
|  | } else if (tp->chip_id == PNIC2) { | 
|  | /* for initial startup advertise 10/100 Full and Half */ | 
|  | tp->sym_advertise = 0x01E0; | 
|  | /* enable autonegotiate end interrupt */ | 
|  | iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5); | 
|  | iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7); | 
|  | pnic2_start_nway(dev); | 
|  | } else if (tp->chip_id == LC82C168  &&  ! tp->medialock) { | 
|  | if (tp->mii_cnt) { | 
|  | dev->if_port = 11; | 
|  | tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0); | 
|  | iowrite32(0x0001, ioaddr + CSR15); | 
|  | } else if (ioread32(ioaddr + CSR5) & TPLnkPass) | 
|  | pnic_do_nway(dev); | 
|  | else { | 
|  | /* Start with 10mbps to do autonegotiation. */ | 
|  | iowrite32(0x32, ioaddr + CSR12); | 
|  | tp->csr6 = 0x00420000; | 
|  | iowrite32(0x0001B078, ioaddr + 0xB8); | 
|  | iowrite32(0x0201B078, ioaddr + 0xB8); | 
|  | next_tick = 1*HZ; | 
|  | } | 
|  | } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) | 
|  | && ! tp->medialock) { | 
|  | dev->if_port = 0; | 
|  | tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0); | 
|  | iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); | 
|  | } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) { | 
|  | /* Provided by BOLO, Macronix - 12/10/1998. */ | 
|  | dev->if_port = 0; | 
|  | tp->csr6 = 0x01a80200; | 
|  | iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); | 
|  | iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0); | 
|  | } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) { | 
|  | /* Enable automatic Tx underrun recovery. */ | 
|  | iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88); | 
|  | dev->if_port = tp->mii_cnt ? 11 : 0; | 
|  | tp->csr6 = 0x00040000; | 
|  | } else if (tp->chip_id == AX88140) { | 
|  | tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100; | 
|  | } else | 
|  | tulip_select_media(dev, 1); | 
|  |  | 
|  | /* Start the chip's Tx to process setup frame. */ | 
|  | tulip_stop_rxtx(tp); | 
|  | barrier(); | 
|  | udelay(5); | 
|  | iowrite32(tp->csr6 | TxOn, ioaddr + CSR6); | 
|  |  | 
|  | /* Enable interrupts by setting the interrupt mask. */ | 
|  | iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5); | 
|  | iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); | 
|  | tulip_start_rxtx(tp); | 
|  | iowrite32(0, ioaddr + CSR2);		/* Rx poll demand */ | 
|  |  | 
|  | if (tulip_debug > 2) { | 
|  | printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n", | 
|  | dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5), | 
|  | ioread32(ioaddr + CSR6)); | 
|  | } | 
|  |  | 
|  | /* Set the timer to switch to check for link beat and perhaps switch | 
|  | to an alternate media type. */ | 
|  | tp->timer.expires = RUN_AT(next_tick); | 
|  | add_timer(&tp->timer); | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | init_timer(&tp->oom_timer); | 
|  | tp->oom_timer.data = (unsigned long)dev; | 
|  | tp->oom_timer.function = oom_timer; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int | 
|  | tulip_open(struct net_device *dev) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | tulip_init_ring (dev); | 
|  |  | 
|  | retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev); | 
|  | if (retval) | 
|  | goto free_ring; | 
|  |  | 
|  | tulip_up (dev); | 
|  |  | 
|  | netif_start_queue (dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_ring: | 
|  | tulip_free_ring (dev); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tulip_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave (&tp->lock, flags); | 
|  |  | 
|  | if (tulip_media_cap[dev->if_port] & MediaIsMII) { | 
|  | /* Do nothing -- the media monitor should handle this. */ | 
|  | if (tulip_debug > 1) | 
|  | printk(KERN_WARNING "%s: Transmit timeout using MII device.\n", | 
|  | dev->name); | 
|  | } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 | 
|  | || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 | 
|  | || tp->chip_id == DM910X) { | 
|  | printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, " | 
|  | "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n", | 
|  | dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12), | 
|  | ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15)); | 
|  | tp->timeout_recovery = 1; | 
|  | schedule_work(&tp->media_work); | 
|  | goto out_unlock; | 
|  | } else if (tp->chip_id == PNIC2) { | 
|  | printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, " | 
|  | "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n", | 
|  | dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6), | 
|  | (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12)); | 
|  | } else { | 
|  | printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 " | 
|  | "%8.8x, resetting...\n", | 
|  | dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12)); | 
|  | dev->if_port = 0; | 
|  | } | 
|  |  | 
|  | #if defined(way_too_many_messages) | 
|  | if (tulip_debug > 3) { | 
|  | int i; | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | u8 *buf = (u8 *)(tp->rx_ring[i].buffer1); | 
|  | int j; | 
|  | printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x  " | 
|  | "%2.2x %2.2x %2.2x.\n", | 
|  | i, (unsigned int)tp->rx_ring[i].status, | 
|  | (unsigned int)tp->rx_ring[i].length, | 
|  | (unsigned int)tp->rx_ring[i].buffer1, | 
|  | (unsigned int)tp->rx_ring[i].buffer2, | 
|  | buf[0], buf[1], buf[2]); | 
|  | for (j = 0; buf[j] != 0xee && j < 1600; j++) | 
|  | if (j < 100) | 
|  | printk(KERN_CONT " %2.2x", buf[j]); | 
|  | printk(KERN_CONT " j=%d.\n", j); | 
|  | } | 
|  | printk(KERN_DEBUG "  Rx ring %8.8x: ", (int)tp->rx_ring); | 
|  | for (i = 0; i < RX_RING_SIZE; i++) | 
|  | printk(KERN_CONT " %8.8x", | 
|  | (unsigned int)tp->rx_ring[i].status); | 
|  | printk(KERN_DEBUG "  Tx ring %8.8x: ", (int)tp->tx_ring); | 
|  | for (i = 0; i < TX_RING_SIZE; i++) | 
