| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % RRRR EEEEE SSSSS IIIII ZZZZZ EEEEE % |
| % R R E SS I ZZ E % |
| % RRRR EEE SSS I ZZZ EEE % |
| % R R E SS I ZZ E % |
| % R R EEEEE SSSSS IIIII ZZZZZ EEEEE % |
| % % |
| % % |
| % MagickCore Image Resize Methods % |
| % % |
| % Software Design % |
| % Cristy % |
| % July 1992 % |
| % % |
| % % |
| % Copyright 1999-2018 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % https://www.imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "MagickCore/studio.h" |
| #include "MagickCore/accelerate-private.h" |
| #include "MagickCore/artifact.h" |
| #include "MagickCore/blob.h" |
| #include "MagickCore/cache.h" |
| #include "MagickCore/cache-view.h" |
| #include "MagickCore/channel.h" |
| #include "MagickCore/color.h" |
| #include "MagickCore/color-private.h" |
| #include "MagickCore/draw.h" |
| #include "MagickCore/exception.h" |
| #include "MagickCore/exception-private.h" |
| #include "MagickCore/gem.h" |
| #include "MagickCore/image.h" |
| #include "MagickCore/image-private.h" |
| #include "MagickCore/list.h" |
| #include "MagickCore/memory_.h" |
| #include "MagickCore/memory-private.h" |
| #include "MagickCore/magick.h" |
| #include "MagickCore/pixel-accessor.h" |
| #include "MagickCore/property.h" |
| #include "MagickCore/monitor.h" |
| #include "MagickCore/monitor-private.h" |
| #include "MagickCore/nt-base-private.h" |
| #include "MagickCore/option.h" |
| #include "MagickCore/pixel.h" |
| #include "MagickCore/pixel-private.h" |
| #include "MagickCore/quantum-private.h" |
| #include "MagickCore/resample.h" |
| #include "MagickCore/resample-private.h" |
| #include "MagickCore/resize.h" |
| #include "MagickCore/resize-private.h" |
| #include "MagickCore/resource_.h" |
| #include "MagickCore/string_.h" |
| #include "MagickCore/string-private.h" |
| #include "MagickCore/thread-private.h" |
| #include "MagickCore/token.h" |
| #include "MagickCore/utility.h" |
| #include "MagickCore/utility-private.h" |
| #include "MagickCore/version.h" |
| #if defined(MAGICKCORE_LQR_DELEGATE) |
| #include <lqr.h> |
| #endif |
| |
| /* |
| Typedef declarations. |
| */ |
| struct _ResizeFilter |
| { |
| double |
| (*filter)(const double,const ResizeFilter *), |
| (*window)(const double,const ResizeFilter *), |
| support, /* filter region of support - the filter support limit */ |
| window_support, /* window support, usally equal to support (expert only) */ |
| scale, /* dimension scaling to fit window support (usally 1.0) */ |
| blur, /* x-scale (blur-sharpen) */ |
| coefficient[7]; /* cubic coefficents for BC-cubic filters */ |
| |
| ResizeWeightingFunctionType |
| filterWeightingType, |
| windowWeightingType; |
| |
| size_t |
| signature; |
| }; |
| |
| /* |
| Forward declaractions. |
| */ |
| static double |
| I0(double x), |
| BesselOrderOne(double), |
| Sinc(const double, const ResizeFilter *), |
| SincFast(const double, const ResizeFilter *); |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + F i l t e r F u n c t i o n s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % These are the various filter and windowing functions that are provided. |
| % |
| % They are internal to this module only. See AcquireResizeFilterInfo() for |
| % details of the access to these functions, via the GetResizeFilterSupport() |
| % and GetResizeFilterWeight() API interface. |
| % |
| % The individual filter functions have this format... |
| % |
| % static MagickRealtype *FilterName(const double x,const double support) |
| % |
| % A description of each parameter follows: |
| % |
| % o x: the distance from the sampling point generally in the range of 0 to |
| % support. The GetResizeFilterWeight() ensures this a positive value. |
| % |
| % o resize_filter: current filter information. This allows function to |
| % access support, and possibly other pre-calculated information defining |
| % the functions. |
| % |
| */ |
| |
| static double Blackman(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| /* |
| Blackman: 2nd order cosine windowing function: |
| 0.42 + 0.5 cos(pi x) + 0.08 cos(2pi x) |
| |
| Refactored by Chantal Racette and Nicolas Robidoux to one trig call and |
| five flops. |
| */ |
| const double cosine=cos((double) (MagickPI*x)); |
| magick_unreferenced(resize_filter); |
| return(0.34+cosine*(0.5+cosine*0.16)); |
| } |
| |
| static double Bohman(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| /* |
| Bohman: 2rd Order cosine windowing function: |
| (1-x) cos(pi x) + sin(pi x) / pi. |
| |
| Refactored by Nicolas Robidoux to one trig call, one sqrt call, and 7 flops, |
| taking advantage of the fact that the support of Bohman is 1.0 (so that we |
| know that sin(pi x) >= 0). |
| */ |
| const double cosine=cos((double) (MagickPI*x)); |
| const double sine=sqrt(1.0-cosine*cosine); |
| magick_unreferenced(resize_filter); |
| return((1.0-x)*cosine+(1.0/MagickPI)*sine); |
| } |
| |
| static double Box(const double magick_unused(x), |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(x); |
| magick_unreferenced(resize_filter); |
| |
| /* |
| A Box filter is a equal weighting function (all weights equal). |
| DO NOT LIMIT results by support or resize point sampling will work |
| as it requests points beyond its normal 0.0 support size. |
| */ |
| return(1.0); |
| } |
| |
| static double Cosine(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| Cosine window function: |
| cos((pi/2)*x). |
| */ |
| return((double)cos((double) (MagickPI2*x))); |
| } |
| |
| static double CubicBC(const double x,const ResizeFilter *resize_filter) |
| { |
| /* |
| Cubic Filters using B,C determined values: |
| Mitchell-Netravali B = 1/3 C = 1/3 "Balanced" cubic spline filter |
| Catmull-Rom B = 0 C = 1/2 Interpolatory and exact on linears |
| Spline B = 1 C = 0 B-Spline Gaussian approximation |
| Hermite B = 0 C = 0 B-Spline interpolator |
| |
| See paper by Mitchell and Netravali, Reconstruction Filters in Computer |
| Graphics Computer Graphics, Volume 22, Number 4, August 1988 |
| http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/ |
| Mitchell.pdf. |
| |
| Coefficents are determined from B,C values: |
| P0 = ( 6 - 2*B )/6 = coeff[0] |
| P1 = 0 |
| P2 = (-18 +12*B + 6*C )/6 = coeff[1] |
| P3 = ( 12 - 9*B - 6*C )/6 = coeff[2] |
| Q0 = ( 8*B +24*C )/6 = coeff[3] |
| Q1 = ( -12*B -48*C )/6 = coeff[4] |
| Q2 = ( 6*B +30*C )/6 = coeff[5] |
| Q3 = ( - 1*B - 6*C )/6 = coeff[6] |
| |
| which are used to define the filter: |
| |
| P0 + P1*x + P2*x^2 + P3*x^3 0 <= x < 1 |
| Q0 + Q1*x + Q2*x^2 + Q3*x^3 1 <= x < 2 |
| |
| which ensures function is continuous in value and derivative (slope). |
| */ |
| if (x < 1.0) |
| return(resize_filter->coefficient[0]+x*(x* |
| (resize_filter->coefficient[1]+x*resize_filter->coefficient[2]))); |
| if (x < 2.0) |
| return(resize_filter->coefficient[3]+x*(resize_filter->coefficient[4]+x* |
| (resize_filter->coefficient[5]+x*resize_filter->coefficient[6]))); |
| return(0.0); |
| } |
| |
| static double CubicSpline(const double x,const ResizeFilter *resize_filter) |
| { |
| if (resize_filter->support <= 2.0) |
| { |
| /* |
| 2-lobe Spline filter. |
| */ |
| if (x < 1.0) |
| return(((x-9.0/5.0)*x-1.0/5.0)*x+1.0); |
| if (x < 2.0) |
| return(((-1.0/3.0*(x-1.0)+4.0/5.0)*(x-1.0)-7.0/15.0)*(x-1.0)); |
| return(0.0); |
| } |
| if (resize_filter->support <= 3.0) |
| { |
| /* |
| 3-lobe Spline filter. |
| */ |
| if (x < 1.0) |
| return(((13.0/11.0*x-453.0/209.0)*x-3.0/209.0)*x+1.0); |
| if (x < 2.0) |
| return(((-6.0/11.0*(x-1.0)+270.0/209.0)*(x-1.0)-156.0/209.0)*(x-1.0)); |
| if (x < 3.0) |
| return(((1.0/11.0*(x-2.0)-45.0/209.0)*(x-2.0)+26.0/209.0)*(x-2.0)); |
| return(0.0); |
| } |
| /* |
| 4-lobe Spline filter. |
| */ |
| if (x < 1.0) |
| return(((49.0/41.0*x-6387.0/2911.0)*x-3.0/2911.0)*x+1.0); |
| if (x < 2.0) |
| return(((-24.0/41.0*(x-1.0)+4032.0/2911.0)*(x-1.0)-2328.0/2911.0)*(x-1.0)); |
| if (x < 3.0) |
| return(((6.0/41.0*(x-2.0)-1008.0/2911.0)*(x-2.0)+582.0/2911.0)*(x-2.0)); |
| if (x < 4.0) |
| return(((-1.0/41.0*(x-3.0)+168.0/2911.0)*(x-3.0)-97.0/2911.0)*(x-3.0)); |
| return(0.0); |
| } |
| |
| static double Gaussian(const double x,const ResizeFilter *resize_filter) |
| { |
| /* |
| Gaussian with a sigma = 1/2 (or as user specified) |
| |
| Gaussian Formula (1D) ... |
| exp( -(x^2)/((2.0*sigma^2) ) / (sqrt(2*PI)*sigma^2)) |
| |
| Gaussian Formula (2D) ... |
| exp( -(x^2+y^2)/(2.0*sigma^2) ) / (PI*sigma^2) ) |
| or for radius |
| exp( -(r^2)/(2.0*sigma^2) ) / (PI*sigma^2) ) |
| |
| Note that it is only a change from 1-d to radial form is in the |
| normalization multiplier which is not needed or used when Gaussian is used |
| as a filter. |
| |
| The constants are pre-calculated... |
| |
| coeff[0]=sigma; |
| coeff[1]=1.0/(2.0*sigma^2); |
| coeff[2]=1.0/(sqrt(2*PI)*sigma^2); |
| |
| exp( -coeff[1]*(x^2)) ) * coeff[2]; |
| |
| However the multiplier coeff[1] is need, the others are informative only. |
| |
| This separates the gaussian 'sigma' value from the 'blur/support' |
| settings allowing for its use in special 'small sigma' gaussians, |
| without the filter 'missing' pixels because the support becomes too |
| small. |
| */ |
| return(exp((double)(-resize_filter->coefficient[1]*x*x))); |
| } |
| |
| static double Hann(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| /* |
| Cosine window function: |
| 0.5+0.5*cos(pi*x). |
| */ |
| const double cosine=cos((double) (MagickPI*x)); |
| magick_unreferenced(resize_filter); |
| return(0.5+0.5*cosine); |
| } |
| |
| static double Hamming(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| /* |
| Offset cosine window function: |
| .54 + .46 cos(pi x). |
| */ |
| const double cosine=cos((double) (MagickPI*x)); |
| magick_unreferenced(resize_filter); |
| return(0.54+0.46*cosine); |
| } |
| |
| static double Jinc(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| See Pratt "Digital Image Processing" p.97 for Jinc/Bessel functions. |
| http://mathworld.wolfram.com/JincFunction.html and page 11 of |
| http://www.ph.ed.ac.uk/%7ewjh/teaching/mo/slides/lens/lens.pdf |
| |
| The original "zoom" program by Paul Heckbert called this "Bessel". But |
| really it is more accurately named "Jinc". |
| */ |
| if (x == 0.0) |
| return(0.5*MagickPI); |
| return(BesselOrderOne(MagickPI*x)/x); |
| } |
| |
| static double Kaiser(const double x,const ResizeFilter *resize_filter) |
| { |
| /* |
| Kaiser Windowing Function (bessel windowing) |
| |
| I0( beta * sqrt( 1-x^2) ) / IO(0) |
| |
| Beta (coeff[0]) is a free value from 5 to 8 (defaults to 6.5). |
| However it is typically defined in terms of Alpha*PI |
| |
| The normalization factor (coeff[1]) is not actually needed, |
| but without it the filters has a large value at x=0 making it |
| difficult to compare the function with other windowing functions. |
| */ |
| return(resize_filter->coefficient[1]*I0(resize_filter->coefficient[0]* |
| sqrt((double) (1.0-x*x)))); |
| } |
| |
| static double Lagrange(const double x,const ResizeFilter *resize_filter) |
| { |
| double |
| value; |
| |
| register ssize_t |
| i; |
| |
| ssize_t |
| n, |
| order; |
| |
| /* |
| Lagrange piecewise polynomial fit of sinc: N is the 'order' of the lagrange |
| function and depends on the overall support window size of the filter. That |
| is: for a support of 2, it gives a lagrange-4 (piecewise cubic function). |
