blob: 42ffc643da383b6d49cda9fd5d55f3c4d28a659f [file] [log] [blame] [edit]
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <plat/cpu.h>
#include "voltage.h"
#include "vc.h"
#include "prm-regbits-34xx.h"
#include "prm-regbits-44xx.h"
#include "prm44xx.h"
#define OMAP_VC_I2C_ACK_DELAY 3
/**
* struct omap_vc_channel_cfg - describe the cfg_channel bitfield
* @sa: bit for slave address
* @rav: bit for voltage configuration register
* @rac: bit for command configuration register
* @racen: enable bit for RAC
* @cmd: bit for command value set selection
*
* Channel configuration bits, common for OMAP3+
* OMAP3 register: PRM_VC_CH_CONF
* OMAP4 register: PRM_VC_CFG_CHANNEL
* OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
*/
struct omap_vc_channel_cfg {
u8 sa;
u8 rav;
u8 rac;
u8 racen;
u8 cmd;
};
static struct omap_vc_channel_cfg vc_default_channel_cfg = {
.sa = BIT(0),
.rav = BIT(1),
.rac = BIT(2),
.racen = BIT(3),
.cmd = BIT(4),
};
/*
* On OMAP3+, all VC channels have the above default bitfield
* configuration, except the OMAP4 MPU channel. This appears
* to be a freak accident as every other VC channel has the
* default configuration, thus creating a mutant channel config.
*/
static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
.sa = BIT(0),
.rav = BIT(2),
.rac = BIT(3),
.racen = BIT(4),
.cmd = BIT(1),
};
static struct omap_vc_channel_cfg *vc_cfg_bits;
#define CFG_CHANNEL_MASK 0x1f
/**
* omap_vc_config_channel - configure VC channel to PMIC mappings
* @voltdm: pointer to voltagdomain defining the desired VC channel
*
* Configures the VC channel to PMIC mappings for the following
* PMIC settings
* - i2c slave address (SA)
* - voltage configuration address (RAV)
* - command configuration address (RAC) and enable bit (RACEN)
* - command values for ON, ONLP, RET and OFF (CMD)
*
* This function currently only allows flexible configuration of the
* non-default channel. Starting with OMAP4, there are more than 2
* channels, with one defined as the default (on OMAP4, it's MPU.)
* Only the non-default channel can be configured.
*/
static int omap_vc_config_channel(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
/*
* For default channel, the only configurable bit is RACEN.
* All others must stay at zero (see function comment above.)
*/
if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
vc->cfg_channel &= vc_cfg_bits->racen;
voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
vc->cfg_channel << vc->cfg_channel_sa_shift,
vc->common->cfg_channel_reg);
return 0;
}
/* Voltage scale and accessory APIs */
int omap_vc_pre_scale(struct voltagedomain *voltdm,
unsigned long target_volt,
struct omap_volt_data *target_v,
u8 *target_vsel, u8 *current_vsel)
{
struct omap_vc_channel *vc = voltdm->vc;
u32 vc_cmdval;
/* Check if sufficient pmic info is available for this vdd */
if (!voltdm->pmic) {
pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
__func__, voltdm->name);
return -EINVAL;
}
if (!voltdm->pmic->uv_to_vsel) {
pr_err("%s: PMIC function to convert voltage in uV to"
"vsel not registered. Hence unable to scale voltage"
"for vdd_%s\n", __func__, voltdm->name);
return -ENODATA;
}
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return -EINVAL;
}
*target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
*current_vsel = voltdm->read(voltdm->vp->voltage);
/* Setting the ON voltage to the new target voltage */
vc_cmdval = voltdm->read(vc->cmdval_reg);
vc_cmdval &= ~vc->common->cmd_on_mask;
vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
voltdm->write(vc_cmdval, vc->cmdval_reg);
omap_vp_update_errorgain(voltdm, target_v);
return 0;
}
/**
* omap_vc_set_auto_trans() - set auto transition parameters for a domain
* @voltdm: voltage domain we are interested in
* @flag: which state should we program this to
*/
int omap_vc_set_auto_trans(struct voltagedomain *voltdm, u8 flag)
{
struct omap_vc_channel *vc;
const struct omap_vc_auto_trans *auto_trans;
u8 val = OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED;
if (!voltdm) {
pr_err("%s: NULL Voltage domain!\n", __func__);
return -ENOENT;
}
vc = voltdm->vc;
if (!vc) {
pr_err("%s: NULL VC Voltage domain %s!\n", __func__,
voltdm->name);
return -ENOENT;
}
auto_trans = vc->auto_trans;
if (!auto_trans) {
pr_debug("%s: No auto trans %s!\n", __func__, voltdm->name);