|  | printk(KERN_CONT " %8.8x", (unsigned int)tp->tx_ring[i].status); | 
|  | printk(KERN_CONT "\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | tulip_tx_timeout_complete(tp, ioaddr); | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore (&tp->lock, flags); | 
|  | dev->trans_start = jiffies; | 
|  | netif_wake_queue (dev); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ | 
|  | static void tulip_init_ring(struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | tp->susp_rx = 0; | 
|  | tp->ttimer = 0; | 
|  | tp->nir = 0; | 
|  |  | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | tp->rx_ring[i].status = 0x00000000; | 
|  | tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ); | 
|  | tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1)); | 
|  | tp->rx_buffers[i].skb = NULL; | 
|  | tp->rx_buffers[i].mapping = 0; | 
|  | } | 
|  | /* Mark the last entry as wrapping the ring. */ | 
|  | tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP); | 
|  | tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma); | 
|  |  | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | dma_addr_t mapping; | 
|  |  | 
|  | /* Note the receive buffer must be longword aligned. | 
|  | dev_alloc_skb() provides 16 byte alignment.  But do *not* | 
|  | use skb_reserve() to align the IP header! */ | 
|  | struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ); | 
|  | tp->rx_buffers[i].skb = skb; | 
|  | if (skb == NULL) | 
|  | break; | 
|  | mapping = pci_map_single(tp->pdev, skb->data, | 
|  | PKT_BUF_SZ, PCI_DMA_FROMDEVICE); | 
|  | tp->rx_buffers[i].mapping = mapping; | 
|  | skb->dev = dev;			/* Mark as being used by this device. */ | 
|  | tp->rx_ring[i].status = cpu_to_le32(DescOwned);	/* Owned by Tulip chip */ | 
|  | tp->rx_ring[i].buffer1 = cpu_to_le32(mapping); | 
|  | } | 
|  | tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); | 
|  |  | 
|  | /* The Tx buffer descriptor is filled in as needed, but we | 
|  | do need to clear the ownership bit. */ | 
|  | for (i = 0; i < TX_RING_SIZE; i++) { | 
|  | tp->tx_buffers[i].skb = NULL; | 
|  | tp->tx_buffers[i].mapping = 0; | 
|  | tp->tx_ring[i].status = 0x00000000; | 
|  | tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1)); | 
|  | } | 
|  | tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma); | 
|  | } | 
|  |  | 
|  | static netdev_tx_t | 
|  | tulip_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | int entry; | 
|  | u32 flag; | 
|  | dma_addr_t mapping; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&tp->lock, flags); | 
|  |  | 
|  | /* Calculate the next Tx descriptor entry. */ | 
|  | entry = tp->cur_tx % TX_RING_SIZE; | 
|  |  | 
|  | tp->tx_buffers[entry].skb = skb; | 
|  | mapping = pci_map_single(tp->pdev, skb->data, | 
|  | skb->len, PCI_DMA_TODEVICE); | 
|  | tp->tx_buffers[entry].mapping = mapping; | 
|  | tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping); | 
|  |  | 
|  | if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ | 
|  | flag = 0x60000000; /* No interrupt */ | 
|  | } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { | 
|  | flag = 0xe0000000; /* Tx-done intr. */ | 
|  | } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { | 
|  | flag = 0x60000000; /* No Tx-done intr. */ | 
|  | } else {		/* Leave room for set_rx_mode() to fill entries. */ | 
|  | flag = 0xe0000000; /* Tx-done intr. */ | 
|  | netif_stop_queue(dev); | 
|  | } | 
|  | if (entry == TX_RING_SIZE-1) | 
|  | flag = 0xe0000000 | DESC_RING_WRAP; | 
|  |  | 
|  | tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag); | 
|  | /* if we were using Transmit Automatic Polling, we would need a | 
|  | * wmb() here. */ | 
|  | tp->tx_ring[entry].status = cpu_to_le32(DescOwned); | 
|  | wmb(); | 
|  |  | 
|  | tp->cur_tx++; | 
|  |  | 
|  | /* Trigger an immediate transmit demand. */ | 
|  | iowrite32(0, tp->base_addr + CSR1); | 
|  |  | 
|  | spin_unlock_irqrestore(&tp->lock, flags); | 
|  |  | 
|  | dev->trans_start = jiffies; | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | static void tulip_clean_tx_ring(struct tulip_private *tp) | 
|  | { | 
|  | unsigned int dirty_tx; | 
|  |  | 
|  | for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0; | 
|  | dirty_tx++) { | 
|  | int entry = dirty_tx % TX_RING_SIZE; | 
|  | int status = le32_to_cpu(tp->tx_ring[entry].status); | 
|  |  | 
|  | if (status < 0) { | 
|  | tp->stats.tx_errors++;	/* It wasn't Txed */ | 
|  | tp->tx_ring[entry].status = 0; | 
|  | } | 
|  |  | 
|  | /* Check for Tx filter setup frames. */ | 
|  | if (tp->tx_buffers[entry].skb == NULL) { | 
|  | /* test because dummy frames not mapped */ | 
|  | if (tp->tx_buffers[entry].mapping) | 
|  | pci_unmap_single(tp->pdev, | 
|  | tp->tx_buffers[entry].mapping, | 
|  | sizeof(tp->setup_frame), | 
|  | PCI_DMA_TODEVICE); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, | 
|  | tp->tx_buffers[entry].skb->len, | 
|  | PCI_DMA_TODEVICE); | 
|  |  | 
|  | /* Free the original skb. */ | 
|  | dev_kfree_skb_irq(tp->tx_buffers[entry].skb); | 
|  | tp->tx_buffers[entry].skb = NULL; | 
|  | tp->tx_buffers[entry].mapping = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tulip_down (struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  | unsigned long flags; | 
|  |  | 
|  | cancel_work_sync(&tp->media_work); | 
|  |  | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | napi_disable(&tp->napi); | 
|  | #endif | 
|  |  | 
|  | del_timer_sync (&tp->timer); | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | del_timer_sync (&tp->oom_timer); | 
|  | #endif | 
|  | spin_lock_irqsave (&tp->lock, flags); | 
|  |  | 
|  | /* Disable interrupts by clearing the interrupt mask. */ | 
|  | iowrite32 (0x00000000, ioaddr + CSR7); | 
|  |  | 
|  | /* Stop the Tx and Rx processes. */ | 
|  | tulip_stop_rxtx(tp); | 
|  |  | 
|  | /* prepare receive buffers */ | 
|  | tulip_refill_rx(dev); | 
|  |  | 
|  | /* release any unconsumed transmit buffers */ | 