| |
| "n" identifies the piece of the piecewise polynomial. |
| |
| See Survey: Interpolation Methods, IEEE Transactions on Medical Imaging, |
| Vol 18, No 11, November 1999, p1049-1075, -- Equation 27 on p1064. |
| */ |
| if (x > resize_filter->support) |
| return(0.0); |
| order=(ssize_t) (2.0*resize_filter->window_support); /* number of pieces */ |
| n=(ssize_t) (resize_filter->window_support+x); |
| value=1.0f; |
| for (i=0; i < order; i++) |
| if (i != n) |
| value*=(n-i-x)/(n-i); |
| return(value); |
| } |
| |
| static double Quadratic(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| 2rd order (quadratic) B-Spline approximation of Gaussian. |
| */ |
| if (x < 0.5) |
| return(0.75-x*x); |
| if (x < 1.5) |
| return(0.5*(x-1.5)*(x-1.5)); |
| return(0.0); |
| } |
| |
| static double Sinc(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| Scaled sinc(x) function using a trig call: |
| sinc(x) == sin(pi x)/(pi x). |
| */ |
| if (x != 0.0) |
| { |
| const double alpha=(double) (MagickPI*x); |
| return(sin((double) alpha)/alpha); |
| } |
| return((double) 1.0); |
| } |
| |
| static double SincFast(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| Approximations of the sinc function sin(pi x)/(pi x) over the interval |
| [-4,4] constructed by Nicolas Robidoux and Chantal Racette with funding |
| from the Natural Sciences and Engineering Research Council of Canada. |
| |
| Although the approximations are polynomials (for low order of |
| approximation) and quotients of polynomials (for higher order of |
| approximation) and consequently are similar in form to Taylor polynomials / |
| Pade approximants, the approximations are computed with a completely |
| different technique. |
| |
| Summary: These approximations are "the best" in terms of bang (accuracy) |
| for the buck (flops). More specifically: Among the polynomial quotients |
| that can be computed using a fixed number of flops (with a given "+ - * / |
| budget"), the chosen polynomial quotient is the one closest to the |
| approximated function with respect to maximum absolute relative error over |
| the given interval. |
| |
| The Remez algorithm, as implemented in the boost library's minimax package, |
| is the key to the construction: http://www.boost.org/doc/libs/1_36_0/libs/ |
| math/doc/sf_and_dist/html/math_toolkit/backgrounders/remez.html |
| |
| If outside of the interval of approximation, use the standard trig formula. |
| */ |
| if (x > 4.0) |
| { |
| const double alpha=(double) (MagickPI*x); |
| return(sin((double) alpha)/alpha); |
| } |
| { |
| /* |
| The approximations only depend on x^2 (sinc is an even function). |
| */ |
| const double xx = x*x; |
| #if MAGICKCORE_QUANTUM_DEPTH <= 8 |
| /* |
| Maximum absolute relative error 6.3e-6 < 1/2^17. |
| */ |
| const double c0 = 0.173610016489197553621906385078711564924e-2L; |
| const double c1 = -0.384186115075660162081071290162149315834e-3L; |
| const double c2 = 0.393684603287860108352720146121813443561e-4L; |
| const double c3 = -0.248947210682259168029030370205389323899e-5L; |
| const double c4 = 0.107791837839662283066379987646635416692e-6L; |
| const double c5 = -0.324874073895735800961260474028013982211e-8L; |
| const double c6 = 0.628155216606695311524920882748052490116e-10L; |
| const double c7 = -0.586110644039348333520104379959307242711e-12L; |
| const double p = |
| c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*c7)))))); |
| return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)*p); |
| #elif MAGICKCORE_QUANTUM_DEPTH <= 16 |
| /* |
| Max. abs. rel. error 2.2e-8 < 1/2^25. |
| */ |
| const double c0 = 0.173611107357320220183368594093166520811e-2L; |
| const double c1 = -0.384240921114946632192116762889211361285e-3L; |
| const double c2 = 0.394201182359318128221229891724947048771e-4L; |
| const double c3 = -0.250963301609117217660068889165550534856e-5L; |
| const double c4 = 0.111902032818095784414237782071368805120e-6L; |
| const double c5 = -0.372895101408779549368465614321137048875e-8L; |
| const double c6 = 0.957694196677572570319816780188718518330e-10L; |
| const double c7 = -0.187208577776590710853865174371617338991e-11L; |
| const double c8 = 0.253524321426864752676094495396308636823e-13L; |
| const double c9 = -0.177084805010701112639035485248501049364e-15L; |
| const double p = |
| c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*(c7+xx*(c8+xx*c9)))))))); |
| return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)*p); |
| #else |
| /* |
| Max. abs. rel. error 1.2e-12 < 1/2^39. |
| */ |
| const double c0 = 0.173611111110910715186413700076827593074e-2L; |
| const double c1 = -0.289105544717893415815859968653611245425e-3L; |
| const double c2 = 0.206952161241815727624413291940849294025e-4L; |
| const double c3 = -0.834446180169727178193268528095341741698e-6L; |
| const double c4 = 0.207010104171026718629622453275917944941e-7L; |
| const double c5 = -0.319724784938507108101517564300855542655e-9L; |
| const double c6 = 0.288101675249103266147006509214934493930e-11L; |
| const double c7 = -0.118218971804934245819960233886876537953e-13L; |
| const double p = |
| c0+xx*(c1+xx*(c2+xx*(c3+xx*(c4+xx*(c5+xx*(c6+xx*c7)))))); |
| const double d0 = 1.0L; |
| const double d1 = 0.547981619622284827495856984100563583948e-1L; |
| const double d2 = 0.134226268835357312626304688047086921806e-2L; |
| const double d3 = 0.178994697503371051002463656833597608689e-4L; |
| const double d4 = 0.114633394140438168641246022557689759090e-6L; |
| const double q = d0+xx*(d1+xx*(d2+xx*(d3+xx*d4))); |
| return((xx-1.0)*(xx-4.0)*(xx-9.0)*(xx-16.0)/q*p); |
| #endif |
| } |
| } |
| |
| static double Triangle(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| 1st order (linear) B-Spline, bilinear interpolation, Tent 1D filter, or |
| a Bartlett 2D Cone filter. Also used as a Bartlett Windowing function |
| for Sinc(). |
| */ |
| if (x < 1.0) |
| return(1.0-x); |
| return(0.0); |
| } |
| |
| static double Welch(const double x, |
| const ResizeFilter *magick_unused(resize_filter)) |
| { |
| magick_unreferenced(resize_filter); |
| |
| /* |
| Welch parabolic windowing filter. |
| */ |
| if (x < 1.0) |
| return(1.0-x*x); |
| return(0.0); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + A c q u i r e R e s i z e F i l t e r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireResizeFilter() allocates the ResizeFilter structure. Choose from |
| % these filters: |
| % |
| % FIR (Finite impulse Response) Filters |
| % Box Triangle Quadratic |
| % Spline Hermite Catrom |
| % Mitchell |
| % |
| % IIR (Infinite impulse Response) Filters |
| % Gaussian Sinc Jinc (Bessel) |
| % |
| % Windowed Sinc/Jinc Filters |
| % Blackman Bohman Lanczos |
| % Hann Hamming Cosine |
| % Kaiser Welch Parzen |
| % Bartlett |
| % |
| % Special Purpose Filters |
| % Cubic SincFast LanczosSharp Lanczos2 Lanczos2Sharp |
| % Robidoux RobidouxSharp |
| % |
| % The users "-filter" selection is used to lookup the default 'expert' |
| % settings for that filter from a internal table. However any provided |
| % 'expert' settings (see below) may override this selection. |
| % |
| % FIR filters are used as is, and are limited to that filters support window |
| % (unless over-ridden). 'Gaussian' while classed as an IIR filter, is also |
| % simply clipped by its support size (currently 1.5 or approximately 3*sigma |
| % as recommended by many references) |
| % |
| % The special a 'cylindrical' filter flag will promote the default 4-lobed |
| % Windowed Sinc filter to a 3-lobed Windowed Jinc equivalent, which is better |
| % suited to this style of image resampling. This typically happens when using |
| % such a filter for images distortions. |
| % |
| % SPECIFIC FILTERS: |
| % |
| % Directly requesting 'Sinc', 'Jinc' function as a filter will force the use |
| % of function without any windowing, or promotion for cylindrical usage. This |
| % is not recommended, except by image processing experts, especially as part |
| % of expert option filter function selection. |
| % |
| % Two forms of the 'Sinc' function are available: Sinc and SincFast. Sinc is |
| % computed using the traditional sin(pi*x)/(pi*x); it is selected if the user |
| % specifically specifies the use of a Sinc filter. SincFast uses highly |
| % accurate (and fast) polynomial (low Q) and rational (high Q) approximations, |
| % and will be used by default in most cases. |
| % |
| % The Lanczos filter is a special 3-lobed Sinc-windowed Sinc filter (promoted |
| % to Jinc-windowed Jinc for cylindrical (Elliptical Weighted Average) use). |
| % The Sinc version is the most popular windowed filter. |
| % |
| % LanczosSharp is a slightly sharpened (blur=0.9812505644269356 < 1) form of |
| % the Lanczos filter, specifically designed for EWA distortion (as a |
| % Jinc-Jinc); it can also be used as a slightly sharper orthogonal Lanczos |
| % (Sinc-Sinc) filter. The chosen blur value comes as close as possible to |
| % satisfying the following condition without changing the character of the |
| % corresponding EWA filter: |
| % |
| % 'No-Op' Vertical and Horizontal Line Preservation Condition: Images with |
| % only vertical or horizontal features are preserved when performing 'no-op" |
| % with EWA distortion. |
| % |
| % The Lanczos2 and Lanczos2Sharp filters are 2-lobe versions of the Lanczos |
| % filters. The 'sharp' version uses a blur factor of 0.9549963639785485, |
| % again chosen because the resulting EWA filter comes as close as possible to |
| % satisfying the above condition. |
| % |
| % Robidoux is another filter tuned for EWA. It is the Keys cubic filter |
| % defined by B=(228 - 108 sqrt(2))/199. Robidoux satisfies the "'No-Op' |
| % Vertical and Horizontal Line Preservation Condition" exactly, and it |
| % moderately blurs high frequency 'pixel-hash' patterns under no-op. It turns |
| % out to be close to both Mitchell and Lanczos2Sharp. For example, its first |
| % crossing is at (36 sqrt(2) + 123)/(72 sqrt(2) + 47), almost the same as the |
| % first crossing of Mitchell and Lanczos2Sharp. |
| % |
| % RodidouxSharp is a slightly sharper version of Rodidoux, some believe it |
| % is too sharp. It is designed to minimize the maximum possible change in |
| % a pixel value which is at one of the extremes (e.g., 0 or 255) under no-op |
| % conditions. Amazingly Mitchell falls roughly between Rodidoux and |
| % RodidouxSharp, though this seems to have been pure coincidence. |
| % |
| % 'EXPERT' OPTIONS: |
| % |
| % These artifact "defines" are not recommended for production use without |
| % expert knowledge of resampling, filtering, and the effects they have on the |
| % resulting resampled (resized or distorted) image. |
| % |
| % They can be used to override any and all filter default, and it is |
| % recommended you make good use of "filter:verbose" to make sure that the |
| % overall effect of your selection (before and after) is as expected. |
| % |
| % "filter:verbose" controls whether to output the exact results of the |
| % filter selections made, as well as plotting data for graphing the |
| % resulting filter over the filters support range. |
| % |
| % "filter:filter" select the main function associated with this filter |
| % name, as the weighting function of the filter. This can be used to |