return 0;
}
/* Handle value and masks per silicon data */
switch (flag) {
case OMAP_VC_CHANNEL_AUTO_TRANSITION_DISABLE:
val = 0x0;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_SLEEP:
val = auto_trans->sleep_val;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_RETENTION:
val = auto_trans->retention_val;
break;
case OMAP_VC_CHANNEL_AUTO_TRANSITION_OFF:
val = auto_trans->off_val;
break;
default:
pr_err("%s: Voltdm %s invalid flag %d\n", __func__,
voltdm->name, flag);
return -EINVAL;
}
if (val == OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED) {
pr_err("%s: transition to %d on %s is NOT supported\n",
__func__, flag, voltdm->name);
return -EINVAL;
}
/* All ready - set it and move on.. */
voltdm->rmw(vc->auto_trans_mask, val << __ffs(vc->auto_trans_mask),
auto_trans->reg);
return 0;
}
void omap_vc_post_scale(struct voltagedomain *voltdm,
unsigned long target_volt,
struct omap_volt_data *target_vdata,
u8 target_vsel, u8 current_vsel)
{
struct omap_vc_channel *vc;
u32 smps_steps = 0, smps_delay = 0;
u8 on_vsel, onlp_vsel;
u32 val;
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return;
}
smps_steps = abs(target_vsel - current_vsel);
/* SMPS slew rate / step size. 2us added as buffer. */
smps_delay = ((smps_steps * voltdm->pmic->step_size) /
voltdm->pmic->slew_rate) + 2;
udelay(smps_delay);
voltdm->curr_volt = target_vdata;
/* Set up the on voltage for wakeup from lp and OFF */
on_vsel = voltdm->pmic->uv_to_vsel(target_volt);
onlp_vsel = voltdm->pmic->uv_to_vsel(target_volt);
val = (on_vsel << vc->common->cmd_on_shift) |
(onlp_vsel << vc->common->cmd_onlp_shift) |
vc->setup_voltage_common;
voltdm->write(val, vc->cmdval_reg);
}
static int omap_vc_bypass_send_value(struct voltagedomain *voltdm,
struct omap_vc_channel *vc, u8 sa, u8 reg, u32 data)
{
u32 loop_cnt = 0, retries_cnt = 0;
u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
if (IS_ERR_OR_NULL(vc->common)) {
pr_err("%s voldm=%s bad value for vc->common\n",
__func__, voltdm->name);
return -EINVAL;
}
vc_valid = vc->common->valid;
vc_bypass_val_reg = vc->common->bypass_val_reg;
vc_bypass_value = (data << vc->common->data_shift) |
(reg << vc->common->regaddr_shift) |
(sa << vc->common->slaveaddr_shift);
voltdm->write(vc_bypass_value, vc_bypass_val_reg);
voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
/*
* Loop till the bypass command is acknowledged from the SMPS.
* NOTE: This is legacy code. The loop count and retry count needs
* to be revisited.
*/
while (vc_bypass_value & vc_valid) {
loop_cnt++;
if (retries_cnt > 10) {
pr_warning("%s: Retry count exceeded\n", __func__);
return -ETIMEDOUT;
}
if (loop_cnt > 50) {
retries_cnt++;
loop_cnt = 0;
udelay(10);
}
vc_bypass_value = voltdm->read(vc_bypass_val_reg);
}
return 0;
}
/* vc_bypass_scale_voltage - VC bypass method of voltage scaling */
int omap_vc_bypass_scale_voltage(struct voltagedomain *voltdm,
struct omap_volt_data *target_v)
{
struct omap_vc_channel *vc;
u8 target_vsel, current_vsel;
int ret;
unsigned long target_volt = omap_get_operation_voltage(target_v);
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return -EINVAL;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return -EINVAL;
}
ret = omap_vc_pre_scale(voltdm, target_volt, target_v, &target_vsel,
&current_vsel);
if (ret)
return ret;
ret = omap_vc_bypass_send_value(voltdm, vc, vc->i2c_slave_addr,
vc->volt_reg_addr, target_vsel);
if (ret)
return ret;
omap_vc_post_scale(voltdm, target_volt, target_v, target_vsel,
current_vsel);
return 0;
}
/**
* omap_vc_bypass_send_i2c_msg() - Function to control PMIC registers over SRI2C
* @voltdm: voltage domain
* @slave_addr: slave address of the device.
* @reg_addr: register address to access
* @data: what do we want to write there
*
* Many simpler PMICs with a single I2C interface still have configuration
* registers that may need population. Typical being slew rate configurations
* thermal shutdown configuration etc. When these PMICs are hooked on I2C_SR,
* this function allows these configuration registers to be accessed.
*
* WARNING: Though this could be used for voltage register configurations over
* I2C_SR, DONOT use it for that purpose, all the Voltage controller's internal
* information is bypassed using this function and must be used judiciously.
