| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "linker_phdr.h" |
| |
| #include <errno.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <sys/prctl.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <unistd.h> |
| |
| #include "linker.h" |
| #include "linker_debug.h" |
| #include "linker_dlwarning.h" |
| #include "linker_globals.h" |
| #include "linker_logger.h" |
| #include "linker_main.h" |
| #include "linker_soinfo.h" |
| #include "linker_utils.h" |
| |
| #include "private/bionic_asm_note.h" |
| #include "private/CFIShadow.h" // For kLibraryAlignment |
| #include "private/elf_note.h" |
| |
| #include <android-base/file.h> |
| #include <android-base/properties.h> |
| |
| static int GetTargetElfMachine() { |
| #if defined(__arm__) |
| return EM_ARM; |
| #elif defined(__aarch64__) |
| return EM_AARCH64; |
| #elif defined(__i386__) |
| return EM_386; |
| #elif defined(__riscv) |
| return EM_RISCV; |
| #elif defined(__x86_64__) |
| return EM_X86_64; |
| #endif |
| } |
| |
| /** |
| TECHNICAL NOTE ON ELF LOADING. |
| |
| An ELF file's program header table contains one or more PT_LOAD |
| segments, which corresponds to portions of the file that need to |
| be mapped into the process' address space. |
| |
| Each loadable segment has the following important properties: |
| |
| p_offset -> segment file offset |
| p_filesz -> segment file size |
| p_memsz -> segment memory size (always >= p_filesz) |
| p_vaddr -> segment's virtual address |
| p_flags -> segment flags (e.g. readable, writable, executable) |
| p_align -> segment's in-memory and in-file alignment |
| |
| We will ignore the p_paddr field of ElfW(Phdr) for now. |
| |
| The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz) |
| ranges of virtual addresses. A few rules apply: |
| |
| - the virtual address ranges should not overlap. |
| |
| - if a segment's p_filesz is smaller than its p_memsz, the extra bytes |
| between them should always be initialized to 0. |
| |
| - ranges do not necessarily start or end at page boundaries. Two distinct |
| segments can have their start and end on the same page. In this case, the |
| page inherits the mapping flags of the latter segment. |
| |
| Finally, the real load addrs of each segment is not p_vaddr. Instead the |
| loader decides where to load the first segment, then will load all others |
| relative to the first one to respect the initial range layout. |
| |
| For example, consider the following list: |
| |
| [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ], |
| [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ], |
| |
| This corresponds to two segments that cover these virtual address ranges: |
| |
| 0x30000...0x34000 |
| 0x40000...0x48000 |
| |
| If the loader decides to load the first segment at address 0xa0000000 |
| then the segments' load address ranges will be: |
| |
| 0xa0030000...0xa0034000 |
| 0xa0040000...0xa0048000 |
| |
| In other words, all segments must be loaded at an address that has the same |
| constant offset from their p_vaddr value. This offset is computed as the |
| difference between the first segment's load address, and its p_vaddr value. |
| |
| However, in practice, segments do _not_ start at page boundaries. Since we |
| can only memory-map at page boundaries, this means that the bias is |
| computed as: |
| |
| load_bias = phdr0_load_address - page_start(phdr0->p_vaddr) |
| |
| (NOTE: The value must be used as a 32-bit unsigned integer, to deal with |
| possible wrap around UINT32_MAX for possible large p_vaddr values). |
| |
| And that the phdr0_load_address must start at a page boundary, with |
| the segment's real content starting at: |
| |
| phdr0_load_address + page_offset(phdr0->p_vaddr) |
| |
| Note that ELF requires the following condition to make the mmap()-ing work: |
| |
| page_offset(phdr0->p_vaddr) == page_offset(phdr0->p_offset) |
| |
| The load_bias must be added to any p_vaddr value read from the ELF file to |
| determine the corresponding memory address. |
| |
| **/ |
| |
| static const size_t kPageSize = page_size(); |
| |
| /* |
| * Generic PMD size calculation: |
| * - Each page table (PT) is of size 1 page. |
| * - Each page table entry (PTE) is of size 64 bits. |
| * - Each PTE locates one physical page frame (PFN) of size 1 page. |
| * - A PMD entry locates 1 page table (PT) |
| * |
| * PMD size = Num entries in a PT * page_size |
| */ |
| static const size_t kPmdSize = (kPageSize / sizeof(uint64_t)) * kPageSize; |
| |
| ElfReader::ElfReader() |
| : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0), |
| phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr), |
| strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), max_align_(0), min_align_(0), |
| loaded_phdr_(nullptr), mapped_by_caller_(false) { |
| } |
| |
| bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) { |
| if (did_read_) { |
| return true; |
| } |
| name_ = name; |
| fd_ = fd; |
| file_offset_ = file_offset; |
| file_size_ = file_size; |
| |
| if (ReadElfHeader() && |
| VerifyElfHeader() && |
| ReadProgramHeaders() && |
| CheckProgramHeaderAlignment() && |
| ReadSectionHeaders() && |
| ReadDynamicSection() && |
| ReadPadSegmentNote()) { |
| did_read_ = true; |
| } |
| |
| if (kPageSize == 16*1024 && min_align_ == 4096) { |
| // This prop needs to be read on 16KiB devices for each ELF where min_palign is 4KiB. |
| // It cannot be cached since the developer may toggle app compat on/off. |
| // This check will be removed once app compat is made the default on 16KiB devices. |
| should_use_16kib_app_compat_ = |
| ::android::base::GetBoolProperty("bionic.linker.16kb.app_compat.enabled", false) || |
| get_16kb_appcompat_mode(); |
| } |
| |
| return did_read_; |
| } |
| |
| bool ElfReader::Load(address_space_params* address_space) { |
| CHECK(did_read_); |
| if (did_load_) { |
| return true; |
| } |
| bool reserveSuccess = ReserveAddressSpace(address_space); |
| if (reserveSuccess && LoadSegments() && FindPhdr() && |
| FindGnuPropertySection()) { |
| did_load_ = true; |
| #if defined(__aarch64__) |
| // For Armv8.5-A loaded executable segments may require PROT_BTI. |
| if (note_gnu_property_.IsBTICompatible()) { |
| did_load_ = |
| (phdr_table_protect_segments(phdr_table_, phdr_num_, load_bias_, should_pad_segments_, |
| should_use_16kib_app_compat_, ¬e_gnu_property_) == 0); |
| } |
| #endif |
| } |
| if (reserveSuccess && !did_load_) { |
| if (load_start_ != nullptr && load_size_ != 0) { |
| if (!mapped_by_caller_) { |
| munmap(load_start_, load_size_); |
| } |
| } |
| } |
| |
| return did_load_; |
| } |
| |
| const char* ElfReader::get_string(ElfW(Word) index) const { |
| CHECK(strtab_ != nullptr); |
| CHECK(index < strtab_size_); |
| |
| return strtab_ + index; |
| } |
| |
| bool ElfReader::ReadElfHeader() { |
| ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_)); |
| if (rc < 0) { |
| DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno)); |
| return false; |
| } |
| |
| if (rc != sizeof(header_)) { |
| DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(), |
| static_cast<size_t>(rc)); |
| return false; |
| } |
| return true; |
| } |
| |
| static const char* EM_to_string(int em) { |
| if (em == EM_386) return "EM_386"; |
| if (em == EM_AARCH64) return "EM_AARCH64"; |
| if (em == EM_ARM) return "EM_ARM"; |
| if (em == EM_RISCV) return "EM_RISCV"; |
| if (em == EM_X86_64) return "EM_X86_64"; |
| return "EM_???"; |