| % set a windowing function as a weighting function, for special |
| % purposes, such as graphing. |
| % |
| % If a "filter:window" operation has not been provided, a 'Box' |
| % windowing function will be set to denote that no windowing function is |
| % being used. |
| % |
| % "filter:window" Select this windowing function for the filter. While any |
| % filter could be used as a windowing function, using the 'first lobe' of |
| % that filter over the whole support window, using a non-windowing |
| % function is not advisible. If no weighting filter function is specified |
| % a 'SincFast' filter is used. |
| % |
| % "filter:lobes" Number of lobes to use for the Sinc/Jinc filter. This a |
| % simpler method of setting filter support size that will correctly |
| % handle the Sinc/Jinc switch for an operators filtering requirements. |
| % Only integers should be given. |
| % |
| % "filter:support" Set the support size for filtering to the size given. |
| % This not recommended for Sinc/Jinc windowed filters (lobes should be |
| % used instead). This will override any 'filter:lobes' option. |
| % |
| % "filter:win-support" Scale windowing function to this size instead. This |
| % causes the windowing (or self-windowing Lagrange filter) to act is if |
| % the support window it much much larger than what is actually supplied |
| % to the calling operator. The filter however is still clipped to the |
| % real support size given, by the support range supplied to the caller. |
| % If unset this will equal the normal filter support size. |
| % |
| % "filter:blur" Scale the filter and support window by this amount. A value |
| % of > 1 will generally result in a more blurred image with more ringing |
| % effects, while a value <1 will sharpen the resulting image with more |
| % aliasing effects. |
| % |
| % "filter:sigma" The sigma value to use for the Gaussian filter only. |
| % Defaults to '1/2'. Using a different sigma effectively provides a |
| % method of using the filter as a 'blur' convolution. Particularly when |
| % using it for Distort. |
| % |
| % "filter:b" |
| % "filter:c" Override the preset B,C values for a Cubic filter. |
| % If only one of these are given it is assumes to be a 'Keys' type of |
| % filter such that B+2C=1, where Keys 'alpha' value = C. |
| % |
| % Examples: |
| % |
| % Set a true un-windowed Sinc filter with 10 lobes (very slow): |
| % -define filter:filter=Sinc |
| % -define filter:lobes=8 |
| % |
| % Set an 8 lobe Lanczos (Sinc or Jinc) filter: |
| % -filter Lanczos |
| % -define filter:lobes=8 |
| % |
| % The format of the AcquireResizeFilter method is: |
| % |
| % ResizeFilter *AcquireResizeFilter(const Image *image, |
| % const FilterType filter_type,const MagickBooleanType cylindrical, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o filter: the filter type, defining a preset filter, window and support. |
| % The artifact settings listed above will override those selections. |
| % |
| % o blur: blur the filter by this amount, use 1.0 if unknown. Image |
| % artifact "filter:blur" will override this API call usage, including any |
| % internal change (such as for cylindrical usage). |
| % |
| % o radial: use a 1D orthogonal filter (Sinc) or 2D cylindrical (radial) |
| % filter (Jinc). |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickPrivate ResizeFilter *AcquireResizeFilter(const Image *image, |
| const FilterType filter,const MagickBooleanType cylindrical, |
| ExceptionInfo *exception) |
| { |
| const char |
| *artifact; |
| |
| FilterType |
| filter_type, |
| window_type; |
| |
| double |
| B, |
| C, |
| value; |
| |
| register ResizeFilter |
| *resize_filter; |
| |
| /* |
| Table Mapping given Filter, into Weighting and Windowing functions. |
| A 'Box' windowing function means its a simble non-windowed filter. |
| An 'SincFast' filter function could be upgraded to a 'Jinc' filter if a |
| "cylindrical" is requested, unless a 'Sinc' or 'SincFast' filter was |
| specifically requested by the user. |
| |
| WARNING: The order of this table must match the order of the FilterType |
| enumeration specified in "resample.h", or the filter names will not match |
| the filter being setup. |
| |
| You can check filter setups with the "filter:verbose" expert setting. |
| */ |
| static struct |
| { |
| FilterType |
| filter, |
| window; |
| } const mapping[SentinelFilter] = |
| { |
| { UndefinedFilter, BoxFilter }, /* Undefined (default to Box) */ |
| { PointFilter, BoxFilter }, /* SPECIAL: Nearest neighbour */ |
| { BoxFilter, BoxFilter }, /* Box averaging filter */ |
| { TriangleFilter, BoxFilter }, /* Linear interpolation filter */ |
| { HermiteFilter, BoxFilter }, /* Hermite interpolation filter */ |
| { SincFastFilter, HannFilter }, /* Hann -- cosine-sinc */ |
| { SincFastFilter, HammingFilter }, /* Hamming -- '' variation */ |
| { SincFastFilter, BlackmanFilter }, /* Blackman -- 2*cosine-sinc */ |
| { GaussianFilter, BoxFilter }, /* Gaussian blur filter */ |
| { QuadraticFilter, BoxFilter }, /* Quadratic Gaussian approx */ |
| { CubicFilter, BoxFilter }, /* General Cubic Filter, Spline */ |
| { CatromFilter, BoxFilter }, /* Cubic-Keys interpolator */ |
| { MitchellFilter, BoxFilter }, /* 'Ideal' Cubic-Keys filter */ |
| { JincFilter, BoxFilter }, /* Raw 3-lobed Jinc function */ |
| { SincFilter, BoxFilter }, /* Raw 4-lobed Sinc function */ |
| { SincFastFilter, BoxFilter }, /* Raw fast sinc ("Pade"-type) */ |
| { SincFastFilter, KaiserFilter }, /* Kaiser -- square root-sinc */ |
| { LanczosFilter, WelchFilter }, /* Welch -- parabolic (3 lobe) */ |
| { SincFastFilter, CubicFilter }, /* Parzen -- cubic-sinc */ |
| { SincFastFilter, BohmanFilter }, /* Bohman -- 2*cosine-sinc */ |
| { SincFastFilter, TriangleFilter }, /* Bartlett -- triangle-sinc */ |
| { LagrangeFilter, BoxFilter }, /* Lagrange self-windowing */ |
| { LanczosFilter, LanczosFilter }, /* Lanczos Sinc-Sinc filters */ |
| { LanczosSharpFilter, LanczosSharpFilter }, /* | these require */ |
| { Lanczos2Filter, Lanczos2Filter }, /* | special handling */ |
| { Lanczos2SharpFilter, Lanczos2SharpFilter }, |
| { RobidouxFilter, BoxFilter }, /* Cubic Keys tuned for EWA */ |
| { RobidouxSharpFilter, BoxFilter }, /* Sharper Cubic Keys for EWA */ |
| { LanczosFilter, CosineFilter }, /* Cosine window (3 lobes) */ |
| { SplineFilter, BoxFilter }, /* Spline Cubic Filter */ |
| { LanczosRadiusFilter, LanczosFilter }, /* Lanczos with integer radius */ |
| { CubicSplineFilter, BoxFilter }, /* CubicSpline (2/3/4 lobes) */ |
| }; |
| /* |
| Table mapping the filter/window from the above table to an actual function. |
| The default support size for that filter as a weighting function, the range |
| to scale with to use that function as a sinc windowing function, (typ 1.0). |
| |
| Note that the filter_type -> function is 1 to 1 except for Sinc(), |
| SincFast(), and CubicBC() functions, which may have multiple filter to |
| function associations. |
| |
| See "filter:verbose" handling below for the function -> filter mapping. |
| */ |
| static struct |
| { |
| double |
| (*function)(const double,const ResizeFilter*), |
| support, /* Default lobes/support size of the weighting filter. */ |
| scale, /* Support when function used as a windowing function |
| Typically equal to the location of the first zero crossing. */ |
| B,C; /* BC-spline coefficients, ignored if not a CubicBC filter. */ |
| ResizeWeightingFunctionType weightingFunctionType; |
| } const filters[SentinelFilter] = |
| { |
| /* .--- support window (if used as a Weighting Function) |
| | .--- first crossing (if used as a Windowing Function) |
| | | .--- B value for Cubic Function |
| | | | .---- C value for Cubic Function |
| | | | | */ |
| { Box, 0.5, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Undefined (default to Box) */ |
| { Box, 0.0, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Point (special handling) */ |
| { Box, 0.5, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Box */ |
| { Triangle, 1.0, 1.0, 0.0, 0.0, TriangleWeightingFunction }, /* Triangle */ |
| { CubicBC, 1.0, 1.0, 0.0, 0.0, CubicBCWeightingFunction }, /* Hermite (cubic B=C=0) */ |
| { Hann, 1.0, 1.0, 0.0, 0.0, HannWeightingFunction }, /* Hann, cosine window */ |
| { Hamming, 1.0, 1.0, 0.0, 0.0, HammingWeightingFunction }, /* Hamming, '' variation */ |
| { Blackman, 1.0, 1.0, 0.0, 0.0, BlackmanWeightingFunction }, /* Blackman, 2*cosine window */ |
| { Gaussian, 2.0, 1.5, 0.0, 0.0, GaussianWeightingFunction }, /* Gaussian */ |
| { Quadratic, 1.5, 1.5, 0.0, 0.0, QuadraticWeightingFunction },/* Quadratic gaussian */ |
| { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* General Cubic Filter */ |
| { CubicBC, 2.0, 1.0, 0.0, 0.5, CubicBCWeightingFunction }, /* Catmull-Rom (B=0,C=1/2) */ |
| { CubicBC, 2.0, 8.0/7.0, 1./3., 1./3., CubicBCWeightingFunction }, /* Mitchell (B=C=1/3) */ |
| { Jinc, 3.0, 1.2196698912665045, 0.0, 0.0, JincWeightingFunction }, /* Raw 3-lobed Jinc */ |
| { Sinc, 4.0, 1.0, 0.0, 0.0, SincWeightingFunction }, /* Raw 4-lobed Sinc */ |
| { SincFast, 4.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Raw fast sinc ("Pade"-type) */ |
| { Kaiser, 1.0, 1.0, 0.0, 0.0, KaiserWeightingFunction }, /* Kaiser (square root window) */ |
| { Welch, 1.0, 1.0, 0.0, 0.0, WelchWeightingFunction }, /* Welch (parabolic window) */ |
| { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* Parzen (B-Spline window) */ |
| { Bohman, 1.0, 1.0, 0.0, 0.0, BohmanWeightingFunction }, /* Bohman, 2*Cosine window */ |
| { Triangle, 1.0, 1.0, 0.0, 0.0, TriangleWeightingFunction }, /* Bartlett (triangle window) */ |
| { Lagrange, 2.0, 1.0, 0.0, 0.0, LagrangeWeightingFunction }, /* Lagrange sinc approximation */ |
| { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, 3-lobed Sinc-Sinc */ |
| { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, Sharpened */ |
| { SincFast, 2.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, 2-lobed */ |
| { SincFast, 2.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos2, sharpened */ |
| /* Robidoux: Keys cubic close to Lanczos2D sharpened */ |
| { CubicBC, 2.0, 1.1685777620836932, |
| 0.37821575509399867, 0.31089212245300067, CubicBCWeightingFunction }, |
| /* RobidouxSharp: Sharper version of Robidoux */ |
| { CubicBC, 2.0, 1.105822933719019, |
| 0.2620145123990142, 0.3689927438004929, CubicBCWeightingFunction }, |
| { Cosine, 1.0, 1.0, 0.0, 0.0, CosineWeightingFunction }, /* Low level cosine window */ |
| { CubicBC, 2.0, 2.0, 1.0, 0.0, CubicBCWeightingFunction }, /* Cubic B-Spline (B=1,C=0) */ |
| { SincFast, 3.0, 1.0, 0.0, 0.0, SincFastWeightingFunction }, /* Lanczos, Interger Radius */ |
| { CubicSpline,2.0, 0.5, 0.0, 0.0, BoxWeightingFunction }, /* Spline Lobes 2-lobed */ |
| }; |
| /* |
| The known zero crossings of the Jinc() or more accurately the Jinc(x*PI) |
| function being used as a filter. It is used by the "filter:lobes" expert |
| setting and for 'lobes' for Jinc functions in the previous table. This way |
| users do not have to deal with the highly irrational lobe sizes of the Jinc |
| filter. |
| |
| Values taken from |
| http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp |
| using Jv-function with v=1, then dividing by PI. |
| */ |
| static double |
| jinc_zeros[16] = |
| { |
| 1.2196698912665045, |
| 2.2331305943815286, |
