blob: 3f16be51c5dcfd7e7a12b1ae6c374cd1c3e99bc4 [file] [log] [blame] [edit]
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ratelimit.h>
#include <plat/common.h>
#include "voltage.h"
#include "vp.h"
#include "prm-regbits-34xx.h"
#include "prm-regbits-44xx.h"
#include "prm44xx.h"
static void vp_latch_vsel(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp = voltdm->vp;
struct omap_volt_data *v = omap_voltage_get_curr_vdata(voltdm);
u32 vpconfig;
unsigned long uvdc;
char vsel;
if (IS_ERR_OR_NULL(v)) {
pr_warning("%s: unable to get voltage for vdd_%s\n",
__func__, voltdm->name);
return;
}
uvdc = omap_get_operation_voltage(v);
if (!uvdc) {
pr_warning("%s: unable to find current voltage for vdd_%s\n",
__func__, voltdm->name);
return;
}
if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
pr_warning("%s: PMIC function to convert voltage in uV to"
" vsel not registered\n", __func__);
return;
}
vsel = voltdm->pmic->uv_to_vsel(uvdc);
vpconfig = voltdm->read(vp->vpconfig);
vpconfig &= ~(vp->common->vpconfig_initvoltage_mask |
vp->common->vpconfig_initvdd);
vpconfig |= vsel << __ffs(vp->common->vpconfig_initvoltage_mask);
voltdm->write(vpconfig, vp->vpconfig);
/* Trigger initVDD value copy to voltage processor */
voltdm->write((vpconfig | vp->common->vpconfig_initvdd),
vp->vpconfig);
/* Clear initVDD copy trigger bit */
voltdm->write(vpconfig, vp->vpconfig);
}
/* Generic voltage init functions */
void __init omap_vp_init(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp = voltdm->vp;
u32 val, sys_clk_rate, timeout, waittime;
u32 vddmin, vddmax, vstepmin, vstepmax;
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return;
}
vp->enabled = false;
/* Divide to avoid overflow */
sys_clk_rate = voltdm->sys_clk.rate / 1000;
timeout = (sys_clk_rate * voltdm->pmic->vp_timeout_us) / 1000;
vddmin = voltdm->pmic->uv_to_vsel(voltdm->pmic->vp_vddmin);
vddmax = voltdm->pmic->uv_to_vsel(voltdm->pmic->vp_vddmax);
waittime = DIV_ROUND_UP(voltdm->pmic->step_size * sys_clk_rate,
1000 * voltdm->pmic->slew_rate);
vstepmin = voltdm->pmic->vp_vstepmin;
vstepmax = voltdm->pmic->vp_vstepmax;
/*
* VP_CONFIG: error gain is not set here, it will be updated
* on each scale, based on OPP.
*/
val = (voltdm->pmic->vp_erroroffset <<
__ffs(voltdm->vp->common->vpconfig_erroroffset_mask)) |
vp->common->vpconfig_timeouten;
voltdm->write(val, vp->vpconfig);
/* VSTEPMIN */
val = (waittime << vp->common->vstepmin_smpswaittimemin_shift) |
(vstepmin << vp->common->vstepmin_stepmin_shift);
voltdm->write(val, vp->vstepmin);
/* VSTEPMAX */
val = (vstepmax << vp->common->vstepmax_stepmax_shift) |
(waittime << vp->common->vstepmax_smpswaittimemax_shift);
voltdm->write(val, vp->vstepmax);
/* VLIMITTO */
val = (vddmax << vp->common->vlimitto_vddmax_shift) |
(vddmin << vp->common->vlimitto_vddmin_shift) |
(timeout << vp->common->vlimitto_timeout_shift);
voltdm->write(val, vp->vlimitto);
}
/**
* omap_vp_is_transdone() - is voltage transfer done on vp?
* @voltdm: pointer to the VDD which is to be scaled.
*
* VP's transdone bit is the only way to ensure that the transfer
* of the voltage value has actually been send over to the PMIC
* This is hence useful for all users of voltage domain to precisely
* identify once the PMIC voltage has been set by the voltage processor
*/
bool omap_vp_is_transdone(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp = voltdm->vp;
return vp->common->ops->check_txdone(vp->id) ? true : false;
}
/**
* omap_vp_clear_transdone() - clear voltage transfer done status on vp
* @voltdm: pointer to the VDD which is to be scaled.