| } |
| |
| bool ElfReader::VerifyElfHeader() { |
| if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) { |
| DL_ERR("\"%s\" has bad ELF magic: %02x%02x%02x%02x", name_.c_str(), |
| header_.e_ident[0], header_.e_ident[1], header_.e_ident[2], header_.e_ident[3]); |
| return false; |
| } |
| |
| // Try to give a clear diagnostic for ELF class mismatches, since they're |
| // an easy mistake to make during the 32-bit/64-bit transition period. |
| int elf_class = header_.e_ident[EI_CLASS]; |
| #if defined(__LP64__) |
| if (elf_class != ELFCLASS64) { |
| if (elf_class == ELFCLASS32) { |
| DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str()); |
| } else { |
| DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); |
| } |
| return false; |
| } |
| #else |
| if (elf_class != ELFCLASS32) { |
| if (elf_class == ELFCLASS64) { |
| DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str()); |
| } else { |
| DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); |
| } |
| return false; |
| } |
| #endif |
| |
| if (header_.e_ident[EI_DATA] != ELFDATA2LSB) { |
| DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]); |
| return false; |
| } |
| |
| if (header_.e_type != ET_DYN) { |
| DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type); |
| return false; |
| } |
| |
| if (header_.e_version != EV_CURRENT) { |
| DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version); |
| return false; |
| } |
| |
| if (header_.e_machine != GetTargetElfMachine()) { |
| DL_ERR("\"%s\" is for %s (%d) instead of %s (%d)", |
| name_.c_str(), |
| EM_to_string(header_.e_machine), header_.e_machine, |
| EM_to_string(GetTargetElfMachine()), GetTargetElfMachine()); |
| return false; |
| } |
| |
| if (header_.e_shentsize != sizeof(ElfW(Shdr))) { |
| if (DL_ERROR_AFTER(26, "\"%s\" has unsupported e_shentsize: 0x%x (expected 0x%zx)", |
| name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)))) { |
| return false; |
| } |
| add_dlwarning(name_.c_str(), "has invalid ELF header"); |
| } |
| |
| if (header_.e_shstrndx == 0) { |
| if (DL_ERROR_AFTER(26, "\"%s\" has invalid e_shstrndx", name_.c_str())) { |
| return false; |
| } |
| add_dlwarning(name_.c_str(), "has invalid ELF header"); |
| } |
| |
| return true; |
| } |
| |
| bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) { |
| off64_t range_start; |
| off64_t range_end; |
| |
| // Only header can be located at the 0 offset... This function called to |
| // check DYNSYM and DYNAMIC sections and phdr/shdr - none of them can be |
| // at offset 0. |
| |
| return offset > 0 && |
| safe_add(&range_start, file_offset_, offset) && |
| safe_add(&range_end, range_start, size) && |
| (range_start < file_size_) && |
| (range_end <= file_size_) && |
| ((offset % alignment) == 0); |
| } |
| |
| // Loads the program header table from an ELF file into a read-only private |
| // anonymous mmap-ed block. |
| bool ElfReader::ReadProgramHeaders() { |
| phdr_num_ = header_.e_phnum; |
| |
| // Like the kernel, we only accept program header tables that |
| // are smaller than 64KiB. |
| if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) { |
| DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_); |
| return false; |
| } |
| |
| // Boundary checks |
| size_t size = phdr_num_ * sizeof(ElfW(Phdr)); |
| if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) { |
| DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu", |
| name_.c_str(), |
| static_cast<size_t>(header_.e_phoff), |
| size); |
| return false; |
| } |
| |
| if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) { |
| DL_ERR("\"%s\" phdr mmap failed: %m", name_.c_str()); |
| return false; |
| } |
| |
| phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data()); |
| return true; |
| } |
| |
| bool ElfReader::ReadSectionHeaders() { |
| shdr_num_ = header_.e_shnum; |
| |
| if (shdr_num_ == 0) { |
| DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str()); |
| return false; |
| } |
| |
| size_t size = shdr_num_ * sizeof(ElfW(Shdr)); |
| if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) { |
| DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu", |
| name_.c_str(), |
| static_cast<size_t>(header_.e_shoff), |
| size); |
| return false; |
| } |
| |
| if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) { |
| DL_ERR("\"%s\" shdr mmap failed: %m", name_.c_str()); |
| return false; |
| } |
| |
| shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data()); |
| return true; |
| } |
| |
| bool ElfReader::ReadDynamicSection() { |
| // 1. Find .dynamic section (in section headers) |
| const ElfW(Shdr)* dynamic_shdr = nullptr; |
| for (size_t i = 0; i < shdr_num_; ++i) { |
| if (shdr_table_[i].sh_type == SHT_DYNAMIC) { |
| dynamic_shdr = &shdr_table_ [i]; |
| break; |
| } |
| } |
| |
| if (dynamic_shdr == nullptr) { |
| DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str()); |
| return false; |
| } |
| |
| // Make sure dynamic_shdr offset and size matches PT_DYNAMIC phdr |
| size_t pt_dynamic_offset = 0; |
| size_t pt_dynamic_filesz = 0; |
| for (size_t i = 0; i < phdr_num_; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table_[i]; |
| if (phdr->p_type == PT_DYNAMIC) { |
| pt_dynamic_offset = phdr->p_offset; |
| pt_dynamic_filesz = phdr->p_filesz; |
| } |
| } |
| |
| if (pt_dynamic_offset != dynamic_shdr->sh_offset) { |
| if (DL_ERROR_AFTER(26, "\"%s\" .dynamic section has invalid offset: 0x%zx, " |
| "expected to match PT_DYNAMIC offset: 0x%zx", |
| name_.c_str(), |
| static_cast<size_t>(dynamic_shdr->sh_offset), |
| pt_dynamic_offset)) { |
| return false; |
| } |
| add_dlwarning(name_.c_str(), "invalid .dynamic section"); |
| } |
| |
| if (pt_dynamic_filesz != dynamic_shdr->sh_size) { |
| if (DL_ERROR_AFTER(26, "\"%s\" .dynamic section has invalid size: 0x%zx " |
| "(expected to match PT_DYNAMIC filesz 0x%zx)", |
| name_.c_str(), |
| static_cast<size_t>(dynamic_shdr->sh_size), |
| pt_dynamic_filesz)) { |
| return false; |
| } |
| add_dlwarning(name_.c_str(), "invalid .dynamic section"); |
| } |
| |
| if (dynamic_shdr->sh_link >= shdr_num_) { |
| DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d", |
| name_.c_str(), |
| dynamic_shdr->sh_link); |
| return false; |
| } |
| |
| const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link]; |
| |
| if (strtab_shdr->sh_type != SHT_STRTAB) { |
| DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)", |
| name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type); |
| return false; |
| } |
| |
| if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) { |
| DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str()); |
| return false; |
| } |
| |
| if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) { |
| DL_ERR("\"%s\" dynamic section mmap failed: %m", name_.c_str()); |
| return false; |
| } |
| |
| dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data()); |
| |
| if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) { |
| DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section", |
| name_.c_str()); |
| return false; |
| } |
| |
| if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) { |
| DL_ERR("\"%s\" strtab section mmap failed: %m", name_.c_str()); |
| return false; |
| } |
| |
| strtab_ = static_cast<const char*>(strtab_fragment_.data()); |
| strtab_size_ = strtab_fragment_.size(); |
| return true; |
| } |
| |
| /* Returns the size of the extent of all the possibly non-contiguous |