| 3.2383154841662362, |
| 4.2410628637960699, |
| 5.2427643768701817, |
| 6.2439216898644877, |
| 7.2447598687199570, |
| 8.2453949139520427, |
| 9.2458926849494673, |
| 10.246293348754916, |
| 11.246622794877883, |
| 12.246898461138105, |
| 13.247132522181061, |
| 14.247333735806849, |
| 15.247508563037300, |
| 16.247661874700962 |
| }; |
| |
| /* |
| Allocate resize filter. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(UndefinedFilter < filter && filter < SentinelFilter); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| (void) exception; |
| resize_filter=(ResizeFilter *) AcquireCriticalMemory(sizeof(*resize_filter)); |
| (void) ResetMagickMemory(resize_filter,0,sizeof(*resize_filter)); |
| /* |
| Defaults for the requested filter. |
| */ |
| filter_type=mapping[filter].filter; |
| window_type=mapping[filter].window; |
| resize_filter->blur=1.0; |
| /* Promote 1D Windowed Sinc Filters to a 2D Windowed Jinc filters */ |
| if ((cylindrical != MagickFalse) && (filter_type == SincFastFilter) && |
| (filter != SincFastFilter)) |
| filter_type=JincFilter; /* 1D Windowed Sinc => 2D Windowed Jinc filters */ |
| |
| /* Expert filter setting override */ |
| artifact=GetImageArtifact(image,"filter:filter"); |
| if (IsStringTrue(artifact) != MagickFalse) |
| { |
| ssize_t |
| option; |
| |
| option=ParseCommandOption(MagickFilterOptions,MagickFalse,artifact); |
| if ((UndefinedFilter < option) && (option < SentinelFilter)) |
| { /* Raw filter request - no window function. */ |
| filter_type=(FilterType) option; |
| window_type=BoxFilter; |
| } |
| /* Filter override with a specific window function. */ |
| artifact=GetImageArtifact(image,"filter:window"); |
| if (artifact != (const char *) NULL) |
| { |
| option=ParseCommandOption(MagickFilterOptions,MagickFalse,artifact); |
| if ((UndefinedFilter < option) && (option < SentinelFilter)) |
| window_type=(FilterType) option; |
| } |
| } |
| else |
| { |
| /* Window specified, but no filter function? Assume Sinc/Jinc. */ |
| artifact=GetImageArtifact(image,"filter:window"); |
| if (artifact != (const char *) NULL) |
| { |
| ssize_t |
| option; |
| |
| option=ParseCommandOption(MagickFilterOptions,MagickFalse,artifact); |
| if ((UndefinedFilter < option) && (option < SentinelFilter)) |
| { |
| filter_type= cylindrical != MagickFalse ? JincFilter |
| : SincFastFilter; |
| window_type=(FilterType) option; |
| } |
| } |
| } |
| |
| /* Assign the real functions to use for the filters selected. */ |
| resize_filter->filter=filters[filter_type].function; |
| resize_filter->support=filters[filter_type].support; |
| resize_filter->filterWeightingType=filters[filter_type].weightingFunctionType; |
| resize_filter->window=filters[window_type].function; |
| resize_filter->windowWeightingType=filters[window_type].weightingFunctionType; |
| resize_filter->scale=filters[window_type].scale; |
| resize_filter->signature=MagickCoreSignature; |
| |
| /* Filter Modifications for orthogonal/cylindrical usage */ |
| if (cylindrical != MagickFalse) |
| switch (filter_type) |
| { |
| case BoxFilter: |
| /* Support for Cylindrical Box should be sqrt(2)/2 */ |
| resize_filter->support=(double) MagickSQ1_2; |
| break; |
| case LanczosFilter: |
| case LanczosSharpFilter: |
| case Lanczos2Filter: |
| case Lanczos2SharpFilter: |
| case LanczosRadiusFilter: |
| resize_filter->filter=filters[JincFilter].function; |
| resize_filter->window=filters[JincFilter].function; |
| resize_filter->scale=filters[JincFilter].scale; |
| /* number of lobes (support window size) remain unchanged */ |
| break; |
| default: |
| break; |
| } |
| /* Global Sharpening (regardless of orthoginal/cylindrical) */ |
| switch (filter_type) |
| { |
| case LanczosSharpFilter: |
| resize_filter->blur *= 0.9812505644269356; |
| break; |
| case Lanczos2SharpFilter: |
| resize_filter->blur *= 0.9549963639785485; |
| break; |
| /* case LanczosRadius: blur adjust is done after lobes */ |
| default: |
| break; |
| } |
| |
| /* |
| Expert Option Modifications. |
| */ |
| |
| /* User Gaussian Sigma Override - no support change */ |
| if ((resize_filter->filter == Gaussian) || |
| (resize_filter->window == Gaussian) ) { |
| value=0.5; /* guassian sigma default, half pixel */ |
| artifact=GetImageArtifact(image,"filter:sigma"); |
| if (artifact != (const char *) NULL) |
| value=StringToDouble(artifact,(char **) NULL); |
| /* Define coefficents for Gaussian */ |
| resize_filter->coefficient[0]=value; /* note sigma too */ |
| resize_filter->coefficient[1]=PerceptibleReciprocal(2.0*value*value); /* sigma scaling */ |
| resize_filter->coefficient[2]=PerceptibleReciprocal(Magick2PI*value*value); |
| /* normalization - not actually needed or used! */ |
| if ( value > 0.5 ) |
| resize_filter->support *= 2*value; /* increase support linearly */ |
| } |
| |
| /* User Kaiser Alpha Override - no support change */ |
| if ((resize_filter->filter == Kaiser) || |
| (resize_filter->window == Kaiser) ) { |
| value=6.5; /* default beta value for Kaiser bessel windowing function */ |
| artifact=GetImageArtifact(image,"filter:alpha"); /* FUTURE: depreciate */ |
| if (artifact != (const char *) NULL) |
| value=StringToDouble(artifact,(char **) NULL); |
| artifact=GetImageArtifact(image,"filter:kaiser-beta"); |
| if (artifact != (const char *) NULL) |
| value=StringToDouble(artifact,(char **) NULL); |
| artifact=GetImageArtifact(image,"filter:kaiser-alpha"); |
| if (artifact != (const char *) NULL) |
| value=StringToDouble(artifact,(char **) NULL)*MagickPI; |
| /* Define coefficents for Kaiser Windowing Function */ |
| resize_filter->coefficient[0]=value; /* alpha */ |
| resize_filter->coefficient[1]=PerceptibleReciprocal(I0(value)); |
| /* normalization */ |
| } |
| |
| /* Support Overrides */ |
| artifact=GetImageArtifact(image,"filter:lobes"); |
| if (artifact != (const char *) NULL) |
| { |
| ssize_t |
| lobes; |
| |
| lobes=(ssize_t) StringToLong(artifact); |
| if (lobes < 1) |
| lobes=1; |
| resize_filter->support=(double) lobes; |
| } |
| if (resize_filter->filter == Jinc) |
| { |
| /* |
| Convert a Jinc function lobes value to a real support value. |
| */ |
| if (resize_filter->support > 16) |
| resize_filter->support=jinc_zeros[15]; /* largest entry in table */ |
| else |
| resize_filter->support=jinc_zeros[((long) resize_filter->support)-1]; |
| /* |
| Blur this filter so support is a integer value (lobes dependant). |
| */ |
| if (filter_type == LanczosRadiusFilter) |
| resize_filter->blur*=floor(resize_filter->support)/ |
| resize_filter->support; |
| } |
| /* |
| Expert blur override. |
| */ |
| artifact=GetImageArtifact(image,"filter:blur"); |
| if (artifact != (const char *) NULL) |
| resize_filter->blur*=StringToDouble(artifact,(char **) NULL); |
| if (resize_filter->blur < MagickEpsilon) |
| resize_filter->blur=(double) MagickEpsilon; |
| /* |
| Expert override of the support setting. |
| */ |
| artifact=GetImageArtifact(image,"filter:support"); |
| if (artifact != (const char *) NULL) |
| resize_filter->support=fabs(StringToDouble(artifact,(char **) NULL)); |
| /* |
| Scale windowing function separately to the support 'clipping' window |
| that calling operator is planning to actually use. (Expert override) |
| */ |
| resize_filter->window_support=resize_filter->support; /* default */ |
| artifact=GetImageArtifact(image,"filter:win-support"); |
| if (artifact != (const char *) NULL) |
| resize_filter->window_support=fabs(StringToDouble(artifact,(char **) NULL)); |
| /* |
| Adjust window function scaling to match windowing support for weighting |
| function. This avoids a division on every filter call. |
| */ |
| resize_filter->scale/=resize_filter->window_support; |
| /* |
| * Set Cubic Spline B,C values, calculate Cubic coefficients. |
| */ |
| B=0.0; |
| C=0.0; |
| if ((resize_filter->filter == CubicBC) || |
| (resize_filter->window == CubicBC) ) |
| { |
| B=filters[filter_type].B; |
| C=filters[filter_type].C; |
| if (filters[window_type].function == CubicBC) |
| { |
| B=filters[window_type].B; |
| C=filters[window_type].C; |
| } |
| artifact=GetImageArtifact(image,"filter:b"); |
| if (artifact != (const char *) NULL) |
| { |
| B=StringToDouble(artifact,(char **) NULL); |
| C=(1.0-B)/2.0; /* Calculate C to get a Keys cubic filter. */ |
| artifact=GetImageArtifact(image,"filter:c"); /* user C override */ |
| if (artifact != (const char *) NULL) |
| C=StringToDouble(artifact,(char **) NULL); |
| } |
| else |
| { |
| artifact=GetImageArtifact(image,"filter:c"); |
| if (artifact != (const char *) NULL) |
| { |
| C=StringToDouble(artifact,(char **) NULL); |
| B=1.0-2.0*C; /* Calculate B to get a Keys cubic filter. */ |
| } |
| } |
| { |
| const double |
| twoB = B+B; |
| |
| /* |
| Convert B,C values into Cubic Coefficents. See CubicBC(). |
| */ |
| resize_filter->coefficient[0]=1.0-(1.0/3.0)*B; |
| resize_filter->coefficient[1]=-3.0+twoB+C; |
| resize_filter->coefficient[2]=2.0-1.5*B-C; |
| resize_filter->coefficient[3]=(4.0/3.0)*B+4.0*C; |
| resize_filter->coefficient[4]=-8.0*C-twoB; |
| resize_filter->coefficient[5]=B+5.0*C; |
| resize_filter->coefficient[6]=(-1.0/6.0)*B-C; |
| } |
| } |
| |
| /* |
| Expert Option Request for verbose details of the resulting filter. |
| */ |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp master |
| { |
| #endif |
| if (IsStringTrue(GetImageArtifact(image,"filter:verbose")) != MagickFalse) |
| { |
| double |
| support, |
| x; |
| |
| /* |
| Set the weighting function properly when the weighting function |
| may not exactly match the filter of the same name. EG: a Point |
| filter is really uses a Box weighting function with a different |
| support than is typically used. |
| */ |
| if (resize_filter->filter == Box) filter_type=BoxFilter; |
| if (resize_filter->filter == Sinc) filter_type=SincFilter; |
| if (resize_filter->filter == SincFast) filter_type=SincFastFilter; |
| if (resize_filter->filter == Jinc) filter_type=JincFilter; |
| if (resize_filter->filter == CubicBC) filter_type=CubicFilter; |
| if (resize_filter->window == Box) window_type=BoxFilter; |
| if (resize_filter->window == Sinc) window_type=SincFilter; |
| if (resize_filter->window == SincFast) window_type=SincFastFilter; |
| if (resize_filter->window == Jinc) window_type=JincFilter; |
| if (resize_filter->window == CubicBC) window_type=CubicFilter; |
| /* |
| Report Filter Details. |
| */ |
| support=GetResizeFilterSupport(resize_filter); /* practical_support */ |
| (void) FormatLocaleFile(stdout, |
| "# Resampling Filter (for graphing)\n#\n"); |
| (void) FormatLocaleFile(stdout,"# filter = %s\n", |
| CommandOptionToMnemonic(MagickFilterOptions,filter_type)); |
| (void) FormatLocaleFile(stdout,"# window = %s\n", |
| CommandOptionToMnemonic(MagickFilterOptions,window_type)); |
| (void) FormatLocaleFile(stdout,"# support = %.*g\n", |
| GetMagickPrecision(),(double) resize_filter->support); |
| (void) FormatLocaleFile(stdout,"# window-support = %.*g\n", |
| GetMagickPrecision(),(double) resize_filter->window_support); |
| (void) FormatLocaleFile(stdout,"# scale-blur = %.*g\n", |
| GetMagickPrecision(),(double)resize_filter->blur); |
| if ((filter_type == GaussianFilter) || (window_type == GaussianFilter)) |
| (void) FormatLocaleFile(stdout,"# gaussian-sigma = %.*g\n", |
| GetMagickPrecision(),(double)resize_filter->coefficient[0]); |
