| #include <benchmark/benchmark.h> |
| |
| #include <fp16.h> |
| #ifndef EMSCRIPTEN |
| #include <fp16/psimd.h> |
| #endif |
| |
| #include <vector> |
| #include <random> |
| #include <chrono> |
| #include <functional> |
| #include <algorithm> |
| |
| #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) |
| #include <immintrin.h> |
| #endif |
| |
| #if defined(__ARM_NEON__) || defined(__aarch64__) |
| #include <arm_neon.h> |
| #endif |
| |
| #ifdef FP16_COMPARATIVE_BENCHMARKS |
| #include <third-party/THHalf.h> |
| #include <third-party/npy-halffloat.h> |
| #include <third-party/eigen-half.h> |
| #include <third-party/float16-compressor.h> |
| #include <third-party/half.hpp> |
| #endif |
| |
| |
| static void fp16_ieee_from_fp32_value(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = fp16_ieee_from_fp32_value(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(fp16_ieee_from_fp32_value)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) |
| static void hardware_mm_cvtps_ph(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i += 4) { |
| _mm_storel_epi64( |
| static_cast<__m128i*>(static_cast<void*>(&output[i])), |
| _mm_cvtps_ph(_mm_loadu_ps(&input[i]), _MM_FROUND_CUR_DIRECTION)); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_mm_cvtps_ph)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void hardware_mm256_cvtps_ph(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i += 8) { |
| _mm_storeu_si128( |
| static_cast<__m128i*>(static_cast<void*>(&output[i])), |
| _mm256_cvtps_ph(_mm256_loadu_ps(&input[i]), _MM_FROUND_CUR_DIRECTION)); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_mm256_cvtps_ph)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| #if defined(__ARM_NEON_FP) && (__ARM_NEON_FP & 0x2) || defined(__aarch64__) |
| static void hardware_vcvt_f16_f32(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| #if defined(__aarch64__) |
| const unsigned int fpcr = __builtin_aarch64_get_fpcr(); |
| /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ |
| __builtin_aarch64_set_fpcr(fpcr & 0xF6FFFFFFu); |
| #else |
| unsigned int fpscr; |
| __asm__ __volatile__ ("VMRS %[fpscr], fpscr" : [fpscr] "=r" (fpscr)); |
| /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ |
| __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" : |
| : [fpscr] "r" (fpscr & 0xF6FFFFFFu)); |
| #endif |
| for (size_t i = 0; i < n; i += 4) { |
| vst1_u16(&output[i], |
| (uint16x4_t) vcvt_f16_f32( |
| vld1q_f32(&input[i]))); |
| } |
| #if defined(__aarch64__) |
| __builtin_aarch64_set_fpcr(fpcr); |
| #else |
| __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :: [fpscr] "r" (fpscr)); |
| #endif |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_vcvt_f16_f32)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| #ifdef FP16_COMPARATIVE_BENCHMARKS |
| static void TH_float2halfbits(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| TH_float2halfbits(&input[i], &output[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(TH_float2halfbits)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void npy_floatbits_to_halfbits(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = npy_floatbits_to_halfbits(fp32_to_bits(input[i])); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(npy_floatbits_to_halfbits)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void Eigen_float_to_half_rtne(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = Eigen::half_impl::float_to_half_rtne(input[i]).x; |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(Eigen_float_to_half_rtne)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void Float16Compressor_compress(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = Float16Compressor::compress(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(Float16Compressor_compress)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void half_float_detail_float2half_table(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = |
| half_float::detail::float2half_impl<std::round_to_nearest>( |
| input[i], half_float::detail::true_type()); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(half_float_detail_float2half_table)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void half_float_detail_float2half_branch(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<float> fp32(state.range(0)); |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::generate(fp32.begin(), fp32.end(), std::ref(rng)); |
| |
| while (state.KeepRunning()) { |
| float* input = fp32.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint16_t* output = fp16.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = |
| half_float::detail::float2half_impl<std::round_to_nearest>( |
| input[i], half_float::detail::false_type()); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(half_float_detail_float2half_branch)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| BENCHMARK_MAIN(); |