|  | tulip_clean_tx_ring(tp); | 
|  |  | 
|  | if (ioread32 (ioaddr + CSR6) != 0xffffffff) | 
|  | tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff; | 
|  |  | 
|  | spin_unlock_irqrestore (&tp->lock, flags); | 
|  |  | 
|  | init_timer(&tp->timer); | 
|  | tp->timer.data = (unsigned long)dev; | 
|  | tp->timer.function = tulip_tbl[tp->chip_id].media_timer; | 
|  |  | 
|  | dev->if_port = tp->saved_if_port; | 
|  |  | 
|  | /* Leave the driver in snooze, not sleep, mode. */ | 
|  | tulip_set_power_state (tp, 0, 1); | 
|  | } | 
|  |  | 
|  | static void tulip_free_ring (struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | /* Free all the skbuffs in the Rx queue. */ | 
|  | for (i = 0; i < RX_RING_SIZE; i++) { | 
|  | struct sk_buff *skb = tp->rx_buffers[i].skb; | 
|  | dma_addr_t mapping = tp->rx_buffers[i].mapping; | 
|  |  | 
|  | tp->rx_buffers[i].skb = NULL; | 
|  | tp->rx_buffers[i].mapping = 0; | 
|  |  | 
|  | tp->rx_ring[i].status = 0;	/* Not owned by Tulip chip. */ | 
|  | tp->rx_ring[i].length = 0; | 
|  | /* An invalid address. */ | 
|  | tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0); | 
|  | if (skb) { | 
|  | pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | dev_kfree_skb (skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < TX_RING_SIZE; i++) { | 
|  | struct sk_buff *skb = tp->tx_buffers[i].skb; | 
|  |  | 
|  | if (skb != NULL) { | 
|  | pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping, | 
|  | skb->len, PCI_DMA_TODEVICE); | 
|  | dev_kfree_skb (skb); | 
|  | } | 
|  | tp->tx_buffers[i].skb = NULL; | 
|  | tp->tx_buffers[i].mapping = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tulip_close (struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  |  | 
|  | netif_stop_queue (dev); | 
|  |  | 
|  | tulip_down (dev); | 
|  |  | 
|  | if (tulip_debug > 1) | 
|  | printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", | 
|  | dev->name, ioread32 (ioaddr + CSR5)); | 
|  |  | 
|  | free_irq (dev->irq, dev); | 
|  |  | 
|  | tulip_free_ring (dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct net_device_stats *tulip_get_stats(struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  |  | 
|  | if (netif_running(dev)) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave (&tp->lock, flags); | 
|  |  | 
|  | tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff; | 
|  |  | 
|  | spin_unlock_irqrestore(&tp->lock, flags); | 
|  | } | 
|  |  | 
|  | return &tp->stats; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
|  | { | 
|  | struct tulip_private *np = netdev_priv(dev); | 
|  | strcpy(info->driver, DRV_NAME); | 
|  | strcpy(info->version, DRV_VERSION); | 
|  | strcpy(info->bus_info, pci_name(np->pdev)); | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops ops = { | 
|  | .get_drvinfo = tulip_get_drvinfo | 
|  | }; | 
|  |  | 
|  | /* Provide ioctl() calls to examine the MII xcvr state. */ | 
|  | static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  | struct mii_ioctl_data *data = if_mii(rq); | 
|  | const unsigned int phy_idx = 0; | 
|  | int phy = tp->phys[phy_idx] & 0x1f; | 
|  | unsigned int regnum = data->reg_num; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY:		/* Get address of MII PHY in use. */ | 
|  | if (tp->mii_cnt) | 
|  | data->phy_id = phy; | 
|  | else if (tp->flags & HAS_NWAY) | 
|  | data->phy_id = 32; | 
|  | else if (tp->chip_id == COMET) | 
|  | data->phy_id = 1; | 
|  | else | 
|  | return -ENODEV; | 
|  |  | 
|  | case SIOCGMIIREG:		/* Read MII PHY register. */ | 
|  | if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { | 
|  | int csr12 = ioread32 (ioaddr + CSR12); | 
|  | int csr14 = ioread32 (ioaddr + CSR14); | 
|  | switch (regnum) { | 
|  | case 0: | 
|  | if (((csr14<<5) & 0x1000) || | 
|  | (dev->if_port == 5 && tp->nwayset)) | 
|  | data->val_out = 0x1000; | 
|  | else | 
|  | data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0) | 
|  | | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0); | 
|  | break; | 
|  | case 1: | 
|  | data->val_out = | 
|  | 0x1848 + | 
|  | ((csr12&0x7000) == 0x5000 ? 0x20 : 0) + | 
|  | ((csr12&0x06) == 6 ? 0 : 4); | 
|  | data->val_out |= 0x6048; | 
|  | break; | 
|  | case 4: | 
|  | /* Advertised value, bogus 10baseTx-FD value from CSR6. */ | 
|  | data->val_out = | 
|  | ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) + | 
|  | ((csr14 >> 1) & 0x20) + 1; | 
|  | data->val_out |= ((csr14 >> 9) & 0x03C0); | 
|  | break; | 
|  | case 5: data->val_out = tp->lpar; break; | 
|  | default: data->val_out = 0; break; | 
|  | } | 
|  | } else { | 
|  | data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | case SIOCSMIIREG:		/* Write MII PHY register. */ | 
|  | if (regnum & ~0x1f) | 
|  | return -EINVAL; | 
|  | if (data->phy_id == phy) { | 
|  | u16 value = data->val_in; | 
|  | switch (regnum) { | 
|  | case 0:	/* Check for autonegotiation on or reset. */ | 
|  | tp->full_duplex_lock = (value & 0x9000) ? 0 : 1; | 
|  | if (tp->full_duplex_lock) | 
|  | tp->full_duplex = (value & 0x0100) ? 1 : 0; | 
|  | break; | 
|  | case 4: | 
|  | tp->advertising[phy_idx] = | 
|  | tp->mii_advertise = data->val_in; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { | 
|  | u16 value = data->val_in; | 
|  | if (regnum == 0) { | 
|  | if ((value & 0x1200) == 0x1200) { | 
|  | if (tp->chip_id == PNIC2) { | 
|  | pnic2_start_nway (dev); | 
|  | } else { | 
|  | t21142_start_nway (dev); | 
|  | } | 
|  | } | 
|  | } else if (regnum == 4) | 
|  | tp->sym_advertise = value; | 
|  | } else { | 
|  | tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in); | 
|  | } | 
|  | return 0; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set or clear the multicast filter for this adaptor. | 
|  | Note that we only use exclusion around actually queueing the | 
|  | new frame, not around filling tp->setup_frame.  This is non-deterministic | 
|  | when re-entered but still correct. */ | 