| * loadable segments in an ELF program header table. This corresponds |
| * to the page-aligned size in bytes that needs to be reserved in the |
| * process' address space. If there are no loadable segments, 0 is |
| * returned. |
| * |
| * If out_min_vaddr or out_max_vaddr are not null, they will be |
| * set to the minimum and maximum addresses of pages to be reserved, |
| * or 0 if there is nothing to load. |
| */ |
| size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr)* out_min_vaddr, |
| ElfW(Addr)* out_max_vaddr) { |
| ElfW(Addr) min_vaddr = UINTPTR_MAX; |
| ElfW(Addr) max_vaddr = 0; |
| |
| bool found_pt_load = false; |
| for (size_t i = 0; i < phdr_count; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table[i]; |
| |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| found_pt_load = true; |
| |
| if (phdr->p_vaddr < min_vaddr) { |
| min_vaddr = phdr->p_vaddr; |
| } |
| |
| if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { |
| max_vaddr = phdr->p_vaddr + phdr->p_memsz; |
| } |
| } |
| if (!found_pt_load) { |
| min_vaddr = 0; |
| } |
| |
| min_vaddr = page_start(min_vaddr); |
| max_vaddr = page_end(max_vaddr); |
| |
| if (out_min_vaddr != nullptr) { |
| *out_min_vaddr = min_vaddr; |
| } |
| if (out_max_vaddr != nullptr) { |
| *out_max_vaddr = max_vaddr; |
| } |
| return max_vaddr - min_vaddr; |
| } |
| |
| bool ElfReader::CheckProgramHeaderAlignment() { |
| max_align_ = min_align_ = page_size(); |
| |
| for (size_t i = 0; i < phdr_num_; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table_[i]; |
| |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| |
| // For loadable segments, p_align must be 0, 1, |
| // or a positive, integral power of two. |
| // The kernel ignores loadable segments with other values, |
| // so we just warn rather than reject them. |
| if ((phdr->p_align & (phdr->p_align - 1)) != 0) { |
| DL_WARN("\"%s\" has invalid p_align %zx in phdr %zu", name_.c_str(), |
| static_cast<size_t>(phdr->p_align), i); |
| continue; |
| } |
| |
| max_align_ = std::max(max_align_, static_cast<size_t>(phdr->p_align)); |
| |
| if (phdr->p_align > 1) { |
| min_align_ = std::min(min_align_, static_cast<size_t>(phdr->p_align)); |
| } |
| } |
| |
| return true; |
| } |
| |
| // Reserve a virtual address range such that if it's limits were extended to the next 2**align |
| // boundary, it would not overlap with any existing mappings. |
| static void* ReserveWithAlignmentPadding(size_t size, size_t mapping_align, size_t start_align, |
| void** out_gap_start, size_t* out_gap_size) { |
| int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| // Reserve enough space to properly align the library's start address. |
| mapping_align = std::max(mapping_align, start_align); |
| if (mapping_align == page_size()) { |
| void* mmap_ptr = mmap(nullptr, size, PROT_NONE, mmap_flags, -1, 0); |
| if (mmap_ptr == MAP_FAILED) { |
| return nullptr; |
| } |
| return mmap_ptr; |
| } |
| |
| // Minimum alignment of shared library gap. For efficiency, this should match the second level |
| // page size of the platform. |
| #if defined(__LP64__) |
| constexpr size_t kGapAlignment = 2 * 1024 * 1024; |
| #endif |
| // Maximum gap size, in the units of kGapAlignment. |
| constexpr size_t kMaxGapUnits = 32; |
| // Allocate enough space so that the end of the desired region aligned up is still inside the |
| // mapping. |
| size_t mmap_size = __builtin_align_up(size, mapping_align) + mapping_align - page_size(); |
| uint8_t* mmap_ptr = |
| reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0)); |
| if (mmap_ptr == MAP_FAILED) { |
| return nullptr; |
| } |
| size_t gap_size = 0; |
| size_t first_byte = reinterpret_cast<size_t>(__builtin_align_up(mmap_ptr, mapping_align)); |
| size_t last_byte = reinterpret_cast<size_t>(__builtin_align_down(mmap_ptr + mmap_size, mapping_align) - 1); |
| #if defined(__LP64__) |
| if (first_byte / kGapAlignment != last_byte / kGapAlignment) { |
| // This library crosses a 2MB boundary and will fragment a new huge page. |
| // Lets take advantage of that and insert a random number of inaccessible huge pages before that |
| // to improve address randomization and make it harder to locate this library code by probing. |
| munmap(mmap_ptr, mmap_size); |
| mapping_align = std::max(mapping_align, kGapAlignment); |
| gap_size = |
| kGapAlignment * (is_first_stage_init() ? 1 : arc4random_uniform(kMaxGapUnits - 1) + 1); |
| mmap_size = __builtin_align_up(size + gap_size, mapping_align) + mapping_align - page_size(); |
| mmap_ptr = reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0)); |
| if (mmap_ptr == MAP_FAILED) { |
| return nullptr; |
| } |
| } |
| #endif |
| |
| uint8_t* gap_end = mmap_ptr + mmap_size; |
| #if defined(__LP64__) |
| if (gap_size) { |
| gap_end = __builtin_align_down(gap_end, kGapAlignment); |
| } |
| #endif |
| uint8_t* gap_start = gap_end - gap_size; |
| |
| uint8_t* first = __builtin_align_up(mmap_ptr, mapping_align); |
| uint8_t* last = __builtin_align_down(gap_start, mapping_align) - size; |
| |
| // arc4random* is not available in first stage init because /dev/urandom hasn't yet been |
| // created. Don't randomize then. |
| size_t n = is_first_stage_init() ? 0 : arc4random_uniform((last - first) / start_align + 1); |
| uint8_t* start = first + n * start_align; |
| // Unmap the extra space around the allocation. |
| // Keep it mapped PROT_NONE on 64-bit targets where address space is plentiful to make it harder |
| // to defeat ASLR by probing for readable memory mappings. |
| munmap(mmap_ptr, start - mmap_ptr); |
| munmap(start + size, gap_start - (start + size)); |
| if (gap_end != mmap_ptr + mmap_size) { |
| munmap(gap_end, mmap_ptr + mmap_size - gap_end); |
| } |
| *out_gap_start = gap_start; |
| *out_gap_size = gap_size; |
| return start; |
| } |
| |
| // Reserve a virtual address range big enough to hold all loadable |
| // segments of a program header table. This is done by creating a |
| // private anonymous mmap() with PROT_NONE. |
| bool ElfReader::ReserveAddressSpace(address_space_params* address_space) { |
| ElfW(Addr) min_vaddr; |
| load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); |
| if (load_size_ == 0) { |
| DL_ERR("\"%s\" has no loadable segments", name_.c_str()); |
| return false; |
| } |
| |
| if (should_use_16kib_app_compat_) { |
| // Reserve additional space for aligning the permission boundary in compat loading |
| // Up to kPageSize-kCompatPageSize additional space is needed, but reservation |
| // is done with mmap which gives kPageSize multiple-sized reservations. |
| load_size_ += kPageSize; |
| } |
| |
| uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr); |
| void* start; |
| |
| if (load_size_ > address_space->reserved_size) { |
| if (address_space->must_use_address) { |
| DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"", |
| load_size_ - address_space->reserved_size, load_size_, name_.c_str()); |
| return false; |
| } |
| size_t start_alignment = page_size(); |
| if (get_transparent_hugepages_supported() && get_application_target_sdk_version() >= 31) { |
| // Limit alignment to PMD size as other alignments reduce the number of |
| // bits available for ASLR for no benefit. |
| start_alignment = max_align_ == kPmdSize ? kPmdSize : page_size(); |
| } |
| start = ReserveWithAlignmentPadding(load_size_, kLibraryAlignment, start_alignment, &gap_start_, |