*/
void omap_vp_clear_transdone(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp = voltdm->vp;
vp->common->ops->clear_txdone(vp->id);
return;
}
int omap_vp_update_errorgain(struct voltagedomain *voltdm,
struct omap_volt_data *volt_data)
{
if (IS_ERR_OR_NULL(volt_data)) {
pr_err("%s: vdm %s bad voltage data %p\n", __func__,
voltdm->name, volt_data);
return -EINVAL;
}
/* Setting vp errorgain based on the voltage */
voltdm->rmw(voltdm->vp->common->vpconfig_errorgain_mask,
volt_data->vp_errgain <<
__ffs(voltdm->vp->common->vpconfig_errorgain_mask),
voltdm->vp->vpconfig);
return 0;
}
#define _MAX_RETRIES_BEFORE_RECOVER 50
#define _MAX_COUNT_ERR 10
static u8 __vp_debug_error_message_count = _MAX_COUNT_ERR;
static u8 __vp_recover_count = _MAX_RETRIES_BEFORE_RECOVER;
/* Dump with stack the first few messages, tone down severity for the rest */
#define _vp_controlled_err(vp, voltdm, ARGS...) \
{ \
if (__vp_debug_error_message_count) { \
pr_err(ARGS); \
dump_stack(); \
__vp_debug_error_message_count--; \
} else { \
pr_err_ratelimited(ARGS); \
} \
if ((vp)->common->ops->recover && !(--__vp_recover_count)) { \
pr_err("%s:domain %s recovery count triggered\n", \
__func__, (voltdm)->name); \
(vp)->common->ops->recover((vp)->id); \
__vp_recover_count =_MAX_RETRIES_BEFORE_RECOVER; \
} \
}
/* VP force update method of voltage scaling */
int omap_vp_forceupdate_scale(struct voltagedomain *voltdm,
struct omap_volt_data *target_v)
{
struct omap_vp_instance *vp = voltdm->vp;
u32 vpconfig;
u8 target_vsel, current_vsel;
int ret, timeout = 0;
unsigned long target_volt = omap_get_operation_voltage(target_v);
/*
* Wait for VP idle Typical latency is <2us. Maximum latency is ~100us
* This is an additional allowance to ensure we are in proper state
* to enter into forceupdate state transition.
*/
omap_test_timeout((voltdm->read(vp->vstatus) & vp->common->vstatus_vpidle),
VP_IDLE_TIMEOUT, timeout);
if (timeout >= VP_IDLE_TIMEOUT)
_vp_controlled_err(vp, voltdm,
"%s:vdd_%s idletimdout forceupdate(v=%ld)\n",
__func__, voltdm->name, target_volt);
ret = omap_vc_pre_scale(voltdm, target_volt, target_v,
&target_vsel, &current_vsel);
if (ret)
return ret;
/*
* Clear all pending TransactionDone interrupt/status. Typical latency
* is <3us
*/
while (timeout++ < VP_TRANXDONE_TIMEOUT) {
vp->common->ops->clear_txdone(vp->id);
if (!vp->common->ops->check_txdone(vp->id))
break;
udelay(1);
}
if (timeout >= VP_TRANXDONE_TIMEOUT) {
_vp_controlled_err(vp, voltdm,
"%s: vdd_%s TRANXDONE timeout exceeded."
"Voltage change aborted target volt=%ld,"
"target vsel=0x%02x, current_vsel=0x%02x\n",
__func__, voltdm->name, target_volt,
target_vsel, current_vsel);
return -ETIMEDOUT;
}
/* Configure for VP-Force Update */
vpconfig = voltdm->read(vp->vpconfig);
vpconfig &= ~(vp->common->vpconfig_initvdd |
vp->common->vpconfig_forceupdate |
vp->common->vpconfig_initvoltage_mask);
vpconfig |= ((target_vsel <<
__ffs(vp->common->vpconfig_initvoltage_mask)));
voltdm->write(vpconfig, vp->vpconfig);
/* Trigger initVDD value copy to voltage processor */
vpconfig |= vp->common->vpconfig_initvdd;
voltdm->write(vpconfig, vp->vpconfig);
/* Force update of voltage */
vpconfig |= vp->common->vpconfig_forceupdate;
voltdm->write(vpconfig, vp->vpconfig);
/*
* Wait for TransactionDone. Typical latency is <200us.