|  |  | 
|  | #undef set_bit_le | 
|  | #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) | 
|  |  | 
|  | static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | u16 hash_table[32]; | 
|  | struct dev_mc_list *mclist; | 
|  | int i; | 
|  | u16 *eaddrs; | 
|  |  | 
|  | memset(hash_table, 0, sizeof(hash_table)); | 
|  | set_bit_le(255, hash_table); 			/* Broadcast entry */ | 
|  | /* This should work on big-endian machines as well. */ | 
|  | for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
|  | i++, mclist = mclist->next) { | 
|  | int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff; | 
|  |  | 
|  | set_bit_le(index, hash_table); | 
|  |  | 
|  | } | 
|  | for (i = 0; i < 32; i++) { | 
|  | *setup_frm++ = hash_table[i]; | 
|  | *setup_frm++ = hash_table[i]; | 
|  | } | 
|  | setup_frm = &tp->setup_frame[13*6]; | 
|  |  | 
|  | /* Fill the final entry with our physical address. */ | 
|  | eaddrs = (u16 *)dev->dev_addr; | 
|  | *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; | 
|  | *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; | 
|  | *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; | 
|  | } | 
|  |  | 
|  | static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | struct dev_mc_list *mclist; | 
|  | int i; | 
|  | u16 *eaddrs; | 
|  |  | 
|  | /* We have <= 14 addresses so we can use the wonderful | 
|  | 16 address perfect filtering of the Tulip. */ | 
|  | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | 
|  | i++, mclist = mclist->next) { | 
|  | eaddrs = (u16 *)mclist->dmi_addr; | 
|  | *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; | 
|  | *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; | 
|  | *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; | 
|  | } | 
|  | /* Fill the unused entries with the broadcast address. */ | 
|  | memset(setup_frm, 0xff, (15-i)*12); | 
|  | setup_frm = &tp->setup_frame[15*6]; | 
|  |  | 
|  | /* Fill the final entry with our physical address. */ | 
|  | eaddrs = (u16 *)dev->dev_addr; | 
|  | *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; | 
|  | *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; | 
|  | *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void set_rx_mode(struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | void __iomem *ioaddr = tp->base_addr; | 
|  | int csr6; | 
|  |  | 
|  | csr6 = ioread32(ioaddr + CSR6) & ~0x00D5; | 
|  |  | 
|  | tp->csr6 &= ~0x00D5; | 
|  | if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */ | 
|  | tp->csr6 |= AcceptAllMulticast | AcceptAllPhys; | 
|  | csr6 |= AcceptAllMulticast | AcceptAllPhys; | 
|  | } else if ((dev->mc_count > 1000)  ||  (dev->flags & IFF_ALLMULTI)) { | 
|  | /* Too many to filter well -- accept all multicasts. */ | 
|  | tp->csr6 |= AcceptAllMulticast; | 
|  | csr6 |= AcceptAllMulticast; | 
|  | } else	if (tp->flags & MC_HASH_ONLY) { | 
|  | /* Some work-alikes have only a 64-entry hash filter table. */ | 
|  | /* Should verify correctness on big-endian/__powerpc__ */ | 
|  | struct dev_mc_list *mclist; | 
|  | int i; | 
|  | if (dev->mc_count > 64) {		/* Arbitrary non-effective limit. */ | 
|  | tp->csr6 |= AcceptAllMulticast; | 
|  | csr6 |= AcceptAllMulticast; | 
|  | } else { | 
|  | u32 mc_filter[2] = {0, 0};		 /* Multicast hash filter */ | 
|  | int filterbit; | 
|  | for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
|  | i++, mclist = mclist->next) { | 
|  | if (tp->flags & COMET_MAC_ADDR) | 
|  | filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr); | 
|  | else | 
|  | filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; | 
|  | filterbit &= 0x3f; | 
|  | mc_filter[filterbit >> 5] |= 1 << (filterbit & 31); | 
|  | if (tulip_debug > 2) | 
|  | printk(KERN_INFO "%s: Added filter for %pM" | 
|  | "  %8.8x bit %d.\n", | 
|  | dev->name, mclist->dmi_addr, | 
|  | ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit); | 
|  | } | 
|  | if (mc_filter[0] == tp->mc_filter[0]  && | 
|  | mc_filter[1] == tp->mc_filter[1]) | 
|  | ;				/* No change. */ | 
|  | else if (tp->flags & IS_ASIX) { | 
|  | iowrite32(2, ioaddr + CSR13); | 
|  | iowrite32(mc_filter[0], ioaddr + CSR14); | 
|  | iowrite32(3, ioaddr + CSR13); | 
|  | iowrite32(mc_filter[1], ioaddr + CSR14); | 
|  | } else if (tp->flags & COMET_MAC_ADDR) { | 
|  | iowrite32(mc_filter[0], ioaddr + 0xAC); | 
|  | iowrite32(mc_filter[1], ioaddr + 0xB0); | 
|  | } | 
|  | tp->mc_filter[0] = mc_filter[0]; | 
|  | tp->mc_filter[1] = mc_filter[1]; | 
|  | } | 
|  | } else { | 
|  | unsigned long flags; | 
|  | u32 tx_flags = 0x08000000 | 192; | 
|  |  | 
|  | /* Note that only the low-address shortword of setup_frame is valid! | 
|  | The values are doubled for big-endian architectures. */ | 
|  | if (dev->mc_count > 14) { /* Must use a multicast hash table. */ | 
|  | build_setup_frame_hash(tp->setup_frame, dev); | 
|  | tx_flags = 0x08400000 | 192; | 
|  | } else { | 
|  | build_setup_frame_perfect(tp->setup_frame, dev); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&tp->lock, flags); | 
|  |  | 
|  | if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { | 
|  | /* Same setup recently queued, we need not add it. */ | 
|  | } else { | 
|  | unsigned int entry; | 
|  | int dummy = -1; | 
|  |  | 
|  | /* Now add this frame to the Tx list. */ | 
|  |  | 
|  | entry = tp->cur_tx++ % TX_RING_SIZE; | 
|  |  | 
|  | if (entry != 0) { | 
|  | /* Avoid a chip errata by prefixing a dummy entry. */ | 
|  | tp->tx_buffers[entry].skb = NULL; | 
|  | tp->tx_buffers[entry].mapping = 0; | 
|  | tp->tx_ring[entry].length = | 
|  | (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0; | 
|  | tp->tx_ring[entry].buffer1 = 0; | 
|  | /* Must set DescOwned later to avoid race with chip */ | 
|  | dummy = entry; | 
|  | entry = tp->cur_tx++ % TX_RING_SIZE; | 
|  |  | 
|  | } | 
|  |  | 
|  | tp->tx_buffers[entry].skb = NULL; | 
|  | tp->tx_buffers[entry].mapping = | 