| if ( filter_type == KaiserFilter || window_type == KaiserFilter ) |
| (void) FormatLocaleFile(stdout,"# kaiser-beta = %.*g\n", |
| GetMagickPrecision(),(double)resize_filter->coefficient[0]); |
| (void) FormatLocaleFile(stdout,"# practical-support = %.*g\n", |
| GetMagickPrecision(), (double)support); |
| if ( filter_type == CubicFilter || window_type == CubicFilter ) |
| (void) FormatLocaleFile(stdout,"# B,C = %.*g,%.*g\n", |
| GetMagickPrecision(),(double)B, GetMagickPrecision(),(double)C); |
| (void) FormatLocaleFile(stdout,"\n"); |
| /* |
| Output values of resulting filter graph -- for graphing filter result. |
| */ |
| for (x=0.0; x <= support; x+=0.01f) |
| (void) FormatLocaleFile(stdout,"%5.2lf\t%.*g\n",x, |
| GetMagickPrecision(),(double) |
| GetResizeFilterWeight(resize_filter,x)); |
| /* |
| A final value so gnuplot can graph the 'stop' properly. |
| */ |
| (void) FormatLocaleFile(stdout,"%5.2lf\t%.*g\n",support, |
| GetMagickPrecision(),0.0); |
| } |
| /* Output the above once only for each image - remove setting */ |
| (void) DeleteImageArtifact((Image *) image,"filter:verbose"); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| } |
| #endif |
| return(resize_filter); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A d a p t i v e R e s i z e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AdaptiveResizeImage() adaptively resize image with pixel resampling. |
| % |
| % This is shortcut function for a fast interpolative resize using mesh |
| % interpolation. It works well for small resizes of less than +/- 50% |
| % of the original image size. For larger resizing on images a full |
| % filtered and slower resize function should be used instead. |
| % |
| % The format of the AdaptiveResizeImage method is: |
| % |
| % Image *AdaptiveResizeImage(const Image *image,const size_t columns, |
| % const size_t rows,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the resized image. |
| % |
| % o rows: the number of rows in the resized image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *AdaptiveResizeImage(const Image *image, |
| const size_t columns,const size_t rows,ExceptionInfo *exception) |
| { |
| Image |
| *resize_image; |
| |
| resize_image=InterpolativeResizeImage(image,columns,rows,MeshInterpolatePixel, |
| exception); |
| return(resize_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + B e s s e l O r d e r O n e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % BesselOrderOne() computes the Bessel function of x of the first kind of |
| % order 0. This is used to create the Jinc() filter function below. |
| % |
| % Reduce x to |x| since j1(x)= -j1(-x), and for x in (0,8] |
| % |
| % j1(x) = x*j1(x); |
| % |
| % For x in (8,inf) |
| % |
| % j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) |
| % |
| % where x1 = x-3*pi/4. Compute sin(x1) and cos(x1) as follow: |
| % |
| % cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
| % = 1/sqrt(2) * (sin(x) - cos(x)) |
| % sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
| % = -1/sqrt(2) * (sin(x) + cos(x)) |
| % |
| % The format of the BesselOrderOne method is: |
| % |
| % double BesselOrderOne(double x) |
| % |
| % A description of each parameter follows: |
| % |
| % o x: double value. |
| % |
| */ |
| |
| #undef I0 |
| static double I0(double x) |
| { |
| double |
| sum, |
| t, |
| y; |
| |
| register ssize_t |
| i; |
| |
| /* |
| Zeroth order Bessel function of the first kind. |
| */ |
| sum=1.0; |
| y=x*x/4.0; |
| t=y; |
| for (i=2; t > MagickEpsilon; i++) |
| { |
| sum+=t; |
| t*=y/((double) i*i); |
| } |
| return(sum); |
| } |
| |
| #undef J1 |
| static double J1(double x) |
| { |
| double |
| p, |
| q; |
| |
| register ssize_t |
| i; |
| |
| static const double |
| Pone[] = |
| { |
| 0.581199354001606143928050809e+21, |
| -0.6672106568924916298020941484e+20, |
| 0.2316433580634002297931815435e+19, |
| -0.3588817569910106050743641413e+17, |
| 0.2908795263834775409737601689e+15, |
| -0.1322983480332126453125473247e+13, |
| 0.3413234182301700539091292655e+10, |
| -0.4695753530642995859767162166e+7, |
| 0.270112271089232341485679099e+4 |
| }, |
| Qone[] = |
| { |
| 0.11623987080032122878585294e+22, |
| 0.1185770712190320999837113348e+20, |
| 0.6092061398917521746105196863e+17, |
| 0.2081661221307607351240184229e+15, |
| 0.5243710262167649715406728642e+12, |
| 0.1013863514358673989967045588e+10, |
| 0.1501793594998585505921097578e+7, |
| 0.1606931573481487801970916749e+4, |
| 0.1e+1 |
| }; |
| |
| p=Pone[8]; |
| q=Qone[8]; |
| for (i=7; i >= 0; i--) |
| { |
| p=p*x*x+Pone[i]; |
| q=q*x*x+Qone[i]; |
| } |
| return(p/q); |
| } |
| |
| #undef P1 |
| static double P1(double x) |
| { |
| double |
| p, |
| q; |
| |
| register ssize_t |
| i; |
| |
| static const double |
| Pone[] = |
| { |
| 0.352246649133679798341724373e+5, |
| 0.62758845247161281269005675e+5, |
| 0.313539631109159574238669888e+5, |
| 0.49854832060594338434500455e+4, |
| 0.2111529182853962382105718e+3, |
| 0.12571716929145341558495e+1 |
| }, |
| Qone[] = |
| { |
| 0.352246649133679798068390431e+5, |
| 0.626943469593560511888833731e+5, |
| 0.312404063819041039923015703e+5, |
| 0.4930396490181088979386097e+4, |
| 0.2030775189134759322293574e+3, |
| 0.1e+1 |
| }; |
| |
| p=Pone[5]; |
| q=Qone[5]; |
| for (i=4; i >= 0; i--) |
| { |
| p=p*(8.0/x)*(8.0/x)+Pone[i]; |
| q=q*(8.0/x)*(8.0/x)+Qone[i]; |
| } |
| return(p/q); |
| } |
| |
| #undef Q1 |
| static double Q1(double x) |
| { |
| double |
| p, |
| q; |
| |
| register ssize_t |
| i; |
| |
| static const double |
| Pone[] = |
| { |
| 0.3511751914303552822533318e+3, |
| 0.7210391804904475039280863e+3, |
| 0.4259873011654442389886993e+3, |
| 0.831898957673850827325226e+2, |
| 0.45681716295512267064405e+1, |
| 0.3532840052740123642735e-1 |
| }, |
| Qone[] = |
| { |
| 0.74917374171809127714519505e+4, |
| 0.154141773392650970499848051e+5, |
| 0.91522317015169922705904727e+4, |
| 0.18111867005523513506724158e+4, |
| 0.1038187585462133728776636e+3, |
| 0.1e+1 |
| }; |
| |
| p=Pone[5]; |
| q=Qone[5]; |
| for (i=4; i >= 0; i--) |
| { |
| p=p*(8.0/x)*(8.0/x)+Pone[i]; |
| q=q*(8.0/x)*(8.0/x)+Qone[i]; |
| } |
| return(p/q); |
| } |
| |
| static double BesselOrderOne(double x) |
| { |
| double |
| p, |
| q; |
| |
| if (x == 0.0) |
| return(0.0); |
| p=x; |
| if (x < 0.0) |
| x=(-x); |
| if (x < 8.0) |
| return(p*J1(x)); |
| q=sqrt((double) (2.0/(MagickPI*x)))*(P1(x)*(1.0/sqrt(2.0)*(sin((double) x)- |
| cos((double) x)))-8.0/x*Q1(x)*(-1.0/sqrt(2.0)*(sin((double) x)+ |
| cos((double) x)))); |
| if (p < 0.0) |
| q=(-q); |
| return(q); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + D e s t r o y R e s i z e F i l t e r % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyResizeFilter() destroy the resize filter. |
| % |
| % The format of the DestroyResizeFilter method is: |
| % |
| % ResizeFilter *DestroyResizeFilter(ResizeFilter *resize_filter) |
| % |
| % A description of each parameter follows: |
| % |
| % o resize_filter: the resize filter. |
| % |
| */ |
| MagickPrivate ResizeFilter *DestroyResizeFilter(ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| resize_filter->signature=(~MagickCoreSignature); |
| resize_filter=(ResizeFilter *) RelinquishMagickMemory(resize_filter); |
| return(resize_filter); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G e t R e s i z e F i l t e r S u p p o r t % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetResizeFilterSupport() return the current support window size for this |
| % filter. Note that this may have been enlarged by filter:blur factor. |
| % |
| % The format of the GetResizeFilterSupport method is: |
| % |
| % double GetResizeFilterSupport(const ResizeFilter *resize_filter) |
| % |
| % A description of each parameter follows: |
| % |
| % o filter: Image filter to use. |
| % |
| */ |
| |
| MagickPrivate double *GetResizeFilterCoefficient( |
| const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return((double *) resize_filter->coefficient); |
| } |
| |
| MagickPrivate double GetResizeFilterBlur(const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->blur); |
| } |
| |
| MagickPrivate double GetResizeFilterScale(const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->scale); |
| } |
| |
| MagickPrivate double GetResizeFilterWindowSupport( |
| const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->window_support); |
| } |
| |
| MagickPrivate ResizeWeightingFunctionType GetResizeFilterWeightingType( |
| const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->filterWeightingType); |
| } |
| |
| MagickPrivate ResizeWeightingFunctionType GetResizeFilterWindowWeightingType( |
| const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->windowWeightingType); |
| } |
| |
| MagickPrivate double GetResizeFilterSupport(const ResizeFilter *resize_filter) |
| { |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| return(resize_filter->support*resize_filter->blur); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + G e t R e s i z e F i l t e r W e i g h t % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % GetResizeFilterWeight evaluates the specified resize filter at the point x |
| % which usally lies between zero and the filters current 'support' and |
| % returns the weight of the filter function at that point. |
| % |
| % The format of the GetResizeFilterWeight method is: |
| % |
| % double GetResizeFilterWeight(const ResizeFilter *resize_filter, |
| % const double x) |
| % |
| % A description of each parameter follows: |
| % |
| % o filter: the filter type. |
| % |
| % o x: the point. |
| % |
| */ |
| MagickPrivate double GetResizeFilterWeight(const ResizeFilter *resize_filter, |
| const double x) |
| { |
| double |
| scale, |
| weight, |
| x_blur; |
| |
| /* |
| Windowing function - scale the weighting filter by this amount. |
| */ |
| assert(resize_filter != (ResizeFilter *) NULL); |
| assert(resize_filter->signature == MagickCoreSignature); |
| x_blur=fabs((double) x)/resize_filter->blur; /* X offset with blur scaling */ |
| if ((resize_filter->window_support < MagickEpsilon) || |
| (resize_filter->window == Box)) |
| scale=1.0; /* Point or Box Filter -- avoid division by zero */ |
| else |
| { |
| scale=resize_filter->scale; |
| scale=resize_filter->window(x_blur*scale,resize_filter); |
| } |
| weight=scale*resize_filter->filter(x_blur,resize_filter); |
| return(weight); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % I n t e r p o l a t i v e R e s i z e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % InterpolativeResizeImage() resizes an image using the specified |
| % interpolation method. |
| % |
| % The format of the InterpolativeResizeImage method is: |
| % |
| % Image *InterpolativeResizeImage(const Image *image,const size_t columns, |
| % const size_t rows,const PixelInterpolateMethod method, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the resized image. |
| % |
| % o rows: the number of rows in the resized image. |
| % |
| % o method: the pixel interpolation method. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *InterpolativeResizeImage(const Image *image, |
| const size_t columns,const size_t rows,const PixelInterpolateMethod method, |
| ExceptionInfo *exception) |
| { |
| #define InterpolativeResizeImageTag "Resize/Image" |
| |
| CacheView |
| *image_view, |
| *resize_view; |
| |