*/
int omap_vc_bypass_send_i2c_msg(struct voltagedomain *voltdm, u8 slave_addr,
u8 reg_addr, u8 data)
{
struct omap_vc_channel *vc;
if (IS_ERR_OR_NULL(voltdm)) {
pr_err("%s bad voldm\n", __func__);
return -EINVAL;
}
vc = voltdm->vc;
if (IS_ERR_OR_NULL(vc)) {
pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
return -EINVAL;
}
return omap_vc_bypass_send_value(voltdm, vc, slave_addr,
reg_addr, data);
}
static void __init omap3_vfsm_init(struct voltagedomain *voltdm)
{
/*
* Voltage Manager FSM parameters init
* XXX This data should be passed in from the board file
*/
voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET);
voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET);
voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET);
}
static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
{
static bool is_initialized;
if (is_initialized)
return;
omap3_vfsm_init(voltdm);
is_initialized = true;
}
/* OMAP4 specific voltage init functions */
static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
{
static bool is_initialized;
struct omap_voltdm_pmic *pmic = voltdm->pmic;
u32 vc_val = 0;
if (is_initialized)
return;
if (pmic->i2c_high_speed) {
vc_val |= pmic->i2c_hscll_low << OMAP4430_HSCLL_SHIFT;
vc_val |= pmic->i2c_hscll_high << OMAP4430_HSCLH_SHIFT;
}
vc_val |= pmic->i2c_scll_low << OMAP4430_SCLL_SHIFT;
vc_val |= pmic->i2c_scll_high << OMAP4430_SCLH_SHIFT;
if (vc_val)
voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
is_initialized = true;
}
/**
* omap_vc_i2c_init - initialize I2C interface to PMIC
* @voltdm: voltage domain containing VC data
*
* Use PMIC supplied seetings for I2C high-speed mode and
* master code (if set) and program the VC I2C configuration
* register.
*
* The VC I2C configuration is common to all VC channels,
* so this function only configures I2C for the first VC
* channel registers. All other VC channels will use the
* same configuration.
*/
static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
static bool initialized;
static bool i2c_high_speed;
u8 mcode;
if (initialized) {
if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
pr_warn("%s: I2C config for all channels must match.",
__func__);
return;
}
i2c_high_speed = voltdm->pmic->i2c_high_speed;
if (i2c_high_speed)
voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
vc->common->i2c_cfg_hsen_mask,
vc->common->i2c_cfg_reg);
mcode = voltdm->pmic->i2c_mcode;
if (mcode)
voltdm->rmw(vc->common->i2c_mcode_mask,
mcode << __ffs(vc->common->i2c_mcode_mask),
vc->common->i2c_cfg_reg);
initialized = true;
}
/**
* omap_vc_setup_lp_time() - configure the voltage ramp time for low states.
* @voltdm: voltagedomain we are interested in.
* @is_retention: Are we interested in retention or OFF?
*
* The ramp times are calculated based on the worst case voltage drop,
* which is the difference of on_volt and the ret_volt. This time is used
* for computing the duration necessary for low power states such as retention.
*/
static int __init omap_vc_setup_lp_time(struct voltagedomain *voltdm,
bool is_retention)
{
u32 volt_drop = 0, volt_ramptime = 0, volt_rampcount;
u32 sys_clk_mhz = 0, sysclk_cycles = 0, max_latency_for_prescaler = 0;
struct clk *sys_ck;
u8 pre_scaler = 0;
struct omap_voltdm_pmic *pmic = voltdm->pmic;
struct omap_vc_channel *vc = voltdm->vc;
const struct setup_time_ramp_params *params;
params = vc->common->setup_time_params;
/* If the VC data does not have params for us, return PMIC's value */
if (!params)
return pmic->volt_setup_time;
if (!params->pre_scaler_to_sysclk_cycles_count)
return pmic->volt_setup_time;
/* No of sys_clk cycles for pre_scaler 0 */
sysclk_cycles = params->pre_scaler_to_sysclk_cycles[0];
sys_ck = clk_get(NULL, "sys_clkin_ck");
if (IS_ERR_OR_NULL(sys_ck)) {
WARN_ONCE(1, "%s: unable to get sys_clkin_ck (voldm %s)\n",
__func__, voltdm->name);
return pmic->volt_setup_time;
}
sys_clk_mhz = clk_get_rate(sys_ck) / 1000000;
clk_put(sys_ck);
/*
* If we chose prescaler 0x0, then we have a limit on the maximum
* latency for which we can chose a correct count. This is because,
* the count field is limited to 6 bits and max value can be 63 and
* for prescaler 0, ramp up/down counter is incremented every
* 64 system clock cycles.