|  | pci_map_single(tp->pdev, tp->setup_frame, | 
|  | sizeof(tp->setup_frame), | 
|  | PCI_DMA_TODEVICE); | 
|  | /* Put the setup frame on the Tx list. */ | 
|  | if (entry == TX_RING_SIZE-1) | 
|  | tx_flags |= DESC_RING_WRAP;		/* Wrap ring. */ | 
|  | tp->tx_ring[entry].length = cpu_to_le32(tx_flags); | 
|  | tp->tx_ring[entry].buffer1 = | 
|  | cpu_to_le32(tp->tx_buffers[entry].mapping); | 
|  | tp->tx_ring[entry].status = cpu_to_le32(DescOwned); | 
|  | if (dummy >= 0) | 
|  | tp->tx_ring[dummy].status = cpu_to_le32(DescOwned); | 
|  | if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | /* Trigger an immediate transmit demand. */ | 
|  | iowrite32(0, ioaddr + CSR1); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&tp->lock, flags); | 
|  | } | 
|  |  | 
|  | iowrite32(csr6, ioaddr + CSR6); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TULIP_MWI | 
|  | static void __devinit tulip_mwi_config (struct pci_dev *pdev, | 
|  | struct net_device *dev) | 
|  | { | 
|  | struct tulip_private *tp = netdev_priv(dev); | 
|  | u8 cache; | 
|  | u16 pci_command; | 
|  | u32 csr0; | 
|  |  | 
|  | if (tulip_debug > 3) | 
|  | printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev)); | 
|  |  | 
|  | tp->csr0 = csr0 = 0; | 
|  |  | 
|  | /* if we have any cache line size at all, we can do MRM and MWI */ | 
|  | csr0 |= MRM | MWI; | 
|  |  | 
|  | /* Enable MWI in the standard PCI command bit. | 
|  | * Check for the case where MWI is desired but not available | 
|  | */ | 
|  | pci_try_set_mwi(pdev); | 
|  |  | 
|  | /* read result from hardware (in case bit refused to enable) */ | 
|  | pci_read_config_word(pdev, PCI_COMMAND, &pci_command); | 
|  | if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE))) | 
|  | csr0 &= ~MWI; | 
|  |  | 
|  | /* if cache line size hardwired to zero, no MWI */ | 
|  | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache); | 
|  | if ((csr0 & MWI) && (cache == 0)) { | 
|  | csr0 &= ~MWI; | 
|  | pci_clear_mwi(pdev); | 
|  | } | 
|  |  | 
|  | /* assign per-cacheline-size cache alignment and | 
|  | * burst length values | 
|  | */ | 
|  | switch (cache) { | 
|  | case 8: | 
|  | csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift); | 
|  | break; | 
|  | case 16: | 
|  | csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift); | 
|  | break; | 
|  | case 32: | 
|  | csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift); | 
|  | break; | 
|  | default: | 
|  | cache = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* if we have a good cache line size, we by now have a good | 
|  | * csr0, so save it and exit | 
|  | */ | 
|  | if (cache) | 
|  | goto out; | 
|  |  | 
|  | /* we don't have a good csr0 or cache line size, disable MWI */ | 
|  | if (csr0 & MWI) { | 
|  | pci_clear_mwi(pdev); | 
|  | csr0 &= ~MWI; | 
|  | } | 
|  |  | 
|  | /* sane defaults for burst length and cache alignment | 
|  | * originally from de4x5 driver | 
|  | */ | 
|  | csr0 |= (8 << BurstLenShift) | (1 << CALShift); | 
|  |  | 
|  | out: | 
|  | tp->csr0 = csr0; | 
|  | if (tulip_debug > 2) | 
|  | printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n", | 
|  | pci_name(pdev), cache, csr0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | *	Chips that have the MRM/reserved bit quirk and the burst quirk. That | 
|  | *	is the DM910X and the on chip ULi devices | 
|  | */ | 
|  |  | 
|  | static int tulip_uli_dm_quirk(struct pci_dev *pdev) | 
|  | { | 
|  | if (pdev->vendor == 0x1282 && pdev->device == 0x9102) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops tulip_netdev_ops = { | 
|  | .ndo_open		= tulip_open, | 
|  | .ndo_start_xmit		= tulip_start_xmit, | 
|  | .ndo_tx_timeout		= tulip_tx_timeout, | 
|  | .ndo_stop		= tulip_close, | 
|  | .ndo_get_stats		= tulip_get_stats, | 
|  | .ndo_do_ioctl 		= private_ioctl, | 
|  | .ndo_set_multicast_list = set_rx_mode, | 
|  | .ndo_change_mtu		= eth_change_mtu, | 
|  | .ndo_set_mac_address	= eth_mac_addr, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	 = poll_tulip, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int __devinit tulip_init_one (struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct tulip_private *tp; | 
|  | /* See note below on the multiport cards. */ | 
|  | static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'}; | 
|  | static struct pci_device_id early_486_chipsets[] = { | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) }, | 
|  | { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) }, | 
|  | { }, | 
|  | }; | 
|  | static int last_irq; | 
|  | static int multiport_cnt;	/* For four-port boards w/one EEPROM */ | 
|  | int i, irq; | 
|  | unsigned short sum; | 
|  | unsigned char *ee_data; | 
|  | struct net_device *dev; | 
|  | void __iomem *ioaddr; | 
|  | static int board_idx = -1; | 
|  | int chip_idx = ent->driver_data; | 
|  | const char *chip_name = tulip_tbl[chip_idx].chip_name; | 
|  | unsigned int eeprom_missing = 0; | 
|  | unsigned int force_csr0 = 0; | 
|  |  | 
|  | #ifndef MODULE | 
|  | static int did_version;		/* Already printed version info. */ | 
|  | if (tulip_debug > 0  &&  did_version++ == 0) | 
|  | printk (KERN_INFO "%s", version); | 
|  | #endif | 
|  |  | 
|  | board_idx++; | 
|  |  | 
|  | /* | 
|  | *	Lan media wire a tulip chip to a wan interface. Needs a very | 
|  | *	different driver (lmc driver) | 
|  | */ | 
|  |  | 
|  | if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) { | 
|  | printk (KERN_ERR PFX "skipping LMC card.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Early DM9100's need software CRC and the DMFE driver | 
|  | */ | 
|  |  | 
|  | if (pdev->vendor == 0x1282 && pdev->device == 0x9100) | 
|  | { | 
|  | /* Read Chip revision */ | 
|  | if (pdev->revision < 0x30) | 
|  | { | 
|  | printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Looks for early PCI chipsets where people report hangs | 
|  | *	without the workarounds being on. | 