| Image |
| *resize_image; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| PointInfo |
| scale; |
| |
| ssize_t |
| y; |
| |
| /* |
| Interpolatively resize image. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if ((columns == 0) || (rows == 0)) |
| ThrowImageException(ImageError,"NegativeOrZeroImageSize"); |
| if ((columns == image->columns) && (rows == image->rows)) |
| return(CloneImage(image,0,0,MagickTrue,exception)); |
| resize_image=CloneImage(image,columns,rows,MagickTrue,exception); |
| if (resize_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(resize_image,DirectClass,exception) == MagickFalse) |
| { |
| resize_image=DestroyImage(resize_image); |
| return((Image *) NULL); |
| } |
| status=MagickTrue; |
| progress=0; |
| image_view=AcquireVirtualCacheView(image,exception); |
| resize_view=AcquireAuthenticCacheView(resize_image,exception); |
| scale.x=(double) image->columns/resize_image->columns; |
| scale.y=(double) image->rows/resize_image->rows; |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(progress,status) \ |
| magick_number_threads(image,resize_image,resize_image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) resize_image->rows; y++) |
| { |
| PointInfo |
| offset; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1, |
| exception); |
| if (q == (Quantum *) NULL) |
| continue; |
| offset.y=((double) y+0.5)*scale.y-0.5; |
| for (x=0; x < (ssize_t) resize_image->columns; x++) |
| { |
| register ssize_t |
| i; |
| |
| if (GetPixelWriteMask(resize_image,q) <= (QuantumRange/2)) |
| { |
| q+=GetPixelChannels(resize_image); |
| continue; |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| resize_traits, |
| traits; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| resize_traits=GetPixelChannelTraits(resize_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (resize_traits == UndefinedPixelTrait)) |
| continue; |
| offset.x=((double) x+0.5)*scale.x-0.5; |
| status=InterpolatePixelChannels(image,image_view,resize_image,method, |
| offset.x,offset.y,q,exception); |
| if (status == MagickFalse) |
| break; |
| } |
| q+=GetPixelChannels(resize_image); |
| } |
| if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_InterpolativeResizeImage) |
| #endif |
| proceed=SetImageProgress(image,InterpolativeResizeImageTag,progress++, |
| image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| resize_view=DestroyCacheView(resize_view); |
| image_view=DestroyCacheView(image_view); |
| if (status == MagickFalse) |
| resize_image=DestroyImage(resize_image); |
| return(resize_image); |
| } |
| #if defined(MAGICKCORE_LQR_DELEGATE) |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % L i q u i d R e s c a l e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % LiquidRescaleImage() rescales image with seam carving. |
| % |
| % The format of the LiquidRescaleImage method is: |
| % |
| % Image *LiquidRescaleImage(const Image *image,const size_t columns, |
| % const size_t rows,const double delta_x,const double rigidity, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the rescaled image. |
| % |
| % o rows: the number of rows in the rescaled image. |
| % |
| % o delta_x: maximum seam transversal step (0 means straight seams). |
| % |
| % o rigidity: introduce a bias for non-straight seams (typically 0). |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *LiquidRescaleImage(const Image *image,const size_t columns, |
| const size_t rows,const double delta_x,const double rigidity, |
| ExceptionInfo *exception) |
| { |
| #define LiquidRescaleImageTag "Rescale/Image" |
| |
| CacheView |
| *image_view, |
| *rescale_view; |
| |
| gfloat |
| *packet, |
| *pixels; |
| |
| Image |
| *rescale_image; |
| |
| int |
| x_offset, |
| y_offset; |
| |
| LqrCarver |
| *carver; |
| |
| LqrRetVal |
| lqr_status; |
| |
| MagickBooleanType |
| status; |
| |
| MemoryInfo |
| *pixel_info; |
| |
| register gfloat |
| *q; |
| |
| ssize_t |
| y; |
| |
| /* |
| Liquid rescale image. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if ((columns == 0) || (rows == 0)) |
| ThrowImageException(ImageError,"NegativeOrZeroImageSize"); |
| if ((columns == image->columns) && (rows == image->rows)) |
| return(CloneImage(image,0,0,MagickTrue,exception)); |
| if ((columns <= 2) || (rows <= 2)) |
| return(ResizeImage(image,columns,rows,image->filter,exception)); |
| pixel_info=AcquireVirtualMemory(image->columns,image->rows*MaxPixelChannels* |
| sizeof(*pixels)); |
| if (pixel_info == (MemoryInfo *) NULL) |
| return((Image *) NULL); |
| pixels=(gfloat *) GetVirtualMemoryBlob(pixel_info); |
| status=MagickTrue; |
| q=pixels; |
| image_view=AcquireVirtualCacheView(image,exception); |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register const Quantum |
| *magick_restrict p; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); |
| if (p == (const Quantum *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| register ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| *q++=QuantumScale*p[i]; |
| p+=GetPixelChannels(image); |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| carver=lqr_carver_new_ext(pixels,(int) image->columns,(int) image->rows, |
| (int) GetPixelChannels(image),LQR_COLDEPTH_32F); |
| if (carver == (LqrCarver *) NULL) |
| { |
| pixel_info=RelinquishVirtualMemory(pixel_info); |
| ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); |
| } |
| lqr_carver_set_preserve_input_image(carver); |
| lqr_status=lqr_carver_init(carver,(int) delta_x,rigidity); |
| lqr_status=lqr_carver_resize(carver,(int) columns,(int) rows); |
| (void) lqr_status; |
| rescale_image=CloneImage(image,lqr_carver_get_width(carver), |
| lqr_carver_get_height(carver),MagickTrue,exception); |
| if (rescale_image == (Image *) NULL) |
| { |
| pixel_info=RelinquishVirtualMemory(pixel_info); |
| return((Image *) NULL); |
| } |
| if (SetImageStorageClass(rescale_image,DirectClass,exception) == MagickFalse) |
| { |
| pixel_info=RelinquishVirtualMemory(pixel_info); |
| rescale_image=DestroyImage(rescale_image); |
| return((Image *) NULL); |
| } |
| rescale_view=AcquireAuthenticCacheView(rescale_image,exception); |
| (void) lqr_carver_scan_reset(carver); |
| while (lqr_carver_scan_ext(carver,&x_offset,&y_offset,(void **) &packet) != 0) |
| { |
| register Quantum |
| *magick_restrict p; |
| |
| register ssize_t |
| i; |
| |
| p=QueueCacheViewAuthenticPixels(rescale_view,x_offset,y_offset,1,1, |
| exception); |
| if (p == (Quantum *) NULL) |
| break; |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| rescale_traits, |
| traits; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| rescale_traits=GetPixelChannelTraits(rescale_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (rescale_traits == UndefinedPixelTrait)) |
| continue; |
| SetPixelChannel(rescale_image,channel,ClampToQuantum(QuantumRange* |
| packet[i]),p); |
| } |
| if (SyncCacheViewAuthenticPixels(rescale_view,exception) == MagickFalse) |
| break; |
| } |
| rescale_view=DestroyCacheView(rescale_view); |
| pixel_info=RelinquishVirtualMemory(pixel_info); |
| lqr_carver_destroy(carver); |
| return(rescale_image); |
| } |
| #else |
| MagickExport Image *LiquidRescaleImage(const Image *image, |
| const size_t magick_unused(columns),const size_t magick_unused(rows), |
| const double magick_unused(delta_x),const double magick_unused(rigidity), |
| ExceptionInfo *exception) |
| { |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| (void) ThrowMagickException(exception,GetMagickModule(),MissingDelegateError, |
| "DelegateLibrarySupportNotBuiltIn","'%s' (LQR)",image->filename); |
| return((Image *) NULL); |
| } |
| #endif |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M a g n i f y I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MagnifyImage() doubles the size of the image with a pixel art scaling |
| % algorithm. |
| % |
| % The format of the MagnifyImage method is: |
| % |
| % Image *MagnifyImage(const Image *image,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *MagnifyImage(const Image *image,ExceptionInfo *exception) |
| { |
| #define MagnifyImageTag "Magnify/Image" |
| |
| CacheView |
| *image_view, |
| *magnify_view; |
| |
| Image |
| *magnify_image; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| ssize_t |
| y; |
| |
| /* |
| Initialize magnified image attributes. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| magnify_image=CloneImage(image,2*image->columns,2*image->rows,MagickTrue, |
| exception); |
| if (magnify_image == (Image *) NULL) |
| return((Image *) NULL); |
| /* |
| Magnify image. |
| */ |
| status=MagickTrue; |
| progress=0; |
| image_view=AcquireVirtualCacheView(image,exception); |
| magnify_view=AcquireAuthenticCacheView(magnify_image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(progress,status) \ |
| magick_number_threads(image,magnify_image,image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| continue; |
| q=QueueCacheViewAuthenticPixels(magnify_view,0,2*y,magnify_image->columns,2, |
| exception); |
| if (q == (Quantum *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| /* |
| Magnify this row of pixels. |
| */ |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| MagickRealType |
| intensity[9]; |
| |
| register const Quantum |
| *magick_restrict p; |
| |
| register Quantum |
| *magick_restrict r; |
| |
| register ssize_t |
| i; |
| |
| size_t |
| channels; |
| |
| p=GetCacheViewVirtualPixels(image_view,x-1,y-1,3,3,exception); |
| if (p == (const Quantum *) NULL) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| channels=GetPixelChannels(image); |
| for (i=0; i < 9; i++) |
| intensity[i]=GetPixelIntensity(image,p+i*channels); |
| r=q; |
| if ((fabs(intensity[1]-intensity[7]) < MagickEpsilon) || |
| (fabs(intensity[3]-intensity[5]) < MagickEpsilon)) |
| { |
| /* |
| Clone center pixel. |
| */ |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image); |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image)*(magnify_image->columns-1); |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image); |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| } |
| else |
| { |
| /* |
| Selectively clone pixel. |
| */ |
| if (fabs(intensity[1]-intensity[3]) < MagickEpsilon) |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[3*channels+i]; |
| else |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image); |
| if (fabs(intensity[1]-intensity[5]) < MagickEpsilon) |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[5*channels+i]; |
| else |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image)*(magnify_image->columns-1); |
| if (fabs(intensity[3]-intensity[7]) < MagickEpsilon) |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[3*channels+i]; |
| else |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| r+=GetPixelChannels(magnify_image); |
| if (fabs(intensity[5]-intensity[7]) < MagickEpsilon) |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[5*channels+i]; |
| else |
| for (i=0; i < (ssize_t) channels; i++) |
| r[i]=p[4*channels+i]; |
| } |
| q+=2*GetPixelChannels(magnify_image); |
| } |
| if (SyncCacheViewAuthenticPixels(magnify_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_MagnifyImage) |
| #endif |
| proceed=SetImageProgress(image,MagnifyImageTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| magnify_view=DestroyCacheView(magnify_view); |
