blob: aab79d79c5bc1c41344527bba34e32c09394a485 [file] [log] [blame] [edit]
#include "config.h"
#include "types.h"
#if (defined(__AVX512F__) && defined(__AVX512DQ__)) || defined(__AVX2__)
#include <immintrin.h>
#endif
u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end);
u64 classify_word(u64 word);
inline u64 classify_word(u64 word) {
u16 mem16[4];
memcpy(mem16, &word, sizeof(mem16));
mem16[0] = count_class_lookup16[mem16[0]];
mem16[1] = count_class_lookup16[mem16[1]];
mem16[2] = count_class_lookup16[mem16[2]];
mem16[3] = count_class_lookup16[mem16[3]];
memcpy(&word, mem16, sizeof(mem16));
return word;
}
void simplify_trace(afl_state_t *afl, u8 *bytes) {
u64 *mem = (u64 *)bytes;
u32 i = (afl->fsrv.map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) {
u8 *mem8 = (u8 *)mem;
mem8[0] = simplify_lookup[mem8[0]];
mem8[1] = simplify_lookup[mem8[1]];
mem8[2] = simplify_lookup[mem8[2]];
mem8[3] = simplify_lookup[mem8[3]];
mem8[4] = simplify_lookup[mem8[4]];
mem8[5] = simplify_lookup[mem8[5]];
mem8[6] = simplify_lookup[mem8[6]];
mem8[7] = simplify_lookup[mem8[7]];
} else
*mem = 0x0101010101010101ULL;
mem++;
}
}
inline void classify_counts(afl_forkserver_t *fsrv) {
u64 *mem = (u64 *)fsrv->trace_bits;
u32 i = (fsrv->map_size >> 3);
while (i--) {
/* Optimize for sparse bitmaps. */
if (unlikely(*mem)) { *mem = classify_word(*mem); }
mem++;
}
}
/* Updates the virgin bits, then reflects whether a new count or a new tuple is
* seen in ret. */
inline void discover_word(u8 *ret, u64 *current, u64 *virgin) {
/* Optimize for (*current & *virgin) == 0 - i.e., no bits in current bitmap
that have not been already cleared from the virgin map - since this will
almost always be the case. */
if (*current & *virgin) {
if (likely(*ret < 2)) {
u8 *cur = (u8 *)current;
u8 *vir = (u8 *)virgin;
/* Looks like we have not found any new bytes yet; see if any non-zero
bytes in current[] are pristine in virgin[]. */
if ((cur[0] && vir[0] == 0xff) || (cur[1] && vir[1] == 0xff) ||
(cur[2] && vir[2] == 0xff) || (cur[3] && vir[3] == 0xff) ||
(cur[4] && vir[4] == 0xff) || (cur[5] && vir[5] == 0xff) ||
(cur[6] && vir[6] == 0xff) || (cur[7] && vir[7] == 0xff))
*ret = 2;
else
*ret = 1;
}
*virgin &= ~*current;
}
}
#if defined(__AVX512F__) && defined(__AVX512DQ__)
#define PACK_SIZE 64
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current != current_end; virgin += 8, current += 8) {
__m512i value = *(__m512i *)current;
__mmask8 mask = _mm512_testn_epi64_mask(value, value);
/* All bytes are zero. */
if (likely(mask == 0xff)) continue;
/* Look for nonzero bytes and check for new bits. */
#define UNROLL(x) \
if (unlikely(!(mask & (1 << x)) && classify_word(current[x]) & virgin[x])) \
return 1
UNROLL(0);
UNROLL(1);
UNROLL(2);
UNROLL(3);
UNROLL(4);
UNROLL(5);
UNROLL(6);
UNROLL(7);
#undef UNROLL
}
return 0;
}
#endif
#if !defined(PACK_SIZE) && defined(__AVX2__)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
__m256i zeroes = _mm256_setzero_si256();
for (; current < current_end; virgin += 4, current += 4) {
__m256i value = *(__m256i *)current;
__m256i cmp = _mm256_cmpeq_epi64(value, zeroes);
u32 mask = _mm256_movemask_epi8(cmp);
/* All bytes are zero. */
if (likely(mask == (u32)-1)) continue;
/* Look for nonzero bytes and check for new bits. */
if (unlikely(!(mask & 0xff) && classify_word(current[0]) & virgin[0]))
return 1;
if (unlikely(!(mask & 0xff00) && classify_word(current[1]) & virgin[1]))
return 1;
if (unlikely(!(mask & 0xff0000) && classify_word(current[2]) & virgin[2]))
return 1;
if (unlikely(!(mask & 0xff000000) && classify_word(current[3]) & virgin[3]))
return 1;
}
return 0;
}
#endif
#if !defined(PACK_SIZE)
#define PACK_SIZE 32
inline u32 skim(const u64 *virgin, const u64 *current, const u64 *current_end) {
for (; current < current_end; virgin += 4, current += 4) {
if (unlikely(current[0] && classify_word(current[0]) & virgin[0])) return 1;
if (unlikely(current[1] && classify_word(current[1]) & virgin[1])) return 1;
if (unlikely(current[2] && classify_word(current[2]) & virgin[2])) return 1;
if (unlikely(current[3] && classify_word(current[3]) & virgin[3])) return 1;
}
return 0;
}
#endif