|  | */ | 
|  |  | 
|  | /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache | 
|  | aligned.  Aries might need this too. The Saturn errata are not | 
|  | pretty reading but thankfully it's an old 486 chipset. | 
|  |  | 
|  | 2. The dreaded SiS496 486 chipset. Same workaround as Intel | 
|  | Saturn. | 
|  | */ | 
|  |  | 
|  | if (pci_dev_present(early_486_chipsets)) { | 
|  | csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift); | 
|  | force_csr0 = 1; | 
|  | } | 
|  |  | 
|  | /* bugfix: the ASIX must have a burst limit or horrible things happen. */ | 
|  | if (chip_idx == AX88140) { | 
|  | if ((csr0 & 0x3f00) == 0) | 
|  | csr0 |= 0x2000; | 
|  | } | 
|  |  | 
|  | /* PNIC doesn't have MWI/MRL/MRM... */ | 
|  | if (chip_idx == LC82C168) | 
|  | csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */ | 
|  |  | 
|  | /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */ | 
|  | if (tulip_uli_dm_quirk(pdev)) { | 
|  | csr0 &= ~0x01f100ff; | 
|  | #if defined(CONFIG_SPARC) | 
|  | csr0 = (csr0 & ~0xff00) | 0xe000; | 
|  | #endif | 
|  | } | 
|  | /* | 
|  | *	And back to business | 
|  | */ | 
|  |  | 
|  | i = pci_enable_device(pdev); | 
|  | if (i) { | 
|  | printk (KERN_ERR PFX | 
|  | "Cannot enable tulip board #%d, aborting\n", | 
|  | board_idx); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | irq = pdev->irq; | 
|  |  | 
|  | /* alloc_etherdev ensures aligned and zeroed private structures */ | 
|  | dev = alloc_etherdev (sizeof (*tp)); | 
|  | if (!dev) { | 
|  | printk (KERN_ERR PFX "ether device alloc failed, aborting\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | SET_NETDEV_DEV(dev, &pdev->dev); | 
|  | if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) { | 
|  | printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, " | 
|  | "aborting\n", pci_name(pdev), | 
|  | (unsigned long long)pci_resource_len (pdev, 0), | 
|  | (unsigned long long)pci_resource_start (pdev, 0)); | 
|  | goto err_out_free_netdev; | 
|  | } | 
|  |  | 
|  | /* grab all resources from both PIO and MMIO regions, as we | 
|  | * don't want anyone else messing around with our hardware */ | 
|  | if (pci_request_regions (pdev, "tulip")) | 
|  | goto err_out_free_netdev; | 
|  |  | 
|  | ioaddr =  pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size); | 
|  |  | 
|  | if (!ioaddr) | 
|  | goto err_out_free_res; | 
|  |  | 
|  | /* | 
|  | * initialize private data structure 'tp' | 
|  | * it is zeroed and aligned in alloc_etherdev | 
|  | */ | 
|  | tp = netdev_priv(dev); | 
|  | tp->dev = dev; | 
|  |  | 
|  | tp->rx_ring = pci_alloc_consistent(pdev, | 
|  | sizeof(struct tulip_rx_desc) * RX_RING_SIZE + | 
|  | sizeof(struct tulip_tx_desc) * TX_RING_SIZE, | 
|  | &tp->rx_ring_dma); | 
|  | if (!tp->rx_ring) | 
|  | goto err_out_mtable; | 
|  | tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE); | 
|  | tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE; | 
|  |  | 
|  | tp->chip_id = chip_idx; | 
|  | tp->flags = tulip_tbl[chip_idx].flags; | 
|  | tp->pdev = pdev; | 
|  | tp->base_addr = ioaddr; | 
|  | tp->revision = pdev->revision; | 
|  | tp->csr0 = csr0; | 
|  | spin_lock_init(&tp->lock); | 
|  | spin_lock_init(&tp->mii_lock); | 
|  | init_timer(&tp->timer); | 
|  | tp->timer.data = (unsigned long)dev; | 
|  | tp->timer.function = tulip_tbl[tp->chip_id].media_timer; | 
|  |  | 
|  | INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task); | 
|  |  | 
|  | dev->base_addr = (unsigned long)ioaddr; | 
|  |  | 
|  | #ifdef CONFIG_TULIP_MWI | 
|  | if (!force_csr0 && (tp->flags & HAS_PCI_MWI)) | 
|  | tulip_mwi_config (pdev, dev); | 
|  | #endif | 
|  |  | 
|  | /* Stop the chip's Tx and Rx processes. */ | 
|  | tulip_stop_rxtx(tp); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | #ifdef CONFIG_GSC | 
|  | if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) { | 
|  | switch (pdev->subsystem_device) { | 
|  | default: | 
|  | break; | 
|  | case 0x1061: | 
|  | case 0x1062: | 
|  | case 0x1063: | 
|  | case 0x1098: | 
|  | case 0x1099: | 
|  | case 0x10EE: | 
|  | tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE; | 
|  | chip_name = "GSC DS21140 Tulip"; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Clear the missed-packet counter. */ | 
|  | ioread32(ioaddr + CSR8); | 
|  |  | 
|  | /* The station address ROM is read byte serially.  The register must | 
|  | be polled, waiting for the value to be read bit serially from the | 
|  | EEPROM. | 
|  | */ | 
|  | ee_data = tp->eeprom; | 
|  | memset(ee_data, 0, sizeof(tp->eeprom)); | 
|  | sum = 0; | 
|  | if (chip_idx == LC82C168) { | 
|  | for (i = 0; i < 3; i++) { | 
|  | int value, boguscnt = 100000; | 
|  | iowrite32(0x600 | i, ioaddr + 0x98); | 
|  | do { | 
|  | value = ioread32(ioaddr + CSR9); | 
|  | } while (value < 0  && --boguscnt > 0); | 
|  | put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i); | 
|  | sum += value & 0xffff; | 
|  | } | 
|  | } else if (chip_idx == COMET) { | 
|  | /* No need to read the EEPROM. */ | 
|  | put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr); | 
|  | put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4); | 
|  | for (i = 0; i < 6; i ++) | 
|  | sum += dev->dev_addr[i]; | 
|  | } else { | 
|  | /* A serial EEPROM interface, we read now and sort it out later. */ | 
|  | int sa_offset = 0; | 
|  | int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6; | 
|  | int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16); | 
|  |  | 
|  | if (ee_max_addr > sizeof(tp->eeprom)) | 
|  | ee_max_addr = sizeof(tp->eeprom); | 
|  |  | 
|  | for (i = 0; i < ee_max_addr ; i += sizeof(u16)) { | 
|  | u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size); | 
|  | ee_data[i] = data & 0xff; | 
|  | ee_data[i + 1] = data >> 8; | 
|  | } | 
|  |  | 
|  | /* DEC now has a specification (see Notes) but early board makers | 
|  | just put the address in the first EEPROM locations. */ | 