| image_view=DestroyCacheView(image_view); |
| if (status == MagickFalse) |
| magnify_image=DestroyImage(magnify_image); |
| return(magnify_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M i n i f y I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MinifyImage() is a convenience method that scales an image proportionally to |
| % half its size. |
| % |
| % The format of the MinifyImage method is: |
| % |
| % Image *MinifyImage(const Image *image,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *MinifyImage(const Image *image,ExceptionInfo *exception) |
| { |
| Image |
| *minify_image; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| minify_image=ResizeImage(image,image->columns/2,image->rows/2,SplineFilter, |
| exception); |
| return(minify_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % R e s a m p l e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ResampleImage() resize image in terms of its pixel size, so that when |
| % displayed at the given resolution it will be the same size in terms of |
| % real world units as the original image at the original resolution. |
| % |
| % The format of the ResampleImage method is: |
| % |
| % Image *ResampleImage(Image *image,const double x_resolution, |
| % const double y_resolution,const FilterType filter, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image to be resized to fit the given resolution. |
| % |
| % o x_resolution: the new image x resolution. |
| % |
| % o y_resolution: the new image y resolution. |
| % |
| % o filter: Image filter to use. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *ResampleImage(const Image *image,const double x_resolution, |
| const double y_resolution,const FilterType filter,ExceptionInfo *exception) |
| { |
| #define ResampleImageTag "Resample/Image" |
| |
| Image |
| *resample_image; |
| |
| size_t |
| height, |
| width; |
| |
| /* |
| Initialize sampled image attributes. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| width=(size_t) (x_resolution*image->columns/(image->resolution.x == 0.0 ? |
| 72.0 : image->resolution.x)+0.5); |
| height=(size_t) (y_resolution*image->rows/(image->resolution.y == 0.0 ? |
| 72.0 : image->resolution.y)+0.5); |
| resample_image=ResizeImage(image,width,height,filter,exception); |
| if (resample_image != (Image *) NULL) |
| { |
| resample_image->resolution.x=x_resolution; |
| resample_image->resolution.y=y_resolution; |
| } |
| return(resample_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % R e s i z e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ResizeImage() scales an image to the desired dimensions, using the given |
| % filter (see AcquireFilterInfo()). |
| % |
| % If an undefined filter is given the filter defaults to Mitchell for a |
| % colormapped image, a image with a matte channel, or if the image is |
| % enlarged. Otherwise the filter defaults to a Lanczos. |
| % |
| % ResizeImage() was inspired by Paul Heckbert's "zoom" program. |
| % |
| % The format of the ResizeImage method is: |
| % |
| % Image *ResizeImage(Image *image,const size_t columns,const size_t rows, |
| % const FilterType filter,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the scaled image. |
| % |
| % o rows: the number of rows in the scaled image. |
| % |
| % o filter: Image filter to use. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| |
| typedef struct _ContributionInfo |
| { |
| double |
| weight; |
| |
| ssize_t |
| pixel; |
| } ContributionInfo; |
| |
| static ContributionInfo **DestroyContributionThreadSet( |
| ContributionInfo **contribution) |
| { |
| register ssize_t |
| i; |
| |
| assert(contribution != (ContributionInfo **) NULL); |
| for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++) |
| if (contribution[i] != (ContributionInfo *) NULL) |
| contribution[i]=(ContributionInfo *) RelinquishAlignedMemory( |
| contribution[i]); |
| contribution=(ContributionInfo **) RelinquishMagickMemory(contribution); |
| return(contribution); |
| } |
| |
| static ContributionInfo **AcquireContributionThreadSet(const size_t count) |
| { |
| register ssize_t |
| i; |
| |
| ContributionInfo |
| **contribution; |
| |
| size_t |
| number_threads; |
| |
| number_threads=(size_t) GetMagickResourceLimit(ThreadResource); |
| contribution=(ContributionInfo **) AcquireQuantumMemory(number_threads, |
| sizeof(*contribution)); |
| if (contribution == (ContributionInfo **) NULL) |
| return((ContributionInfo **) NULL); |
| (void) ResetMagickMemory(contribution,0,number_threads*sizeof(*contribution)); |
| for (i=0; i < (ssize_t) number_threads; i++) |
| { |
| contribution[i]=(ContributionInfo *) MagickAssumeAligned( |
| AcquireAlignedMemory(count,sizeof(**contribution))); |
| if (contribution[i] == (ContributionInfo *) NULL) |
| return(DestroyContributionThreadSet(contribution)); |
| } |
| return(contribution); |
| } |
| |
| static MagickBooleanType HorizontalFilter(const ResizeFilter *resize_filter, |
| const Image *image,Image *resize_image,const double x_factor, |
| const MagickSizeType span,MagickOffsetType *offset,ExceptionInfo *exception) |
| { |
| #define ResizeImageTag "Resize/Image" |
| |
| CacheView |
| *image_view, |
| *resize_view; |
| |
| ClassType |
| storage_class; |
| |
| ContributionInfo |
| **magick_restrict contributions; |
| |
| MagickBooleanType |
| status; |
| |
| double |
| scale, |
| support; |
| |
| ssize_t |
| x; |
| |
| /* |
| Apply filter to resize horizontally from image to resize image. |
| */ |
| scale=MagickMax(1.0/x_factor+MagickEpsilon,1.0); |
| support=scale*GetResizeFilterSupport(resize_filter); |
| storage_class=support > 0.5 ? DirectClass : image->storage_class; |
| if (SetImageStorageClass(resize_image,storage_class,exception) == MagickFalse) |
| return(MagickFalse); |
| if (support < 0.5) |
| { |
| /* |
| Support too small even for nearest neighbour: Reduce to point sampling. |
| */ |
| support=(double) 0.5; |
| scale=1.0; |
| } |
| contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0)); |
| if (contributions == (ContributionInfo **) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| status=MagickTrue; |
| scale=PerceptibleReciprocal(scale); |
| image_view=AcquireVirtualCacheView(image,exception); |
| resize_view=AcquireAuthenticCacheView(resize_image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(status) \ |
| magick_number_threads(image,resize_image,resize_image->columns,1) |
| #endif |
| for (x=0; x < (ssize_t) resize_image->columns; x++) |
| { |
| const int |
| id = GetOpenMPThreadId(); |
| |
| double |
| bisect, |
| density; |
| |
| register const Quantum |
| *magick_restrict p; |
| |
| register ContributionInfo |
| *magick_restrict contribution; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| y; |
| |
| ssize_t |
| n, |
| start, |
| stop; |
| |
| if (status == MagickFalse) |
| continue; |
| bisect=(double) (x+0.5)/x_factor+MagickEpsilon; |
| start=(ssize_t) MagickMax(bisect-support+0.5,0.0); |
| stop=(ssize_t) MagickMin(bisect+support+0.5,(double) image->columns); |
| density=0.0; |
| contribution=contributions[id]; |
| for (n=0; n < (stop-start); n++) |
| { |
| contribution[n].pixel=start+n; |
| contribution[n].weight=GetResizeFilterWeight(resize_filter,scale* |
| ((double) (start+n)-bisect+0.5)); |
| density+=contribution[n].weight; |
| } |
| if (n == 0) |
| continue; |
| if ((density != 0.0) && (density != 1.0)) |
| { |
| register ssize_t |
| i; |
| |
| /* |
| Normalize. |
| */ |
| density=PerceptibleReciprocal(density); |
| for (i=0; i < n; i++) |
| contribution[i].weight*=density; |
| } |
| p=GetCacheViewVirtualPixels(image_view,contribution[0].pixel,0,(size_t) |
| (contribution[n-1].pixel-contribution[0].pixel+1),image->rows,exception); |
| q=QueueCacheViewAuthenticPixels(resize_view,x,0,1,resize_image->rows, |
| exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (y=0; y < (ssize_t) resize_image->rows; y++) |
| { |
| register ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| alpha, |
| gamma, |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| resize_traits, |
| traits; |
| |
| register ssize_t |
| j; |
| |
| ssize_t |
| k; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| resize_traits=GetPixelChannelTraits(resize_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (resize_traits == UndefinedPixelTrait)) |
| continue; |
| if (((resize_traits & CopyPixelTrait) != 0) || |
| (GetPixelWriteMask(resize_image,q) <= (QuantumRange/2))) |
| { |
| j=(ssize_t) (MagickMin(MagickMax(bisect,(double) start),(double) |
| stop-1.0)+0.5); |
| k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+ |
| (contribution[j-start].pixel-contribution[0].pixel); |
| SetPixelChannel(resize_image,channel,p[k*GetPixelChannels(image)+i], |
| q); |
| continue; |
| } |
| pixel=0.0; |
| if ((resize_traits & BlendPixelTrait) == 0) |
| { |
| /* |
| No alpha blending. |
| */ |
| for (j=0; j < n; j++) |
| { |
| k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+ |
| (contribution[j].pixel-contribution[0].pixel); |
| alpha=contribution[j].weight; |
| pixel+=alpha*p[k*GetPixelChannels(image)+i]; |
| } |
| SetPixelChannel(resize_image,channel,ClampToQuantum(pixel),q); |
| continue; |
| } |
| /* |
| Alpha blending. |
| */ |
| gamma=0.0; |
| for (j=0; j < n; j++) |
| { |
| k=y*(contribution[n-1].pixel-contribution[0].pixel+1)+ |
| (contribution[j].pixel-contribution[0].pixel); |
| alpha=contribution[j].weight*QuantumScale* |
| GetPixelAlpha(image,p+k*GetPixelChannels(image)); |
| pixel+=alpha*p[k*GetPixelChannels(image)+i]; |
| gamma+=alpha; |
| } |
| gamma=PerceptibleReciprocal(gamma); |
| SetPixelChannel(resize_image,channel,ClampToQuantum(gamma*pixel),q); |
| } |
| q+=GetPixelChannels(resize_image); |
| } |
| if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_HorizontalFilter) |
| #endif |
| proceed=SetImageProgress(image,ResizeImageTag,(*offset)++,span); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| resize_view=DestroyCacheView(resize_view); |
| image_view=DestroyCacheView(image_view); |
| contributions=DestroyContributionThreadSet(contributions); |
| return(status); |
| } |
| |
| static MagickBooleanType VerticalFilter(const ResizeFilter *resize_filter, |
| const Image *image,Image *resize_image,const double y_factor, |
| const MagickSizeType span,MagickOffsetType *offset,ExceptionInfo *exception) |
| { |
| CacheView |
| *image_view, |
| *resize_view; |
| |
| ClassType |
| storage_class; |
| |
| ContributionInfo |
| **magick_restrict contributions; |
| |
| double |
| scale, |
| support; |
| |
| MagickBooleanType |
| status; |
| |
| ssize_t |
| y; |
| |
| /* |
| Apply filter to resize vertically from image to resize image. |
| */ |
| scale=MagickMax(1.0/y_factor+MagickEpsilon,1.0); |
| support=scale*GetResizeFilterSupport(resize_filter); |
| storage_class=support > 0.5 ? DirectClass : image->storage_class; |
| if (SetImageStorageClass(resize_image,storage_class,exception) == MagickFalse) |
| return(MagickFalse); |
| if (support < 0.5) |
| { |
| /* |
| Support too small even for nearest neighbour: Reduce to point sampling. |
| */ |
| support=(double) 0.5; |
| scale=1.0; |
| } |
| contributions=AcquireContributionThreadSet((size_t) (2.0*support+3.0)); |
| if (contributions == (ContributionInfo **) NULL) |
| { |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| return(MagickFalse); |
| } |