* Depends on SMPSWAITTIMEMIN/MAX and voltage change
*/
timeout = 0;
omap_test_timeout(vp->common->ops->check_txdone(vp->id),
VP_TRANXDONE_TIMEOUT, timeout);
if (timeout >= VP_TRANXDONE_TIMEOUT)
_vp_controlled_err(vp, voltdm,
"%s: vdd_%s TRANXDONE timeout exceeded. "
"TRANXDONE never got set after the voltage update. "
"target volt=%ld, target vsel=0x%02x, "
"current_vsel=0x%02x\n",
__func__, voltdm->name, target_volt,
target_vsel, current_vsel);
omap_vc_post_scale(voltdm, target_volt, target_v,
target_vsel, current_vsel);
/*
* Disable TransactionDone interrupt , clear all status, clear
* control registers
*/
timeout = 0;
while (timeout++ < VP_TRANXDONE_TIMEOUT) {
vp->common->ops->clear_txdone(vp->id);
if (!vp->common->ops->check_txdone(vp->id))
break;
udelay(1);
}
if (timeout >= VP_TRANXDONE_TIMEOUT)
_vp_controlled_err(vp, voltdm,
"%s: vdd_%s TRANXDONE timeout exceeded while"
"trying to clear the TRANXDONE status. target volt=%ld,"
"target vsel=0x%02x, current_vsel=0x%02x\n",
__func__, voltdm->name, target_volt,
target_vsel, current_vsel);
vpconfig = voltdm->read(vp->vpconfig);
/* Clear initVDD copy trigger bit */
vpconfig &= ~vp->common->vpconfig_initvdd;
voltdm->write(vpconfig, vp->vpconfig);
/* Clear force bit */
vpconfig &= ~vp->common->vpconfig_forceupdate;
voltdm->write(vpconfig, vp->vpconfig);
return 0;
}
/**
* omap_vp_get_curr_volt() - API to get the current vp voltage.
* @voltdm: pointer to the VDD.
*
* This API returns the current voltage for the specified voltage processor
*/
unsigned long omap_vp_get_curr_volt(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp = voltdm->vp;
u8 curr_vsel;
if (!voltdm || IS_ERR(voltdm)) {
pr_warning("%s: VDD specified does not exist!\n", __func__);
return 0;
}
if (!voltdm->read) {
pr_err("%s: No read API for reading vdd_%s regs\n",
__func__, voltdm->name);
return 0;
}
curr_vsel = (voltdm->read(vp->voltage) & vp->common->vpvoltage_mask)
>> __ffs(vp->common->vpvoltage_mask);
if (!voltdm->pmic || !voltdm->pmic->vsel_to_uv) {
pr_warning("%s: PMIC function to convert vsel to voltage"
"in uV not registerd\n", __func__);
return 0;
}
return voltdm->pmic->vsel_to_uv(curr_vsel);
}
/**
* omap_vp_enable() - API to enable a particular VP
* @voltdm: pointer to the VDD whose VP is to be enabled.
*
* This API enables a particular voltage processor. Needed by the smartreflex
* class drivers.
*/
void omap_vp_enable(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp;
u32 vpconfig;
if (!voltdm || IS_ERR(voltdm)) {
pr_warning("%s: VDD specified does not exist!\n", __func__);
return;
}
vp = voltdm->vp;
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return;
}
/* If VP is already enabled, do nothing. Return */
if (vp->enabled)
return;
vp_latch_vsel(voltdm);
/* Enable VP */
vpconfig = voltdm->read(vp->vpconfig);
vpconfig |= vp->common->vpconfig_vpenable;
voltdm->write(vpconfig, vp->vpconfig);
vp->enabled = true;
}
/**
* omap_vp_disable() - API to disable a particular VP
* @voltdm: pointer to the VDD whose VP is to be disabled.
*
* This API disables a particular voltage processor. Needed by the smartreflex
* class drivers.
*/
void omap_vp_disable(struct voltagedomain *voltdm)
{
struct omap_vp_instance *vp;
u32 vpconfig;
int timeout;
if (!voltdm || IS_ERR(voltdm)) {
pr_warning("%s: VDD specified does not exist!\n", __func__);
return;
}
vp = voltdm->vp;
if (!voltdm->read || !voltdm->write) {
pr_err("%s: No read/write API for accessing vdd_%s regs\n",
__func__, voltdm->name);
return;
}
/* If VP is already disabled, do nothing. Return */
if (!vp->enabled) {
pr_warning("%s: Trying to disable VP for vdd_%s when"
"it is already disabled\n", __func__, voltdm->name);
return;
}
/*
* Wait for VP idle Typical latency is <2us. Maximum latency is ~100us
* Depending on if we catch VP in the middle of an SR operation.
*/
omap_test_timeout((voltdm->read(vp->vstatus) & vp->common->vstatus_vpidle),
VP_IDLE_TIMEOUT, timeout);
if (timeout >= VP_IDLE_TIMEOUT)
pr_warning("%s: vdd_%s idle timedout before disable\n",
__func__, voltdm->name);
/* Disable VP */
vpconfig = voltdm->read(vp->vpconfig);
vpconfig &= ~vp->common->vpconfig_vpenable;
voltdm->write(vpconfig, vp->vpconfig);
/*
* Wait for VP idle Typical latency is <2us. Maximum latency is ~100us
*/
omap_test_timeout((voltdm->read(vp->vstatus) & vp->common->vstatus_vpidle),
VP_IDLE_TIMEOUT, timeout);
if (timeout >= VP_IDLE_TIMEOUT)
pr_warning("%s: vdd_%s idle timedout after disable\n",
__func__, voltdm->name);
vp->enabled = false;
return;
}