blob: e52d59a32b332bd48573bf945ba71147dc89fc32 [file] [log] [blame] [edit]
#include "afl-fuzz.h"
void flip_range(u8 *input, u32 pos, u32 size) {
for (u32 i = 0; i < size; i++)
input[pos + i] ^= 0xFF;
return;
}
#define MAX_EFF_TIMEOUT (10 * 60 * 1000)
#define MAX_DET_TIMEOUT (15 * 60 * 1000)
u8 is_det_timeout(u64 cur_ms, u8 is_flip) {
if (is_flip) {
if (unlikely(get_cur_time() - cur_ms > MAX_EFF_TIMEOUT)) return 1;
} else {
if (unlikely(get_cur_time() - cur_ms > MAX_DET_TIMEOUT)) return 1;
}
return 0;
}
/* decide if the seed should be deterministically fuzzed */
u8 should_det_fuzz(afl_state_t *afl, struct queue_entry *q) {
if (!afl->skipdet_g->virgin_det_bits) {
afl->skipdet_g->virgin_det_bits =
(u8 *)ck_alloc(sizeof(u8) * afl->fsrv.map_size);
}
if (!q->favored || q->passed_det) return 0;
if (!q->trace_mini) return 0;
if (!afl->skipdet_g->last_cov_undet)
afl->skipdet_g->last_cov_undet = get_cur_time();
if (get_cur_time() - afl->skipdet_g->last_cov_undet >= THRESHOLD_DEC_TIME) {
if (afl->skipdet_g->undet_bits_threshold >= 2) {
afl->skipdet_g->undet_bits_threshold *= 0.75;
afl->skipdet_g->last_cov_undet = get_cur_time();
}
}
u32 new_det_bits = 0;
for (u32 i = 0; i < afl->fsrv.map_size; i++) {
if (unlikely(q->trace_mini[i >> 3] & (1 << (i & 7)))) {
if (!afl->skipdet_g->virgin_det_bits[i]) { new_det_bits++; }
}
}
if (!afl->skipdet_g->undet_bits_threshold)
afl->skipdet_g->undet_bits_threshold = new_det_bits * 0.05;
if (new_det_bits >= afl->skipdet_g->undet_bits_threshold) {
afl->skipdet_g->last_cov_undet = get_cur_time();
q->skipdet_e->undet_bits = new_det_bits;
for (u32 i = 0; i < afl->fsrv.map_size; i++) {
if (unlikely(q->trace_mini[i >> 3] & (1 << (i & 7)))) {
if (!afl->skipdet_g->virgin_det_bits[i])
afl->skipdet_g->virgin_det_bits[i] = 1;
}
}
return 1;
}
return 0;
}
/*
consists of two stages that
return 0 if exec failed.
*/
u8 skip_deterministic_stage(afl_state_t *afl, u8 *orig_buf, u8 *out_buf,
u32 len, u64 before_det_time) {
u64 orig_hit_cnt, new_hit_cnt;
if (afl->queue_cur->skipdet_e->done_eff) return 1;
if (!should_det_fuzz(afl, afl->queue_cur)) return 1;
/* Add check to make sure that for seeds without too much undet bits,
we ignore them */
/******************
* SKIP INFERENCE *
******************/
afl->stage_short = "inf";
afl->stage_name = "inference";
afl->stage_cur = 0;
orig_hit_cnt = afl->queued_items + afl->saved_crashes;
u8 *inf_eff_map = (u8 *)ck_alloc(sizeof(u8) * len);
memset(inf_eff_map, 1, sizeof(u8) * len);
if (common_fuzz_stuff(afl, orig_buf, len)) { return 0; }
u64 prev_cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST);
u64 _prev_cksum = prev_cksum;
if (MINIMAL_BLOCK_SIZE * 8 < len) {
// u64 size_skiped = 0, quick_skip_exec = total_execs, quick_skip_time =
// get_cur_time();
u64 pre_inf_exec = afl->fsrv.total_execs, pre_inf_time = get_cur_time();
/* if determine stage time / input size is too small, just go ahead */
u32 pos = 0, cur_block_size = MINIMAL_BLOCK_SIZE, max_block_size = len / 8;
while (pos < len - 1) {
cur_block_size = MINIMAL_BLOCK_SIZE;
while (cur_block_size < max_block_size) {
u32 flip_block_size =
(cur_block_size + pos < len) ? cur_block_size : len - 1 - pos;
afl->stage_cur += 1;
flip_range(out_buf, pos, flip_block_size);
if (common_fuzz_stuff(afl, out_buf, len)) return 0;
flip_range(out_buf, pos, flip_block_size);
u64 cksum =
hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST);
// printf("Now trying range %d with %d, %s.\n", pos, cur_block_size,
// (cksum == prev_cksum) ? (u8*)"Yes" : (u8*) "Not");
/* continue until we fail or exceed length */
if (cksum == _prev_cksum) {
cur_block_size *= 2;
if (cur_block_size >= len - 1 - pos) break;
} else {
break;
}
}
if (cur_block_size == MINIMAL_BLOCK_SIZE) {
/* we failed early on*/
pos += cur_block_size;
} else {
u32 cur_skip_len = (cur_block_size / 2 + pos < len)
? (cur_block_size / 2)
: (len - pos - 1);
memset(inf_eff_map + pos, 0, cur_skip_len);
afl->skipdet_g->inf_prof->inf_skipped_bytes += cur_skip_len;
pos += cur_skip_len;
}
}
afl->skipdet_g->inf_prof->inf_execs_cost +=