| &gap_size_); |
| if (start == nullptr) { |
| DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str()); |
| return false; |
| } |
| } else { |
| start = address_space->start_addr; |
| gap_start_ = nullptr; |
| gap_size_ = 0; |
| mapped_by_caller_ = true; |
| |
| // Update the reserved address space to subtract the space used by this library. |
| address_space->start_addr = reinterpret_cast<uint8_t*>(address_space->start_addr) + load_size_; |
| address_space->reserved_size -= load_size_; |
| } |
| |
| load_start_ = start; |
| load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; |
| |
| if (should_use_16kib_app_compat_) { |
| // In compat mode make the initial mapping RW since the ELF contents will be read |
| // into it; instead of mapped over it. |
| mprotect(reinterpret_cast<void*>(start), load_size_, PROT_READ | PROT_WRITE); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Returns true if the kernel supports page size migration for this process. |
| */ |
| bool page_size_migration_supported() { |
| #if defined(__LP64__) |
| static bool pgsize_migration_enabled = []() { |
| std::string enabled; |
| if (!android::base::ReadFileToString("/sys/kernel/mm/pgsize_migration/enabled", &enabled)) { |
| return false; |
| } |
| return enabled.find("1") != std::string::npos; |
| }(); |
| return pgsize_migration_enabled; |
| #else |
| return false; |
| #endif |
| } |
| |
| // Find the ELF note of type NT_ANDROID_TYPE_PAD_SEGMENT and check that the desc value is 1. |
| bool ElfReader::ReadPadSegmentNote() { |
| if (!page_size_migration_supported()) { |
| // Don't attempt to read the note, since segment extension isn't |
| // supported; but return true so that loading can continue normally. |
| return true; |
| } |
| |
| // The ELF can have multiple PT_NOTE's, check them all |
| for (size_t i = 0; i < phdr_num_; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table_[i]; |
| |
| if (phdr->p_type != PT_NOTE) { |
| continue; |
| } |
| |
| // Some obfuscated ELFs may contain "empty" PT_NOTE program headers that don't |
| // point to any part of the ELF (p_memsz == 0). Skip these since there is |
| // nothing to decode. See: b/324468126 |
| if (phdr->p_memsz == 0) { |
| continue; |
| } |
| |
| // Reject notes that claim to extend past the end of the file. |
| off64_t note_end_off = file_offset_; |
| if (__builtin_add_overflow(note_end_off, phdr->p_offset, ¬e_end_off) || |
| __builtin_add_overflow(note_end_off, phdr->p_filesz, ¬e_end_off) || |
| phdr->p_filesz != phdr->p_memsz || |
| note_end_off > file_size_) { |
| |
| if (get_application_target_sdk_version() < 37) { |
| // Some in-market apps have invalid ELF notes (http://b/390328213), |
| // so ignore them until/unless they bump their target sdk version. |
| continue; |
| } |
| |
| DL_ERR_AND_LOG("\"%s\": ELF note (phdr %zu) runs off end of file", name_.c_str(), i); |
| return false; |
| } |
| |
| // We scope note_fragment to within the loop so that there is |
| // at most one PT_NOTE mapped at any time. |
| MappedFileFragment note_fragment; |
| if (!note_fragment.Map(fd_, file_offset_, phdr->p_offset, phdr->p_filesz)) { |
| DL_ERR("\"%s\": PT_NOTE mmap(nullptr, %p, PROT_READ, MAP_PRIVATE, %d, %p) failed: %m", |
| name_.c_str(), reinterpret_cast<void*>(phdr->p_filesz), fd_, |
| reinterpret_cast<void*>(page_start(file_offset_ + phdr->p_offset))); |
| return false; |
| } |
| |
| const ElfW(Nhdr)* note_hdr = nullptr; |
| const char* note_desc = nullptr; |
| if (!__get_elf_note(NT_ANDROID_TYPE_PAD_SEGMENT, "Android", |
| reinterpret_cast<ElfW(Addr)>(note_fragment.data()), |
| phdr, ¬e_hdr, ¬e_desc)) { |
| continue; |
| } |
| |
| if (note_hdr->n_descsz != sizeof(ElfW(Word))) { |
| DL_ERR("\"%s\": NT_ANDROID_TYPE_PAD_SEGMENT note has unexpected n_descsz: %u", |
| name_.c_str(), reinterpret_cast<unsigned int>(note_hdr->n_descsz)); |
| return false; |
| } |
| |
| // 1 == enabled, 0 == disabled |
| should_pad_segments_ = *reinterpret_cast<const ElfW(Word)*>(note_desc) == 1; |
| return true; |
| } |
| |
| return true; |
| } |
| |
| static inline void _extend_load_segment_vma(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| size_t phdr_idx, ElfW(Addr)* p_memsz, |
| ElfW(Addr)* p_filesz, bool should_pad_segments, |
| bool should_use_16kib_app_compat) { |
| // NOTE: Segment extension is only applicable where the ELF's max-page-size > runtime page size; |
| // to save kernel VMA slab memory. 16KiB compat mode is the exact opposite scenario. |
| if (should_use_16kib_app_compat) { |
| return; |
| } |
| |
| const ElfW(Phdr)* phdr = &phdr_table[phdr_idx]; |
| const ElfW(Phdr)* next = nullptr; |
| size_t next_idx = phdr_idx + 1; |
| |
| // Don't do segment extension for p_align > 64KiB, such ELFs already existed in the |
| // field e.g. 2MiB p_align for THPs and are relatively small in number. |
| // |
| // The kernel can only represent padding for p_align up to 64KiB. This is because |
| // the kernel uses 4 available bits in the vm_area_struct to represent padding |
| // extent; and so cannot enable mitigations to avoid breaking app compatibility for |
| // p_aligns > 64KiB. |
| // |
| // Don't perform segment extension on these to avoid app compatibility issues. |
| if (phdr->p_align <= kPageSize || phdr->p_align > 64*1024 || !should_pad_segments) { |
| return; |
| } |
| |
| if (next_idx < phdr_count && phdr_table[next_idx].p_type == PT_LOAD) { |
| next = &phdr_table[next_idx]; |
| } |
| |
| // If this is the last LOAD segment, no extension is needed |
| if (!next || *p_memsz != *p_filesz) { |
| return; |
| } |
| |
| ElfW(Addr) next_start = page_start(next->p_vaddr); |
| ElfW(Addr) curr_end = page_end(phdr->p_vaddr + *p_memsz); |
| |
| // If adjacent segment mappings overlap, no extension is needed. |
| if (curr_end >= next_start) { |
| return; |
| } |
| |
| // Extend the LOAD segment mapping to be contiguous with that of |
| // the next LOAD segment. |
| ElfW(Addr) extend = next_start - curr_end; |
| *p_memsz += extend; |
| *p_filesz += extend; |
| } |
| |
| bool ElfReader::MapSegment(size_t seg_idx, size_t len) { |
| const ElfW(Phdr)* phdr = &phdr_table_[seg_idx]; |
| |
| void* start = reinterpret_cast<void*>(page_start(phdr->p_vaddr + load_bias_)); |
| |
| // The ELF could be being loaded directly from a zipped APK, |
| // the zip offset must be added to find the segment offset. |
| const ElfW(Addr) offset = file_offset_ + page_start(phdr->p_offset); |
| |
| int prot = PFLAGS_TO_PROT(phdr->p_flags); |
| |
| void* seg_addr = mmap64(start, len, prot, MAP_FIXED | MAP_PRIVATE, fd_, offset); |
| |
| if (seg_addr == MAP_FAILED) { |
| DL_ERR("couldn't map \"%s\" segment %zd: %m", name_.c_str(), seg_idx); |
| return false; |
| } |
| |
| // Mark segments as huge page eligible if they meet the requirements |
| if ((phdr->p_flags & PF_X) && phdr->p_align == kPmdSize && |
| get_transparent_hugepages_supported()) { |
| madvise(seg_addr, len, MADV_HUGEPAGE); |
| } |
| |
| return true; |
| } |
| |
| void ElfReader::ZeroFillSegment(const ElfW(Phdr)* phdr) { |
| // NOTE: In 16KiB app compat mode, the ELF mapping is anonymous, meaning that |
| // RW segments are COW-ed from the kernel's zero page. So there is no need to |
| // explicitly zero-fill until the last page's limit. |
| if (should_use_16kib_app_compat_) { |
| return; |
| } |
| |
| ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; |
