| #include <benchmark/benchmark.h> |
| |
| #include <fp16.h> |
| #ifndef EMSCRIPTEN |
| #include <fp16/psimd.h> |
| #endif |
| |
| #include <vector> |
| #include <random> |
| #include <chrono> |
| #include <functional> |
| #include <algorithm> |
| |
| #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) |
| #include <immintrin.h> |
| #endif |
| |
| #if defined(__ARM_NEON__) || defined(__aarch64__) |
| #include <arm_neon.h> |
| #endif |
| |
| #ifdef FP16_COMPARATIVE_BENCHMARKS |
| #include <third-party/THHalf.h> |
| #include <third-party/npy-halffloat.h> |
| #include <third-party/eigen-half.h> |
| #include <third-party/float16-compressor.h> |
| #include <third-party/half.hpp> |
| #endif |
| |
| |
| static void fp16_ieee_to_fp32_bits(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<uint32_t> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint32_t* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = fp16_ieee_to_fp32_bits(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(fp16_ieee_to_fp32_bits)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void fp16_ieee_to_fp32_value(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = fp16_ieee_to_fp32_value(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(fp16_ieee_to_fp32_value)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| #ifndef EMSCRIPTEN |
| static void fp16_ieee_to_fp32_psimd(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n - 4; i += 4) { |
| psimd_store_f32(&output[i], |
| fp16_ieee_to_fp32_psimd( |
| psimd_load_u16(&input[i]))); |
| } |
| const psimd_u16 last_vector = { input[n - 4], input[n - 3], input[n - 2], input[n - 1] }; |
| psimd_store_f32(&output[n - 4], |
| fp16_ieee_to_fp32_psimd(last_vector)); |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(fp16_ieee_to_fp32_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void fp16_ieee_to_fp32x2_psimd(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i += 8) { |
| const psimd_f32x2 data = |
| fp16_ieee_to_fp32x2_psimd( |
| psimd_load_u16(&input[i])); |
| psimd_store_f32(&output[i], data.lo); |
| psimd_store_f32(&output[i + 4], data.hi); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(fp16_ieee_to_fp32x2_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) |
| static void hardware_mm_cvtph_ps(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i += 4) { |
| _mm_storeu_ps(&output[i], |
| _mm_cvtph_ps( |
| _mm_loadl_epi64(static_cast<const __m128i*>(static_cast<const void*>(&input[i]))))); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_mm_cvtph_ps)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void hardware_mm256_cvtph_ps(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i += 8) { |
| _mm256_storeu_ps(&output[i], |
| _mm256_cvtph_ps( |
| _mm_loadu_si128(static_cast<const __m128i*>(static_cast<const void*>(&input[i]))))); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_mm256_cvtph_ps)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| #if defined(__ARM_NEON_FP) && (__ARM_NEON_FP & 0x2) || defined(__aarch64__) |
| static void hardware_vcvt_f32_f16(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| #if defined(__aarch64__) |
| const unsigned int fpcr = __builtin_aarch64_get_fpcr(); |
| /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ |
| __builtin_aarch64_set_fpcr(fpcr & 0xF6FFFFFFu); |
| #else |
| unsigned int fpscr; |
| __asm__ __volatile__ ("VMRS %[fpscr], fpscr" : [fpscr] "=r" (fpscr)); |
| /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ |
| __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" : |
| : [fpscr] "r" (fpscr & 0xF6FFFFFFu)); |
| #endif |
| for (size_t i = 0; i < n; i += 4) { |
| vst1q_f32(&output[i], |
| vcvt_f32_f16( |
| (float16x4_t) vld1_u16(&input[i]))); |
| } |
| #if defined(__aarch64__) |
| __builtin_aarch64_set_fpcr(fpcr); |
| #else |
| __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :: [fpscr] "r" (fpscr)); |
| #endif |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(hardware_vcvt_f32_f16)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| #ifdef FP16_COMPARATIVE_BENCHMARKS |
| static void TH_halfbits2float(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| TH_halfbits2float(&input[i], &output[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(TH_halfbits2float)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void npy_halfbits_to_floatbits(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<uint32_t> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| uint32_t* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = npy_halfbits_to_floatbits(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(npy_halfbits_to_floatbits)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void Eigen_half_to_float(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = |
| Eigen::half_impl::half_to_float( |
| Eigen::half_impl::raw_uint16_to_half(input[i])); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(Eigen_half_to_float)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void Float16Compressor_decompress(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = Float16Compressor::decompress(input[i]); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(Float16Compressor_decompress)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void half_float_detail_half2float_table(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = half_float::detail::half2float_impl(input[i], |
| half_float::detail::true_type()); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(half_float_detail_half2float_table)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| |
| static void half_float_detail_half2float_branch(benchmark::State& state) { |
| const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); |
| auto rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::mt19937(seed)); |
| |
| std::vector<uint16_t> fp16(state.range(0)); |
| std::vector<float> fp32(state.range(0)); |
| std::generate(fp16.begin(), fp16.end(), |
| [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); |
| |
| while (state.KeepRunning()) { |
| uint16_t* input = fp16.data(); |
| benchmark::DoNotOptimize(input); |
| |
| float* output = fp32.data(); |
| const size_t n = state.range(0); |
| for (size_t i = 0; i < n; i++) { |
| output[i] = half_float::detail::half2float_impl(input[i], |
| half_float::detail::false_type()); |
| } |
| |
| benchmark::DoNotOptimize(output); |
| } |
| state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); |
| } |
| BENCHMARK(half_float_detail_half2float_branch)->RangeMultiplier(2)->Range(1<<10, 64<<20); |
| #endif |
| |
| BENCHMARK_MAIN(); |