| #include "config.h" |
| #include "types.h" |
| |
| #if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__) |
| #include <immintrin.h> |
| #endif |
| |
| u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end); |
| u64 classify_word(u64 word); |
| |
| inline u64 classify_word(u64 word) { |
| |
| u16 mem16[4]; |
| memcpy(mem16, &word, sizeof(mem16)); |
| |
| mem16[0] = count_class_lookup16[mem16[0]]; |
| mem16[1] = count_class_lookup16[mem16[1]]; |
| mem16[2] = count_class_lookup16[mem16[2]]; |
| mem16[3] = count_class_lookup16[mem16[3]]; |
| |
| memcpy(&word, mem16, sizeof(mem16)); |
| return word; |
| |
| } |
| |
| void simplify_trace(afl_state_t *afl, u8 *bytes) { |
| |
| u64 *mem = (u64 *)bytes; |
| u32 i = (afl->fsrv.map_size >> 3); |
| |
| while (i--) { |
| |
| /* Optimize for sparse bitmaps. */ |
| |
| if (unlikely(*mem)) { |
| |
| u8 *mem8 = (u8 *)mem; |
| |
| mem8[0] = simplify_lookup[mem8[0]]; |
| mem8[1] = simplify_lookup[mem8[1]]; |
| mem8[2] = simplify_lookup[mem8[2]]; |
| mem8[3] = simplify_lookup[mem8[3]]; |
| mem8[4] = simplify_lookup[mem8[4]]; |
| mem8[5] = simplify_lookup[mem8[5]]; |
| mem8[6] = simplify_lookup[mem8[6]]; |
| mem8[7] = simplify_lookup[mem8[7]]; |
| |
| } else |
| |
| *mem = 0x0101010101010101ULL; |
| |
| mem++; |
| |
| } |
| |
| } |
| |
| inline void classify_counts(afl_forkserver_t *fsrv) { |
| |
| u64 *mem = (u64 *)fsrv->trace_bits; |
| u32 i = (fsrv->map_size >> 3); |
| |
| while (i--) { |
| |
| /* Optimize for sparse bitmaps. */ |
| |
| if (unlikely(*mem)) { *mem = classify_word(*mem); } |
| |
| mem++; |
| |
| } |
| |
| } |
| |
| /* Updates the virgin bits, then reflects whether a new count or a new tuple is |
| * seen in ret. */ |
| inline void discover_word(u8 *ret, u64 *current, u64 *virgin) { |
| |
| /* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap |
| that have not been already cleared from the virgin map - since this will |
| almost always be the case. */ |
| |
| if (*current & *virgin) { |
| |
| if (likely(*ret < 2)) { |
| |
| u8 *cur = (u8 *)current; |
| u8 *vir = (u8 *)virgin; |
| |
| /* Looks like we have not found any new bytes yet; see if any non-zero |
| bytes in current[] are pristine in virgin[]. */ |
| |
| if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) || |
| (cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) || |
| (cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) || |
| (cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff)) |
| *ret = 2; |
| else |
| *ret = 1; |
| |
| } |
| |
| *virgin &= ~*current; |
| |
| } |
| |
| } |
| |
| #if defined(__AVX512F__) && defined(__AVX512DQ__) |
| #define PACK_SIZE 64 |
| inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) { |
| |
| for (; current != current_end; virgin += 8, current += 8) { |
| |
| __m512i value = *(__m512i *)current; |
| __mmask8 mask = _mm512_testn_epi64_mask(value, value); |
| |
| /* All bytes are zero. */ |
| if (likely(mask == 0xff)) continue; |
| |
| /* Look for nonzero bytes and check for new bits. */ |
| #define UNROLL(x) \ |
| if (unlikely(!(mask & (1 << x)) && classify_word(current[x]) & virgin[x])) \ |
| return 1 |
| UNROLL(0); |
| UNROLL(1); |
| UNROLL(2); |
| UNROLL(3); |
| UNROLL(4); |
| UNROLL(5); |
| UNROLL(6); |
| UNROLL(7); |
| #undef UNROLL |
| |
| } |
| |
| return 0; |
| |
| } |
| |
| #endif |
| |
| #if !defined(PACK_SIZE) && defined(__AVX2__) |
| #define PACK_SIZE 32 |
| inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) { |
| |
| __m256i zeroes = _mm256_setzero_si256(); |
| |
| for (; current < current_end; virgin += 4, current += 4) { |
| |
| __m256i value = *(__m256i *)current; |
| __m256i cmp = _mm256_cmpeq_epi64(value, zeroes); |
| u32 mask = _mm256_movemask_epi8(cmp); |
| |
| /* All bytes are zero. */ |
| if (likely(mask == (u32)-1)) continue; |
| |
| /* Look for nonzero bytes and check for new bits. */ |
| if (unlikely(!(mask & 0xff) && classify_word(current[0]) & virgin[0])) |
| return 1; |
| if (unlikely(!(mask & 0xff00) && classify_word(current[1]) & virgin[1])) |
| return 1; |
| if (unlikely(!(mask & 0xff0000) && classify_word(current[2]) & virgin[2])) |
| return 1; |
| if (unlikely(!(mask & 0xff000000) && classify_word(current[3]) & virgin[3])) |
| return 1; |
| |
| } |
| |
| return 0; |
| |
| } |
| |
| #endif |
| |
| #if !defined(PACK_SIZE) |
| #define PACK_SIZE 32 |
| inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) { |
| |
| for (; current < current_end; virgin += 4, current += 4) { |
| |
| if (unlikely(current[0] && classify_word(current[0]) & virgin[0])) return 1; |
| if (unlikely(current[1] && classify_word(current[1]) & virgin[1])) return 1; |
| if (unlikely(current[2] && classify_word(current[2]) & virgin[2])) return 1; |
| if (unlikely(current[3] && classify_word(current[3]) & virgin[3])) return 1; |
| |
| } |
| |
| return 0; |
| |
| } |
| |
| #endif |
| |