| uint64_t unextended_seg_file_end = seg_start + phdr->p_filesz; |
| |
| // If the segment is writable, and does not end on a page boundary, |
| // zero-fill it until the page limit. |
| // |
| // Do not attempt to zero the extended region past the first partial page, |
| // since doing so may: |
| // 1) Result in a SIGBUS, as the region is not backed by the underlying |
| // file. |
| // 2) Break the COW backing, faulting in new anon pages for a region |
| // that will not be used. |
| if ((phdr->p_flags & PF_W) != 0 && page_offset(unextended_seg_file_end) > 0) { |
| memset(reinterpret_cast<void*>(unextended_seg_file_end), 0, |
| kPageSize - page_offset(unextended_seg_file_end)); |
| } |
| } |
| |
| void ElfReader::DropPaddingPages(const ElfW(Phdr)* phdr, uint64_t seg_file_end) { |
| // NOTE: Padding pages are only applicable where the ELF's max-page-size > runtime page size; |
| // 16KiB compat mode is the exact opposite scenario. |
| if (should_use_16kib_app_compat_) { |
| return; |
| } |
| |
| ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; |
| uint64_t unextended_seg_file_end = seg_start + phdr->p_filesz; |
| |
| uint64_t pad_start = page_end(unextended_seg_file_end); |
| uint64_t pad_end = page_end(seg_file_end); |
| CHECK(pad_start <= pad_end); |
| |
| uint64_t pad_len = pad_end - pad_start; |
| if (pad_len == 0 || !page_size_migration_supported()) { |
| return; |
| } |
| |
| // Pages may be brought in due to readahead. |
| // Drop the padding (zero) pages, to avoid reclaim work later. |
| // |
| // NOTE: The madvise() here is special, as it also serves to hint to the |
| // kernel the portion of the LOAD segment that is padding. |
| // |
| // See: [1] https://android-review.googlesource.com/c/kernel/common/+/3032411 |
| // [2] https://android-review.googlesource.com/c/kernel/common/+/3048835 |
| if (madvise(reinterpret_cast<void*>(pad_start), pad_len, MADV_DONTNEED)) { |
| DL_WARN("\"%s\": madvise(0x%" PRIx64 ", 0x%" PRIx64 ", MADV_DONTNEED) failed: %m", |
| name_.c_str(), pad_start, pad_len); |
| } |
| } |
| |
| bool ElfReader::MapBssSection(const ElfW(Phdr)* phdr, ElfW(Addr) seg_page_end, |
| ElfW(Addr) seg_file_end) { |
| // NOTE: We do not need to handle .bss in 16KiB compat mode since the mapping |
| // reservation is anonymous and RW to begin with. |
| if (should_use_16kib_app_compat_) { |
| return true; |
| } |
| |
| // seg_file_end is now the first page address after the file content. |
| seg_file_end = page_end(seg_file_end); |
| |
| if (seg_page_end <= seg_file_end) { |
| return true; |
| } |
| |
| // If seg_page_end is larger than seg_file_end, we need to zero |
| // anything between them. This is done by using a private anonymous |
| // map for all extra pages |
| size_t zeromap_size = seg_page_end - seg_file_end; |
| void* zeromap = |
| mmap(reinterpret_cast<void*>(seg_file_end), zeromap_size, PFLAGS_TO_PROT(phdr->p_flags), |
| MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); |
| if (zeromap == MAP_FAILED) { |
| DL_ERR("couldn't map .bss section for \"%s\": %m", name_.c_str()); |
| return false; |
| } |
| |
| // Set the VMA name using prctl |
| prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss"); |
| |
| return true; |
| } |
| |
| bool ElfReader::LoadSegments() { |
| // NOTE: The compat(legacy) page size (4096) must be used when aligning |
| // the 4KiB segments for loading in compat mode. The larger 16KiB page size |
| // will lead to overwriting adjacent segments since the ELF's segment(s) |
| // are not 16KiB aligned. |
| size_t seg_align = should_use_16kib_app_compat_ ? kCompatPageSize : kPageSize; |
| |
| // Only enforce this on 16 KB systems with app compat disabled. |
| // Apps may rely on undefined behavior here on 4 KB systems, |
| // which is the norm before this change is introduced |
| if (kPageSize >= 16384 && min_align_ < kPageSize && !should_use_16kib_app_compat_) { |
| DL_ERR_AND_LOG("\"%s\" program alignment (%zu) cannot be smaller than system page size (%zu)", |
| name_.c_str(), min_align_, kPageSize); |
| return false; |
| } |
| |
| if (!Setup16KiBAppCompat()) { |
| DL_ERR("\"%s\" failed to setup 16KiB App Compat", name_.c_str()); |
| return false; |
| } |
| |
| for (size_t i = 0; i < phdr_num_; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table_[i]; |
| |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| |
| ElfW(Addr) p_memsz = phdr->p_memsz; |
| ElfW(Addr) p_filesz = phdr->p_filesz; |
| _extend_load_segment_vma(phdr_table_, phdr_num_, i, &p_memsz, &p_filesz, should_pad_segments_, |
| should_use_16kib_app_compat_); |
| |
| // Segment addresses in memory. |
| ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; |
| ElfW(Addr) seg_end = seg_start + p_memsz; |
| |
| ElfW(Addr) seg_page_end = __builtin_align_up(seg_end, seg_align); |
| |
| ElfW(Addr) seg_file_end = seg_start + p_filesz; |
| |
| // File offsets. |
| ElfW(Addr) file_start = phdr->p_offset; |
| ElfW(Addr) file_end = file_start + p_filesz; |
| |
| ElfW(Addr) file_page_start = __builtin_align_down(file_start, seg_align); |
| ElfW(Addr) file_length = file_end - file_page_start; |
| |
| if (file_size_ <= 0) { |
| DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_); |
| return false; |
| } |
| |
| if (file_start + phdr->p_filesz > static_cast<size_t>(file_size_)) { |
| DL_ERR("invalid ELF file \"%s\" load segment[%zd]:" |
| " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")", |
| name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset), |
| reinterpret_cast<void*>(phdr->p_filesz), |
| reinterpret_cast<void*>(file_start + phdr->p_filesz), file_size_); |
| return false; |
| } |
| |
| if (file_length != 0) { |
| int prot = PFLAGS_TO_PROT(phdr->p_flags); |
| if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) { |
| if (DL_ERROR_AFTER(26, "\"%s\" has load segments that are both writable and executable", |
| name_.c_str())) { |
| return false; |
| } |
| add_dlwarning(name_.c_str(), "W+E load segments"); |
| } |
| |
| // Pass the file_length, since it may have been extended by _extend_load_segment_vma(). |
| if (should_use_16kib_app_compat_) { |
| if (!CompatMapSegment(i, file_length)) { |
| return false; |
| } |
| } else { |
| if (!MapSegment(i, file_length)) { |
| return false; |
| } |
| } |
| } |
| |
| ZeroFillSegment(phdr); |
| |
| DropPaddingPages(phdr, seg_file_end); |
| |
| if (!MapBssSection(phdr, seg_page_end, seg_file_end)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* Used internally. Used to set the protection bits of all loaded segments |
| * with optional extra flags (i.e. really PROT_WRITE). Used by |
| * phdr_table_protect_segments and phdr_table_unprotect_segments. |
| */ |
| static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, int extra_prot_flags, |
| bool should_pad_segments, bool should_use_16kib_app_compat) { |
| for (size_t i = 0; i < phdr_count; ++i) { |
| const ElfW(Phdr)* phdr = &phdr_table[i]; |
| |
| if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) { |
| continue; |
| } |
| |
| ElfW(Addr) p_memsz = phdr->p_memsz; |
| ElfW(Addr) p_filesz = phdr->p_filesz; |
| _extend_load_segment_vma(phdr_table, phdr_count, i, &p_memsz, &p_filesz, should_pad_segments, |
| should_use_16kib_app_compat); |
| |
| ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr + load_bias); |
| ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias); |
| |
| int prot = PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags; |