|  | /* This does  memcmp(ee_data, ee_data+16, 8) */ | 
|  | for (i = 0; i < 8; i ++) | 
|  | if (ee_data[i] != ee_data[16+i]) | 
|  | sa_offset = 20; | 
|  | if (chip_idx == CONEXANT) { | 
|  | /* Check that the tuple type and length is correct. */ | 
|  | if (ee_data[0x198] == 0x04  &&  ee_data[0x199] == 6) | 
|  | sa_offset = 0x19A; | 
|  | } else if (ee_data[0] == 0xff  &&  ee_data[1] == 0xff && | 
|  | ee_data[2] == 0) { | 
|  | sa_offset = 2;		/* Grrr, damn Matrox boards. */ | 
|  | multiport_cnt = 4; | 
|  | } | 
|  | #ifdef CONFIG_MIPS_COBALT | 
|  | if ((pdev->bus->number == 0) && | 
|  | ((PCI_SLOT(pdev->devfn) == 7) || | 
|  | (PCI_SLOT(pdev->devfn) == 12))) { | 
|  | /* Cobalt MAC address in first EEPROM locations. */ | 
|  | sa_offset = 0; | 
|  | /* Ensure our media table fixup get's applied */ | 
|  | memcpy(ee_data + 16, ee_data, 8); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_GSC | 
|  | /* Check to see if we have a broken srom */ | 
|  | if (ee_data[0] == 0x61 && ee_data[1] == 0x10) { | 
|  | /* pci_vendor_id and subsystem_id are swapped */ | 
|  | ee_data[0] = ee_data[2]; | 
|  | ee_data[1] = ee_data[3]; | 
|  | ee_data[2] = 0x61; | 
|  | ee_data[3] = 0x10; | 
|  |  | 
|  | /* HSC-PCI boards need to be byte-swaped and shifted | 
|  | * up 1 word.  This shift needs to happen at the end | 
|  | * of the MAC first because of the 2 byte overlap. | 
|  | */ | 
|  | for (i = 4; i >= 0; i -= 2) { | 
|  | ee_data[17 + i + 3] = ee_data[17 + i]; | 
|  | ee_data[16 + i + 5] = ee_data[16 + i]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < 6; i ++) { | 
|  | dev->dev_addr[i] = ee_data[i + sa_offset]; | 
|  | sum += ee_data[i + sa_offset]; | 
|  | } | 
|  | } | 
|  | /* Lite-On boards have the address byte-swapped. */ | 
|  | if ((dev->dev_addr[0] == 0xA0  ||  dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02) | 
|  | &&  dev->dev_addr[1] == 0x00) | 
|  | for (i = 0; i < 6; i+=2) { | 
|  | char tmp = dev->dev_addr[i]; | 
|  | dev->dev_addr[i] = dev->dev_addr[i+1]; | 
|  | dev->dev_addr[i+1] = tmp; | 
|  | } | 
|  | /* On the Zynx 315 Etherarray and other multiport boards only the | 
|  | first Tulip has an EEPROM. | 
|  | On Sparc systems the mac address is held in the OBP property | 
|  | "local-mac-address". | 
|  | The addresses of the subsequent ports are derived from the first. | 
|  | Many PCI BIOSes also incorrectly report the IRQ line, so we correct | 
|  | that here as well. */ | 
|  | if (sum == 0  || sum == 6*0xff) { | 
|  | #if defined(CONFIG_SPARC) | 
|  | struct device_node *dp = pci_device_to_OF_node(pdev); | 
|  | const unsigned char *addr; | 
|  | int len; | 
|  | #endif | 
|  | eeprom_missing = 1; | 
|  | for (i = 0; i < 5; i++) | 
|  | dev->dev_addr[i] = last_phys_addr[i]; | 
|  | dev->dev_addr[i] = last_phys_addr[i] + 1; | 
|  | #if defined(CONFIG_SPARC) | 
|  | addr = of_get_property(dp, "local-mac-address", &len); | 
|  | if (addr && len == 6) | 
|  | memcpy(dev->dev_addr, addr, 6); | 
|  | #endif | 
|  | #if defined(__i386__) || defined(__x86_64__)	/* Patch up x86 BIOS bug. */ | 
|  | if (last_irq) | 
|  | irq = last_irq; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) | 
|  | last_phys_addr[i] = dev->dev_addr[i]; | 
|  | last_irq = irq; | 
|  | dev->irq = irq; | 
|  |  | 
|  | /* The lower four bits are the media type. */ | 
|  | if (board_idx >= 0  &&  board_idx < MAX_UNITS) { | 
|  | if (options[board_idx] & MEDIA_MASK) | 
|  | tp->default_port = options[board_idx] & MEDIA_MASK; | 
|  | if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0) | 
|  | tp->full_duplex = 1; | 
|  | if (mtu[board_idx] > 0) | 
|  | dev->mtu = mtu[board_idx]; | 
|  | } | 
|  | if (dev->mem_start & MEDIA_MASK) | 
|  | tp->default_port = dev->mem_start & MEDIA_MASK; | 
|  | if (tp->default_port) { | 
|  | printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n", | 
|  | board_idx, medianame[tp->default_port & MEDIA_MASK]); | 
|  | tp->medialock = 1; | 
|  | if (tulip_media_cap[tp->default_port] & MediaAlwaysFD) | 
|  | tp->full_duplex = 1; | 
|  | } | 
|  | if (tp->full_duplex) | 
|  | tp->full_duplex_lock = 1; | 
|  |  | 
|  | if (tulip_media_cap[tp->default_port] & MediaIsMII) { | 
|  | u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 }; | 
|  | tp->mii_advertise = media2advert[tp->default_port - 9]; | 
|  | tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */ | 
|  | } | 
|  |  | 
|  | if (tp->flags & HAS_MEDIA_TABLE) { | 
|  | sprintf(dev->name, "tulip%d", board_idx);	/* hack */ | 
|  | tulip_parse_eeprom(dev); | 
|  | strcpy(dev->name, "eth%d");			/* un-hack */ | 
|  | } | 
|  |  | 
|  | if ((tp->flags & ALWAYS_CHECK_MII) || | 
|  | (tp->mtable  &&  tp->mtable->has_mii) || | 
|  | ( ! tp->mtable  &&  (tp->flags & HAS_MII))) { | 
|  | if (tp->mtable  &&  tp->mtable->has_mii) { | 
|  | for (i = 0; i < tp->mtable->leafcount; i++) | 
|  | if (tp->mtable->mleaf[i].media == 11) { | 
|  | tp->cur_index = i; | 
|  | tp->saved_if_port = dev->if_port; | 
|  | tulip_select_media(dev, 2); | 
|  | dev->if_port = tp->saved_if_port; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find the connected MII xcvrs. | 
|  | Doing this in open() would allow detecting external xcvrs | 
|  | later, but takes much time. */ | 
|  | tulip_find_mii (dev, board_idx); | 
|  | } | 
|  |  | 
|  | /* The Tulip-specific entries in the device structure. */ | 
|  | dev->netdev_ops = &tulip_netdev_ops; | 
|  | dev->watchdog_timeo = TX_TIMEOUT; | 
|  | #ifdef CONFIG_TULIP_NAPI | 
|  | netif_napi_add(dev, &tp->napi, tulip_poll, 16); | 
|  | #endif | 
|  | SET_ETHTOOL_OPS(dev, &ops); | 
|  |  | 
|  | if (register_netdev(dev)) | 
|  | goto err_out_free_ring; | 
|  |  | 
|  | printk(KERN_INFO "%s: %s rev %d at " | 
|  | #ifdef CONFIG_TULIP_MMIO | 
|  | "MMIO" | 
|  | #else | 
|  | "Port" | 
|  | #endif | 
|  | " %#llx,", dev->name, chip_name, pdev->revision, | 
|  | (unsigned long long) pci_resource_start(pdev, TULIP_BAR)); | 