* for eg, max latency for prescaler for 38.4Mhz sys clk would be
* 105 = (63 * 64) / 38.4
*/
max_latency_for_prescaler = (63 * sysclk_cycles) / sys_clk_mhz;
if (is_retention)
volt_drop = pmic->on_volt - pmic->ret_volt;
else
volt_drop = pmic->on_volt;
volt_ramptime = DIV_ROUND_UP(volt_drop, pmic->slew_rate);
volt_ramptime += OMAP_VC_I2C_ACK_DELAY;
/* many PMICs need additional time to switch back on */
if (!is_retention)
volt_ramptime += pmic->switch_on_time;
if (volt_ramptime < max_latency_for_prescaler)
pre_scaler = 0x0;
else
pre_scaler = 0x1;
/*
* IF we mess up values, then try to have some form of recovery using
* PMIC's value.
*/
if (pre_scaler > params->pre_scaler_to_sysclk_cycles_count) {
pr_err("%s: prescaler idx %d > available %d on domain %s\n",
__func__, pre_scaler,
params->pre_scaler_to_sysclk_cycles_count, voltdm->name);
return pmic->volt_setup_time;
}
sysclk_cycles = params->pre_scaler_to_sysclk_cycles[pre_scaler];
volt_rampcount = ((volt_ramptime * sys_clk_mhz) / sysclk_cycles) + 1;
return (pre_scaler << OMAP4430_RAMP_DOWN_PRESCAL_SHIFT) |
(pre_scaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
(volt_rampcount << OMAP4430_RAMP_DOWN_COUNT_SHIFT) |
(volt_rampcount << OMAP4430_RAMP_UP_COUNT_SHIFT);
}
void __init omap_vc_init_channel(struct voltagedomain *voltdm)
{
struct omap_vc_channel *vc = voltdm->vc;
u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
u32 val;
if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
pr_err("%s: PMIC info requried to configure vc for"
"vdd_%s not populated.Hence cannot initialize vc\n",
__func__, voltdm->name);
return;
}
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return;
}
vc->cfg_channel = 0;
if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
vc_cfg_bits = &vc_mutant_channel_cfg;
else
vc_cfg_bits = &vc_default_channel_cfg;
/* get PMIC/board specific settings */
vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
/* Calculate the RET voltage setup time and update volt_setup_time */
vc->setup_time = omap_vc_setup_lp_time(voltdm, true);
if ((vc->flags & OMAP_VC_CHANNEL_DEFAULT) &&
((vc->i2c_slave_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
(vc->cmd_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
(vc->volt_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM))) {
pr_err("%s: voltdm %s: default channel "
"bad config-sa=%2x vol=%2x, cmd=%2x?\n", __func__,
voltdm->name, vc->i2c_slave_addr, vc->volt_reg_addr,
vc->cmd_reg_addr);
return;
}
/* Configure the i2c slave address for this VC */
if (vc->i2c_slave_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_sa_mask,
vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
vc->common->smps_sa_reg);
vc->cfg_channel |= vc_cfg_bits->sa;
}
/*
* Configure the PMIC register addresses.
*/
if (vc->volt_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_volra_mask,
vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
vc->common->smps_volra_reg);
vc->cfg_channel |= vc_cfg_bits->rav;
}
if (vc->cmd_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
voltdm->rmw(vc->smps_cmdra_mask,
vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
vc->common->smps_cmdra_reg);
vc->cfg_channel |= vc_cfg_bits->rac;
}
/* If voltage and cmd regs are same, we can use cmdra register */
if (vc->volt_reg_addr == vc->cmd_reg_addr)
vc->cfg_channel |= vc_cfg_bits->racen;
/* Set up the on, inactive, retention and off voltage */
on_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->on_volt);
onlp_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->onlp_volt);
ret_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->ret_volt);
off_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->off_volt);
vc->setup_voltage_common =
(ret_vsel << vc->common->cmd_ret_shift) |
(off_vsel << vc->common->cmd_off_shift);
val = (on_vsel << vc->common->cmd_on_shift) |
(onlp_vsel << vc->common->cmd_onlp_shift) |
vc->setup_voltage_common;
voltdm->write(val, vc->cmdval_reg);
vc->cfg_channel |= vc_cfg_bits->cmd;
/* Channel configuration */
omap_vc_config_channel(voltdm);
/* Configure the setup times */
voltdm->rmw(voltdm->vfsm->voltsetup_mask,
vc->setup_time << __ffs(voltdm->vfsm->voltsetup_mask),
voltdm->vfsm->voltsetup_reg);
voltdm->rmw(voltdm->vfsm->voltsetup_mask,
omap_vc_setup_lp_time(voltdm, false) <<
ffs(voltdm->vfsm->voltsetup_mask),
voltdm->vfsm->voltsetupoff_reg);
omap_vc_i2c_init(voltdm);
if (cpu_is_omap34xx())
omap3_vc_init_channel(voltdm);
else if (cpu_is_omap44xx())
omap4_vc_init_channel(voltdm);
}