| if ((prot & PROT_WRITE) != 0) { |
| // make sure we're never simultaneously writable / executable |
| prot &= ~PROT_EXEC; |
| } |
| #if defined(__aarch64__) |
| if ((prot & PROT_EXEC) == 0) { |
| // Though it is not specified don't add PROT_BTI if segment is not |
| // executable. |
| prot &= ~PROT_BTI; |
| } |
| #endif |
| |
| int ret = |
| mprotect(reinterpret_cast<void*>(seg_page_start), seg_page_end - seg_page_start, prot); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Restore the original protection modes for all loadable segments. |
| * You should only call this after phdr_table_unprotect_segments and |
| * applying all relocations. |
| * |
| * AArch64: also called from linker_main and ElfReader::Load to apply |
| * PROT_BTI for loaded main so and other so-s. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * should_pad_segments -> Are segments extended to avoid gaps in the memory map |
| * should_use_16kib_app_compat -> Is the ELF being loaded in 16KiB app compat mode. |
| * prop -> GnuPropertySection or nullptr |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, bool should_pad_segments, |
| bool should_use_16kib_app_compat, |
| const GnuPropertySection* prop __unused) { |
| int prot = 0; |
| #if defined(__aarch64__) |
| if ((prop != nullptr) && prop->IsBTICompatible()) { |
| prot |= PROT_BTI; |
| } |
| #endif |
| return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, prot, should_pad_segments, |
| should_use_16kib_app_compat); |
| } |
| |
| static bool segment_needs_memtag_globals_remapping(const ElfW(Phdr) * phdr) { |
| // For now, MTE globals is only supported on writeable data segments. |
| return phdr->p_type == PT_LOAD && !(phdr->p_flags & PF_X) && (phdr->p_flags & PF_W); |
| } |
| |
| /* When MTE globals are requested by the binary, and when the hardware supports |
| * it, remap the executable's PT_LOAD data pages to have PROT_MTE. |
| * |
| * Returns 0 on success, -1 on failure (error code in errno). |
| */ |
| int remap_memtag_globals_segments(const ElfW(Phdr) * phdr_table __unused, |
| size_t phdr_count __unused, ElfW(Addr) load_bias __unused) { |
| #if defined(__aarch64__) |
| for (const ElfW(Phdr)* phdr = phdr_table; phdr < phdr_table + phdr_count; phdr++) { |
| if (!segment_needs_memtag_globals_remapping(phdr)) { |
| continue; |
| } |
| |
| uintptr_t seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| uintptr_t seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| size_t seg_page_aligned_size = seg_page_end - seg_page_start; |
| |
| int prot = PFLAGS_TO_PROT(phdr->p_flags); |
| // For anonymous private mappings, it may be possible to simply mprotect() |
| // the PROT_MTE flag over the top. For file-based mappings, this will fail, |
| // and we'll need to fall back. We also allow PROT_WRITE here to allow |
| // writing memory tags (in `soinfo::tag_globals()`), and set these sections |
| // back to read-only after tags are applied (similar to RELRO). |
| prot |= PROT_MTE; |
| if (mprotect(reinterpret_cast<void*>(seg_page_start), seg_page_aligned_size, |
| prot | PROT_WRITE) == 0) { |
| continue; |
| } |
| |
| void* mapping_copy = mmap(nullptr, seg_page_aligned_size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| linker_memcpy(mapping_copy, reinterpret_cast<void*>(seg_page_start), seg_page_aligned_size); |
| |
| void* seg_addr = mmap(reinterpret_cast<void*>(seg_page_start), seg_page_aligned_size, |
| prot | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (seg_addr == MAP_FAILED) return -1; |
| |
| linker_memcpy(seg_addr, mapping_copy, seg_page_aligned_size); |
| munmap(mapping_copy, seg_page_aligned_size); |
| } |
| #endif // defined(__aarch64__) |
| return 0; |
| } |
| |
| void protect_memtag_globals_ro_segments(const ElfW(Phdr) * phdr_table __unused, |
| size_t phdr_count __unused, ElfW(Addr) load_bias __unused) { |
| #if defined(__aarch64__) |
| for (const ElfW(Phdr)* phdr = phdr_table; phdr < phdr_table + phdr_count; phdr++) { |
| int prot = PFLAGS_TO_PROT(phdr->p_flags); |
| if (!segment_needs_memtag_globals_remapping(phdr) || (prot & PROT_WRITE)) { |
| continue; |
| } |
| |
| prot |= PROT_MTE; |
| |
| uintptr_t seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| uintptr_t seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| size_t seg_page_aligned_size = seg_page_end - seg_page_start; |
| mprotect(reinterpret_cast<void*>(seg_page_start), seg_page_aligned_size, prot); |
| } |
| #endif // defined(__aarch64__) |
| } |
| |
| void name_memtag_globals_segments(const ElfW(Phdr) * phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, const char* soname, |
| std::list<std::string>* vma_names) { |
| for (const ElfW(Phdr)* phdr = phdr_table; phdr < phdr_table + phdr_count; phdr++) { |
| if (!segment_needs_memtag_globals_remapping(phdr)) { |
| continue; |
| } |
| |
| uintptr_t seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| uintptr_t seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| size_t seg_page_aligned_size = seg_page_end - seg_page_start; |
| |
| // For file-based mappings that we're now forcing to be anonymous mappings, set the VMA name to |
| // make debugging easier. |
| // Once we are targeting only devices that run kernel 5.10 or newer (and thus include |
| // https://android-review.git.corp.google.com/c/kernel/common/+/1934723 which causes the |
| // VMA_ANON_NAME to be copied into the kernel), we can get rid of the storage here. |
| // For now, that is not the case: |
| // https://source.android.com/docs/core/architecture/kernel/android-common#compatibility-matrix |
| constexpr int kVmaNameLimit = 80; |
| std::string& vma_name = vma_names->emplace_back(kVmaNameLimit, '\0'); |
| int full_vma_length = |
| async_safe_format_buffer(vma_name.data(), kVmaNameLimit, "mt:%s+%" PRIxPTR, soname, |
| page_start(phdr->p_vaddr)) + |
| /* include the null terminator */ 1; |
| // There's an upper limit of 80 characters, including the null terminator, in the anonymous VMA |
| // name. If we run over that limit, we end up truncating the segment offset and parts of the |
| // DSO's name, starting on the right hand side of the basename. Because the basename is the most |
| // important thing, chop off the soname from the left hand side first. |
| // |
| // Example (with '#' as the null terminator): |
| // - "mt:/data/nativetest64/bionic-unit-tests/bionic-loader-test-libs/libdlext_test.so+e000#" |
| // is a `full_vma_length` == 86. |
| // |
| // We need to left-truncate (86 - 80) 6 characters from the soname, plus the |
| // `vma_truncation_prefix`, so 9 characters total. |
| if (full_vma_length > kVmaNameLimit) { |
| const char vma_truncation_prefix[] = "..."; |
| int soname_truncated_bytes = |
| full_vma_length - kVmaNameLimit + sizeof(vma_truncation_prefix) - 1; |
| async_safe_format_buffer(vma_name.data(), kVmaNameLimit, "mt:%s%s+%" PRIxPTR, |
| vma_truncation_prefix, soname + soname_truncated_bytes, |
| page_start(phdr->p_vaddr)); |
| } |
| if (prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, reinterpret_cast<void*>(seg_page_start), |
| seg_page_aligned_size, vma_name.data()) != 0) { |
| DL_WARN("Failed to rename memtag global segment: %m"); |
| } |
| } |
| } |
| |
| /* Change the protection of all loaded segments in memory to writable. |
| * This is useful before performing relocations. Once completed, you |
| * will have to call phdr_table_protect_segments to restore the original |