(afl->fsrv.total_execs - pre_inf_exec);
afl->skipdet_g->inf_prof->inf_time_cost += (get_cur_time() - pre_inf_time);
// PFATAL("Done, now have %d bytes skipped, with exec %lld, time %lld.\n",
// afl->inf_skipped_bytes, afl->inf_execs_cost, afl->inf_time_cost);
} else
memset(inf_eff_map, 1, len);
new_hit_cnt = afl->queued_items + afl->saved_crashes;
afl->stage_finds[STAGE_INF] += new_hit_cnt - orig_hit_cnt;
afl->stage_cycles[STAGE_INF] += afl->stage_cur;
/****************************
* Quick Skip Effective Map *
****************************/
/* Quick Effective Map Calculation */
afl->stage_short = "quick";
afl->stage_name = "quick eff";
afl->stage_cur = 0;
afl->stage_max = 32 * 1024;
orig_hit_cnt = afl->queued_items + afl->saved_crashes;
u32 before_skip_inf = afl->queued_items;
/* clean all the eff bytes, since previous eff bytes are already fuzzed */
u8 *skip_eff_map = afl->queue_cur->skipdet_e->skip_eff_map,
*done_inf_map = afl->queue_cur->skipdet_e->done_inf_map;
if (!skip_eff_map) {
skip_eff_map = (u8 *)ck_alloc(sizeof(u8) * len);
afl->queue_cur->skipdet_e->skip_eff_map = skip_eff_map;
} else {
memset(skip_eff_map, 0, sizeof(u8) * len);
}
/* restore the starting point */
if (!done_inf_map) {
done_inf_map = (u8 *)ck_alloc(sizeof(u8) * len);
afl->queue_cur->skipdet_e->done_inf_map = done_inf_map;
} else {
for (afl->stage_cur = 0; afl->stage_cur < len; afl->stage_cur++) {
if (done_inf_map[afl->stage_cur] == 0) break;
}
}
/* depending on the seed's performance, we could search eff bytes
for multiple rounds */
u8 eff_round_continue = 1, eff_round_done = 0, done_eff = 0, repeat_eff = 0,
fuzz_nearby = 0, *non_eff_bytes = 0;
u64 before_eff_execs = afl->fsrv.total_execs;
if (getenv("REPEAT_EFF")) repeat_eff = 1;
if (getenv("FUZZ_NEARBY")) fuzz_nearby = 1;
if (fuzz_nearby) {
non_eff_bytes = (u8 *)ck_alloc(sizeof(u8) * len);
// clean exec cksum
if (common_fuzz_stuff(afl, out_buf, len)) { return 0; }
prev_cksum = hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST);
}
do {
eff_round_continue = 0;
afl->stage_max = 32 * 1024;
for (; afl->stage_cur < afl->stage_max && afl->stage_cur < len;
++afl->stage_cur) {
afl->stage_cur_byte = afl->stage_cur;
if (!inf_eff_map[afl->stage_cur_byte] ||
skip_eff_map[afl->stage_cur_byte])
continue;
if (is_det_timeout(before_det_time, 1)) { goto cleanup_skipdet; }
u8 orig = out_buf[afl->stage_cur_byte], replace = rand_below(afl, 256);
while (replace == orig) {
replace = rand_below(afl, 256);
}
out_buf[afl->stage_cur_byte] = replace;
before_skip_inf = afl->queued_items;
if (common_fuzz_stuff(afl, out_buf, len)) { return 0; }
out_buf[afl->stage_cur_byte] = orig;
if (fuzz_nearby) {
if (prev_cksum ==
hash64(afl->fsrv.trace_bits, afl->fsrv.map_size, HASH_CONST)) {
non_eff_bytes[afl->stage_cur_byte] = 1;
}
}
if (afl->queued_items != before_skip_inf) {
skip_eff_map[afl->stage_cur_byte] = 1;
afl->queue_cur->skipdet_e->quick_eff_bytes += 1;
if (afl->stage_max < MAXIMUM_QUICK_EFF_EXECS) { afl->stage_max *= 2; }
if (afl->stage_max == MAXIMUM_QUICK_EFF_EXECS && repeat_eff)
eff_round_continue = 1;
}
done_inf_map[afl->stage_cur_byte] = 1;
}
afl->stage_cur = 0;
done_eff = 1;
if (++eff_round_done >= 8) break;
} while (eff_round_continue);
new_hit_cnt = afl->queued_items + afl->saved_crashes;
afl->stage_finds[STAGE_QUICK] += new_hit_cnt - orig_hit_cnt;
afl->stage_cycles[STAGE_QUICK] += (afl->fsrv.total_execs - before_eff_execs);
cleanup_skipdet:
if (fuzz_nearby) {
u8 *nearby_bytes = (u8 *)ck_alloc(sizeof(u8) * len);
u32 i = 3;
while (i < len) {
// assume DWORD size, from i - 3 -> i + 3
if (skip_eff_map[i]) {
u32 fill_length = (i + 3 < len) ? 7 : len - i + 2;
memset(nearby_bytes + i - 3, 1, fill_length);
i += 3;
} else
i += 1;
}
for (i = 0; i < len; i++) {
if (nearby_bytes[i] && !non_eff_bytes[i]) skip_eff_map[i] = 1;
}
ck_free(nearby_bytes);
ck_free(non_eff_bytes);
}
if (done_eff) {
afl->queue_cur->skipdet_e->continue_inf = 0;
afl->queue_cur->skipdet_e->done_eff = 1;
} else {
afl->queue_cur->skipdet_e->continue_inf = 1;
}
return 1;
}