|  | pci_set_drvdata(pdev, dev); | 
|  |  | 
|  | if (eeprom_missing) | 
|  | printk(" EEPROM not present,"); | 
|  | printk(" %pM", dev->dev_addr); | 
|  | printk(", IRQ %d.\n", irq); | 
|  |  | 
|  | if (tp->chip_id == PNIC2) | 
|  | tp->link_change = pnic2_lnk_change; | 
|  | else if (tp->flags & HAS_NWAY) | 
|  | tp->link_change = t21142_lnk_change; | 
|  | else if (tp->flags & HAS_PNICNWAY) | 
|  | tp->link_change = pnic_lnk_change; | 
|  |  | 
|  | /* Reset the xcvr interface and turn on heartbeat. */ | 
|  | switch (chip_idx) { | 
|  | case DC21140: | 
|  | case DM910X: | 
|  | default: | 
|  | if (tp->mtable) | 
|  | iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12); | 
|  | break; | 
|  | case DC21142: | 
|  | if (tp->mii_cnt  ||  tulip_media_cap[dev->if_port] & MediaIsMII) { | 
|  | iowrite32(csr6_mask_defstate, ioaddr + CSR6); | 
|  | iowrite32(0x0000, ioaddr + CSR13); | 
|  | iowrite32(0x0000, ioaddr + CSR14); | 
|  | iowrite32(csr6_mask_hdcap, ioaddr + CSR6); | 
|  | } else | 
|  | t21142_start_nway(dev); | 
|  | break; | 
|  | case PNIC2: | 
|  | /* just do a reset for sanity sake */ | 
|  | iowrite32(0x0000, ioaddr + CSR13); | 
|  | iowrite32(0x0000, ioaddr + CSR14); | 
|  | break; | 
|  | case LC82C168: | 
|  | if ( ! tp->mii_cnt) { | 
|  | tp->nway = 1; | 
|  | tp->nwayset = 0; | 
|  | iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6); | 
|  | iowrite32(0x30, ioaddr + CSR12); | 
|  | iowrite32(0x0001F078, ioaddr + CSR6); | 
|  | iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */ | 
|  | } | 
|  | break; | 
|  | case MX98713: | 
|  | case COMPEX9881: | 
|  | iowrite32(0x00000000, ioaddr + CSR6); | 
|  | iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */ | 
|  | iowrite32(0x00000001, ioaddr + CSR13); | 
|  | break; | 
|  | case MX98715: | 
|  | case MX98725: | 
|  | iowrite32(0x01a80000, ioaddr + CSR6); | 
|  | iowrite32(0xFFFFFFFF, ioaddr + CSR14); | 
|  | iowrite32(0x00001000, ioaddr + CSR12); | 
|  | break; | 
|  | case COMET: | 
|  | /* No initialization necessary. */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* put the chip in snooze mode until opened */ | 
|  | tulip_set_power_state (tp, 0, 1); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_free_ring: | 
|  | pci_free_consistent (pdev, | 
|  | sizeof (struct tulip_rx_desc) * RX_RING_SIZE + | 
|  | sizeof (struct tulip_tx_desc) * TX_RING_SIZE, | 
|  | tp->rx_ring, tp->rx_ring_dma); | 
|  |  | 
|  | err_out_mtable: | 
|  | kfree (tp->mtable); | 
|  | pci_iounmap(pdev, ioaddr); | 
|  |  | 
|  | err_out_free_res: | 
|  | pci_release_regions (pdev); | 
|  |  | 
|  | err_out_free_netdev: | 
|  | free_netdev (dev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  |  | 
|  | static int tulip_suspend (struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata(pdev); | 
|  |  | 
|  | if (!dev) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | goto save_state; | 
|  |  | 
|  | tulip_down(dev); | 
|  |  | 
|  | netif_device_detach(dev); | 
|  | free_irq(dev->irq, dev); | 
|  |  | 
|  | save_state: | 
|  | pci_save_state(pdev); | 
|  | pci_disable_device(pdev); | 
|  | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int tulip_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata(pdev); | 
|  | int retval; | 
|  |  | 
|  | if (!dev) | 
|  | return -EINVAL; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | return 0; | 
|  |  | 
|  | if ((retval = pci_enable_device(pdev))) { | 
|  | printk (KERN_ERR "tulip: pci_enable_device failed in resume\n"); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) { | 
|  | printk (KERN_ERR "tulip: request_irq failed in resume\n"); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | netif_device_attach(dev); | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | tulip_up(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  |  | 
|  | static void __devexit tulip_remove_one (struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata (pdev); | 
|  | struct tulip_private *tp; | 
|  |  | 
|  | if (!dev) | 
|  | return; | 
|  |  | 
|  | tp = netdev_priv(dev); | 
|  | unregister_netdev(dev); | 
|  | pci_free_consistent (pdev, | 
|  | sizeof (struct tulip_rx_desc) * RX_RING_SIZE + | 
|  | sizeof (struct tulip_tx_desc) * TX_RING_SIZE, | 
|  | tp->rx_ring, tp->rx_ring_dma); | 
|  | kfree (tp->mtable); | 
|  | pci_iounmap(pdev, tp->base_addr); | 
|  | free_netdev (dev); | 
|  | pci_release_regions (pdev); | 
|  | pci_set_drvdata (pdev, NULL); | 
|  |  | 
|  | /* pci_power_off (pdev, -1); */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* | 
|  | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  |  | 
|  | static void poll_tulip (struct net_device *dev) | 
|  | { | 
|  | /* disable_irq here is not very nice, but with the lockless | 
|  | interrupt handler we have no other choice. */ | 
|  | disable_irq(dev->irq); | 
|  | tulip_interrupt (dev->irq, dev); | 
|  | enable_irq(dev->irq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct pci_driver tulip_driver = { | 
|  | .name		= DRV_NAME, | 
|  | .id_table	= tulip_pci_tbl, | 
|  | .probe		= tulip_init_one, | 
|  | .remove		= __devexit_p(tulip_remove_one), | 
|  | #ifdef CONFIG_PM | 
|  | .suspend	= tulip_suspend, | 
|  | .resume		= tulip_resume, | 
|  | #endif /* CONFIG_PM */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int __init tulip_init (void) | 
|  | { | 
|  | #ifdef MODULE | 
|  | printk (KERN_INFO "%s", version); | 
|  | #endif | 
|  |  | 
|  | /* copy module parms into globals */ | 
|  | tulip_rx_copybreak = rx_copybreak; | 
|  | tulip_max_interrupt_work = max_interrupt_work; | 
|  |  | 
|  | /* probe for and init boards */ | 
|  | return pci_register_driver(&tulip_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void __exit tulip_cleanup (void) | 
|  | { | 
|  | pci_unregister_driver (&tulip_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | module_init(tulip_init); | 
|  | module_exit(tulip_cleanup); |