| * protection flags on all segments. |
| * |
| * Note that some writable segments can also have their content turned |
| * to read-only by calling phdr_table_protect_gnu_relro. This is no |
| * performed here. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * should_pad_segments -> Are segments extended to avoid gaps in the memory map |
| * should_use_16kib_app_compat -> Is the ELF being loaded in 16KiB app compat mode. |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, bool should_pad_segments, |
| bool should_use_16kib_app_compat) { |
| return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE, |
| should_pad_segments, should_use_16kib_app_compat); |
| } |
| |
| static inline void _extend_gnu_relro_prot_end(const ElfW(Phdr)* relro_phdr, |
| const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, ElfW(Addr)* seg_page_end, |
| bool should_pad_segments, |
| bool should_use_16kib_app_compat) { |
| // Find the index and phdr of the LOAD containing the GNU_RELRO segment |
| for (size_t index = 0; index < phdr_count; ++index) { |
| const ElfW(Phdr)* phdr = &phdr_table[index]; |
| |
| if (phdr->p_type == PT_LOAD && phdr->p_vaddr == relro_phdr->p_vaddr) { |
| // If the PT_GNU_RELRO mem size is not at least as large as the corresponding |
| // LOAD segment mem size, we need to protect only a partial region of the |
| // LOAD segment and therefore cannot avoid a VMA split. |
| // |
| // Note: Don't check the page-aligned mem sizes since the extended protection |
| // may incorrectly write protect non-relocation data. |
| // |
| // Example: |
| // |
| // |---- 3K ----|-- 1K --|---- 3K ---- |-- 1K --| |
| // ---------------------------------------------------------------- |
| // | | | | | |
| // SEG X | RO | RO | RW | | SEG Y |
| // | | | | | |
| // ---------------------------------------------------------------- |
| // | | | |
| // | | | |
| // | | | |
| // relro_vaddr relro_vaddr relro_vaddr |
| // (load_vaddr) + + |
| // relro_memsz load_memsz |
| // |
| // ---------------------------------------------------------------- |
| // | PAGE | PAGE | |
| // ---------------------------------------------------------------- |
| // | Potential | |
| // |----- Extended RO ----| |
| // | Protection | |
| // |
| // If the check below uses page aligned mem sizes it will cause incorrect write |
| // protection of the 3K RW part of the LOAD segment containing the GNU_RELRO. |
| if (relro_phdr->p_memsz < phdr->p_memsz) { |
| return; |
| } |
| |
| ElfW(Addr) p_memsz = phdr->p_memsz; |
| ElfW(Addr) p_filesz = phdr->p_filesz; |
| |
| // Attempt extending the VMA (mprotect range). Without extending the range, |
| // mprotect will only RO protect a part of the extended RW LOAD segment, which |
| // will leave an extra split RW VMA (the gap). |
| _extend_load_segment_vma(phdr_table, phdr_count, index, &p_memsz, &p_filesz, |
| should_pad_segments, should_use_16kib_app_compat); |
| |
| *seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias); |
| return; |
| } |
| } |
| } |
| |
| /* Used internally by phdr_table_protect_gnu_relro and |
| * phdr_table_unprotect_gnu_relro. |
| */ |
| static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, int prot_flags, |
| bool should_pad_segments, |
| bool should_use_16kib_app_compat) { |
| const ElfW(Phdr)* phdr = phdr_table; |
| const ElfW(Phdr)* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_GNU_RELRO) { |
| continue; |
| } |
| |
| // Tricky: what happens when the relro segment does not start |
| // or end at page boundaries? We're going to be over-protective |
| // here and put every page touched by the segment as read-only. |
| |
| // This seems to match Ian Lance Taylor's description of the |
| // feature at http://www.airs.com/blog/archives/189. |
| |
| // Extract: |
| // Note that the current dynamic linker code will only work |
| // correctly if the PT_GNU_RELRO segment starts on a page |
| // boundary. This is because the dynamic linker rounds the |
| // p_vaddr field down to the previous page boundary. If |
| // there is anything on the page which should not be read-only, |
| // the program is likely to fail at runtime. So in effect the |
| // linker must only emit a PT_GNU_RELRO segment if it ensures |
| // that it starts on a page boundary. |
| ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| _extend_gnu_relro_prot_end(phdr, phdr_table, phdr_count, load_bias, &seg_page_end, |
| should_pad_segments, should_use_16kib_app_compat); |
| |
| int ret = mprotect(reinterpret_cast<void*>(seg_page_start), |
| seg_page_end - seg_page_start, |
| prot_flags); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Apply GNU relro protection if specified by the program header. This will |
| * turn some of the pages of a writable PT_LOAD segment to read-only, as |
| * specified by one or more PT_GNU_RELRO segments. This must be always |
| * performed after relocations. |
| * |
| * The areas typically covered are .got and .data.rel.ro, these are |
| * read-only from the program's POV, but contain absolute addresses |
| * that need to be relocated before use. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * should_pad_segments -> Were segments extended to avoid gaps in the memory map |
| * should_use_16kib_app_compat -> Is the ELF being loaded in 16KiB app compat mode. |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, bool should_pad_segments, |
| bool should_use_16kib_app_compat) { |
| return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ, |
| should_pad_segments, should_use_16kib_app_compat); |
| } |
| |
| /* |
| * Apply RX protection to the compat relro region of the ELF being loaded in |
| * 16KiB compat mode. |
| * |
| * Input: |
| * start -> start address of the compat relro region. |
| * size -> size of the compat relro region in bytes. |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_protect_gnu_relro_16kib_compat(ElfW(Addr) start, ElfW(Addr) size) { |
| return mprotect(reinterpret_cast<void*>(start), size, PROT_READ | PROT_EXEC); |
| } |
| |
| /* Serialize the GNU relro segments to the given file descriptor. This can be |
| * performed after relocations to allow another process to later share the |
| * relocated segment, if it was loaded at the same address. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * fd -> writable file descriptor to use |
| * file_offset -> pointer to offset into file descriptor to use/update |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, |
| size_t phdr_count, |
| ElfW(Addr) load_bias, |
| int fd, |
| size_t* file_offset) { |
| const ElfW(Phdr)* phdr = phdr_table; |
| const ElfW(Phdr)* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_GNU_RELRO) { |
| continue; |
| } |
| |
| ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| ssize_t size = seg_page_end - seg_page_start; |
| |
| ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size)); |
| if (written != size) { |
| return -1; |
| } |
| void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ, |
| MAP_PRIVATE|MAP_FIXED, fd, *file_offset); |
| if (map == MAP_FAILED) { |
| return -1; |
| } |
| *file_offset += size; |
| } |
| return 0; |
| } |
| |
| /* Where possible, replace the GNU relro segments with mappings of the given |
| * file descriptor. This can be performed after relocations to allow a file |
| * previously created by phdr_table_serialize_gnu_relro in another process to |
| * replace the dirty relocated pages, saving memory, if it was loaded at the |
| * same address. We have to compare the data before we map over it, since some |
| * parts of the relro segment may not be identical due to other libraries in |
| * the process being loaded at different addresses. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * fd -> readable file descriptor to use |
| * file_offset -> pointer to offset into file descriptor to use/update |
| * Return: |
| * 0 on success, -1 on failure (error code in errno). |
| */ |
| int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, |
| size_t phdr_count, |
| ElfW(Addr) load_bias, |
| int fd, |
| size_t* file_offset) { |
| // Map the file at a temporary location so we can compare its contents. |
| struct stat file_stat; |
| if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) { |
| return -1; |
| } |
| off_t file_size = file_stat.st_size; |
| void* temp_mapping = nullptr; |
| if (file_size > 0) { |
| temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0); |
| if (temp_mapping == MAP_FAILED) { |
| return -1; |
| } |
| } |
| |
| // Iterate over the relro segments and compare/remap the pages. |
| const ElfW(Phdr)* phdr = phdr_table; |
| const ElfW(Phdr)* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_GNU_RELRO) { |
| continue; |
| } |
| |
| ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias; |
| ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| |
| char* file_base = static_cast<char*>(temp_mapping) + *file_offset; |
| char* mem_base = reinterpret_cast<char*>(seg_page_start); |
| size_t match_offset = 0; |
| size_t size = seg_page_end - seg_page_start; |
| |
| if (file_size - *file_offset < size) { |
| // File is too short to compare to this segment. The contents are likely |
| // different as well (it's probably for a different library version) so |
| // just don't bother checking. |
| break; |
| } |
| |
| while (match_offset < size) { |
| // Skip over dissimilar pages. |
| while (match_offset < size && |
| memcmp(mem_base + match_offset, file_base + match_offset, page_size()) != 0) { |
| match_offset += page_size(); |
| } |
| |
| // Count similar pages. |
| size_t mismatch_offset = match_offset; |
| while (mismatch_offset < size && |
| memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, page_size()) == 0) { |
| mismatch_offset += page_size(); |
| } |
| |
| // Map over similar pages. |
| if (mismatch_offset > match_offset) { |
| void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset, |
| PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, *file_offset + match_offset); |
| if (map == MAP_FAILED) { |
| munmap(temp_mapping, file_size); |
| return -1; |
| } |
| } |
| |
| match_offset = mismatch_offset; |
| } |
| |
| // Add to the base file offset in case there are multiple relro segments. |
| *file_offset += size; |
| } |
| munmap(temp_mapping, file_size); |
| return 0; |
| } |
| |
| |
| #if defined(__arm__) |
| /* Return the address and size of the .ARM.exidx section in memory, |
| * if present. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Output: |
| * arm_exidx -> address of table in memory (null on failure). |
| * arm_exidx_count -> number of items in table (0 on failure). |
| * Return: |
| * 0 on success, -1 on failure (_no_ error code in errno) |
| */ |
| int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, |
| ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) { |
| const ElfW(Phdr)* phdr = phdr_table; |
| const ElfW(Phdr)* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_ARM_EXIDX) { |
| continue; |
| } |
| |
| *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr); |
| *arm_exidx_count = phdr->p_memsz / 8; |
| return 0; |
| } |
| *arm_exidx = nullptr; |
| *arm_exidx_count = 0; |
| return -1; |
| } |
| #endif |
| |
| /* Return the address and size of the ELF file's .dynamic section in memory, |
| * or null if missing. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Output: |
| * dynamic -> address of table in memory (null on failure). |
| * dynamic_flags -> protection flags for section (unset on failure) |
| * Return: |
| * void |
| */ |
| void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias, ElfW(Dyn)** dynamic, |
| ElfW(Word)* dynamic_flags) { |
| *dynamic = nullptr; |
| for (size_t i = 0; i<phdr_count; ++i) { |
| const ElfW(Phdr)& phdr = phdr_table[i]; |
| if (phdr.p_type == PT_DYNAMIC) { |
| *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr); |
| if (dynamic_flags) { |
| *dynamic_flags = phdr.p_flags; |
| } |
| return; |
| } |
| } |
| } |
| |
| /* Return the program interpreter string, or nullptr if missing. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Return: |
| * pointer to the program interpreter string. |
| */ |
| const char* phdr_table_get_interpreter_name(const ElfW(Phdr)* phdr_table, size_t phdr_count, |
| ElfW(Addr) load_bias) { |
| for (size_t i = 0; i<phdr_count; ++i) { |
| const ElfW(Phdr)& phdr = phdr_table[i]; |
| if (phdr.p_type == PT_INTERP) { |
| return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr); |
| } |
| } |
| return nullptr; |
| } |
| |
| // Sets loaded_phdr_ to the address of the program header table as it appears |
| // in the loaded segments in memory. This is in contrast with phdr_table_, |
| // which is temporary and will be released before the library is relocated. |
| bool ElfReader::FindPhdr() { |
| const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; |
| |
| // If there is a PT_PHDR, use it directly. |
| for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type == PT_PHDR) { |
| return CheckPhdr(load_bias_ + phdr->p_vaddr); |
| } |
| } |
| |
| // Otherwise, check the first loadable segment. If its file offset |
| // is 0, it starts with the ELF header, and we can trivially find the |
| // loaded program header from it. |
| for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type == PT_LOAD) { |
| if (phdr->p_offset == 0) { |
| ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr; |
| const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr); |
| ElfW(Addr) offset = ehdr->e_phoff; |
| return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset); |
| } |
| break; |
| } |
| } |
| |
| DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str()); |
| return false; |
| } |
| |
| // Tries to find .note.gnu.property section. |
| // It is not considered an error if such section is missing. |
| bool ElfReader::FindGnuPropertySection() { |
| #if defined(__aarch64__) |
| note_gnu_property_ = GnuPropertySection(phdr_table_, phdr_num_, load_start(), name_.c_str()); |
| #endif |
| return true; |
| } |
| |
| // Ensures that our program header is actually within a loadable |
| // segment. This should help catch badly-formed ELF files that |
| // would cause the linker to crash later when trying to access it. |
| bool ElfReader::CheckPhdr(ElfW(Addr) loaded) { |
| const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; |
| ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr))); |
| for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; |
| ElfW(Addr) seg_end = phdr->p_filesz + seg_start; |
| if (seg_start <= loaded && loaded_end <= seg_end) { |
| loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded); |
| return true; |
| } |
| } |
| DL_ERR("\"%s\" loaded phdr %p not in loadable segment", |
| name_.c_str(), reinterpret_cast<void*>(loaded)); |
| return false; |
| } |