| status=MagickTrue; |
| scale=PerceptibleReciprocal(scale); |
| image_view=AcquireVirtualCacheView(image,exception); |
| resize_view=AcquireAuthenticCacheView(resize_image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(status) \ |
| magick_number_threads(image,resize_image,resize_image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) resize_image->rows; y++) |
| { |
| const int |
| id = GetOpenMPThreadId(); |
| |
| double |
| bisect, |
| density; |
| |
| register const Quantum |
| *magick_restrict p; |
| |
| register ContributionInfo |
| *magick_restrict contribution; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| x; |
| |
| ssize_t |
| n, |
| start, |
| stop; |
| |
| if (status == MagickFalse) |
| continue; |
| bisect=(double) (y+0.5)/y_factor+MagickEpsilon; |
| start=(ssize_t) MagickMax(bisect-support+0.5,0.0); |
| stop=(ssize_t) MagickMin(bisect+support+0.5,(double) image->rows); |
| density=0.0; |
| contribution=contributions[id]; |
| for (n=0; n < (stop-start); n++) |
| { |
| contribution[n].pixel=start+n; |
| contribution[n].weight=GetResizeFilterWeight(resize_filter,scale* |
| ((double) (start+n)-bisect+0.5)); |
| density+=contribution[n].weight; |
| } |
| if (n == 0) |
| continue; |
| if ((density != 0.0) && (density != 1.0)) |
| { |
| register ssize_t |
| i; |
| |
| /* |
| Normalize. |
| */ |
| density=PerceptibleReciprocal(density); |
| for (i=0; i < n; i++) |
| contribution[i].weight*=density; |
| } |
| p=GetCacheViewVirtualPixels(image_view,0,contribution[0].pixel, |
| image->columns,(size_t) (contribution[n-1].pixel-contribution[0].pixel+1), |
| exception); |
| q=QueueCacheViewAuthenticPixels(resize_view,0,y,resize_image->columns,1, |
| exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (x=0; x < (ssize_t) resize_image->columns; x++) |
| { |
| register ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| alpha, |
| gamma, |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| resize_traits, |
| traits; |
| |
| register ssize_t |
| j; |
| |
| ssize_t |
| k; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| resize_traits=GetPixelChannelTraits(resize_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (resize_traits == UndefinedPixelTrait)) |
| continue; |
| if (((resize_traits & CopyPixelTrait) != 0) || |
| (GetPixelWriteMask(resize_image,q) <= (QuantumRange/2))) |
| { |
| j=(ssize_t) (MagickMin(MagickMax(bisect,(double) start),(double) |
| stop-1.0)+0.5); |
| k=(ssize_t) ((contribution[j-start].pixel-contribution[0].pixel)* |
| image->columns+x); |
| SetPixelChannel(resize_image,channel,p[k*GetPixelChannels(image)+i], |
| q); |
| continue; |
| } |
| pixel=0.0; |
| if ((resize_traits & BlendPixelTrait) == 0) |
| { |
| /* |
| No alpha blending. |
| */ |
| for (j=0; j < n; j++) |
| { |
| k=(ssize_t) ((contribution[j].pixel-contribution[0].pixel)* |
| image->columns+x); |
| alpha=contribution[j].weight; |
| pixel+=alpha*p[k*GetPixelChannels(image)+i]; |
| } |
| SetPixelChannel(resize_image,channel,ClampToQuantum(pixel),q); |
| continue; |
| } |
| gamma=0.0; |
| for (j=0; j < n; j++) |
| { |
| k=(ssize_t) ((contribution[j].pixel-contribution[0].pixel)* |
| image->columns+x); |
| alpha=contribution[j].weight*QuantumScale*GetPixelAlpha(image,p+k* |
| GetPixelChannels(image)); |
| pixel+=alpha*p[k*GetPixelChannels(image)+i]; |
| gamma+=alpha; |
| } |
| gamma=PerceptibleReciprocal(gamma); |
| SetPixelChannel(resize_image,channel,ClampToQuantum(gamma*pixel),q); |
| } |
| q+=GetPixelChannels(resize_image); |
| } |
| if (SyncCacheViewAuthenticPixels(resize_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_VerticalFilter) |
| #endif |
| proceed=SetImageProgress(image,ResizeImageTag,(*offset)++,span); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| resize_view=DestroyCacheView(resize_view); |
| image_view=DestroyCacheView(image_view); |
| contributions=DestroyContributionThreadSet(contributions); |
| return(status); |
| } |
| |
| MagickExport Image *ResizeImage(const Image *image,const size_t columns, |
| const size_t rows,const FilterType filter,ExceptionInfo *exception) |
| { |
| double |
| x_factor, |
| y_factor; |
| |
| FilterType |
| filter_type; |
| |
| Image |
| *filter_image, |
| *resize_image; |
| |
| MagickOffsetType |
| offset; |
| |
| MagickSizeType |
| span; |
| |
| MagickStatusType |
| status; |
| |
| ResizeFilter |
| *resize_filter; |
| |
| /* |
| Acquire resize image. |
| */ |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if ((columns == 0) || (rows == 0)) |
| ThrowImageException(ImageError,"NegativeOrZeroImageSize"); |
| if ((columns == image->columns) && (rows == image->rows) && |
| (filter == UndefinedFilter)) |
| return(CloneImage(image,0,0,MagickTrue,exception)); |
| /* |
| Acquire resize filter. |
| */ |
| x_factor=(double) columns/(double) image->columns; |
| y_factor=(double) rows/(double) image->rows; |
| filter_type=LanczosFilter; |
| if (filter != UndefinedFilter) |
| filter_type=filter; |
| else |
| if ((x_factor == 1.0) && (y_factor == 1.0)) |
| filter_type=PointFilter; |
| else |
| if ((image->storage_class == PseudoClass) || |
| (image->alpha_trait != UndefinedPixelTrait) || |
| ((x_factor*y_factor) > 1.0)) |
| filter_type=MitchellFilter; |
| resize_filter=AcquireResizeFilter(image,filter_type,MagickFalse,exception); |
| #if defined(MAGICKCORE_OPENCL_SUPPORT) |
| resize_image=AccelerateResizeImage(image,columns,rows,resize_filter, |
| exception); |
| if (resize_image != (Image *) NULL) |
| { |
| resize_filter=DestroyResizeFilter(resize_filter); |
| return(resize_image); |
| } |
| #endif |
| resize_image=CloneImage(image,columns,rows,MagickTrue,exception); |
| if (resize_image == (Image *) NULL) |
| { |
| resize_filter=DestroyResizeFilter(resize_filter); |
| return(resize_image); |
| } |
| if (x_factor > y_factor) |
| filter_image=CloneImage(image,columns,image->rows,MagickTrue,exception); |
| else |
| filter_image=CloneImage(image,image->columns,rows,MagickTrue,exception); |
| if (filter_image == (Image *) NULL) |
| { |
| resize_filter=DestroyResizeFilter(resize_filter); |
| return(DestroyImage(resize_image)); |
| } |
| /* |
| Resize image. |
| */ |
| offset=0; |
| if (x_factor > y_factor) |
| { |
| span=(MagickSizeType) (filter_image->columns+rows); |
| status=HorizontalFilter(resize_filter,image,filter_image,x_factor,span, |
| &offset,exception); |
| status&=VerticalFilter(resize_filter,filter_image,resize_image,y_factor, |
| span,&offset,exception); |
| } |
| else |
| { |
| span=(MagickSizeType) (filter_image->rows+columns); |
| status=VerticalFilter(resize_filter,image,filter_image,y_factor,span, |
| &offset,exception); |
| status&=HorizontalFilter(resize_filter,filter_image,resize_image,x_factor, |
| span,&offset,exception); |
| } |
| /* |
| Free resources. |
| */ |
| filter_image=DestroyImage(filter_image); |
| resize_filter=DestroyResizeFilter(resize_filter); |
| if (status == MagickFalse) |
| { |
| resize_image=DestroyImage(resize_image); |
| return((Image *) NULL); |
| } |
| resize_image->type=image->type; |
| return(resize_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S a m p l e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % SampleImage() scales an image to the desired dimensions with pixel |
| % sampling. Unlike other scaling methods, this method does not introduce |
| % any additional color into the scaled image. |
| % |
| % The format of the SampleImage method is: |
| % |
| % Image *SampleImage(const Image *image,const size_t columns, |
| % const size_t rows,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the sampled image. |
| % |
| % o rows: the number of rows in the sampled image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *SampleImage(const Image *image,const size_t columns, |
| const size_t rows,ExceptionInfo *exception) |
| { |
| #define SampleImageTag "Sample/Image" |
| |
| CacheView |
| *image_view, |
| *sample_view; |
| |
| Image |
| *sample_image; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| register ssize_t |
| x1; |
| |
| ssize_t |
| *x_offset, |
| y; |
| |
| PointInfo |
| sample_offset; |
| |
| /* |
| Initialize sampled image attributes. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if ((columns == 0) || (rows == 0)) |
| ThrowImageException(ImageError,"NegativeOrZeroImageSize"); |
| if ((columns == image->columns) && (rows == image->rows)) |
| return(CloneImage(image,0,0,MagickTrue,exception)); |
| sample_image=CloneImage(image,columns,rows,MagickTrue,exception); |
| if (sample_image == (Image *) NULL) |
| return((Image *) NULL); |
| /* |
| Set the sampling offset, default is in the mid-point of sample regions. |
| */ |
| sample_offset.x=sample_offset.y=0.5-MagickEpsilon; |
| { |
| const char |
| *value; |
| |
| value=GetImageArtifact(image,"sample:offset"); |
| if (value != (char *) NULL) |
| { |
| GeometryInfo |
| geometry_info; |
| |
| MagickStatusType |
| flags; |
| |
| (void) ParseGeometry(value,&geometry_info); |
| flags=ParseGeometry(value,&geometry_info); |
| sample_offset.x=sample_offset.y=geometry_info.rho/100.0-MagickEpsilon; |
| if ((flags & SigmaValue) != 0) |
| sample_offset.y=geometry_info.sigma/100.0-MagickEpsilon; |
| } |
| } |
| /* |
| Allocate scan line buffer and column offset buffers. |
| */ |
| x_offset=(ssize_t *) AcquireQuantumMemory((size_t) sample_image->columns, |
| sizeof(*x_offset)); |
| if (x_offset == (ssize_t *) NULL) |
| { |
| sample_image=DestroyImage(sample_image); |
| ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); |
| } |
| for (x1=0; x1 < (ssize_t) sample_image->columns; x1++) |
| x_offset[x1]=(ssize_t) ((((double) x1+sample_offset.x)*image->columns)/ |
| sample_image->columns); |
| /* |
| Sample each row. |
| */ |
| status=MagickTrue; |
| progress=0; |
| image_view=AcquireVirtualCacheView(image,exception); |
| sample_view=AcquireAuthenticCacheView(sample_image,exception); |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static,4) shared(status) \ |
| magick_number_threads(image,sample_image,sample_image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) sample_image->rows; y++) |
| { |
| register const Quantum |
| *magick_restrict p; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| x; |
| |
| ssize_t |
| y_offset; |
| |
| if (status == MagickFalse) |
| continue; |
| y_offset=(ssize_t) ((((double) y+sample_offset.y)*image->rows)/ |
| sample_image->rows); |
| p=GetCacheViewVirtualPixels(image_view,0,y_offset,image->columns,1, |
| exception); |
| q=QueueCacheViewAuthenticPixels(sample_view,0,y,sample_image->columns,1, |
| exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| /* |
| Sample each column. |
| */ |
| for (x=0; x < (ssize_t) sample_image->columns; x++) |
| { |
| register ssize_t |
| i; |
| |
| if (GetPixelWriteMask(sample_image,q) <= (QuantumRange/2)) |
| { |
| q+=GetPixelChannels(sample_image); |
| continue; |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(sample_image); i++) |
| { |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| image_traits, |
| traits; |
| |
| channel=GetPixelChannelChannel(sample_image,i); |
| traits=GetPixelChannelTraits(sample_image,channel); |
| image_traits=GetPixelChannelTraits(image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (image_traits == UndefinedPixelTrait)) |
| continue; |
| SetPixelChannel(sample_image,channel,p[x_offset[x]*GetPixelChannels( |
| image)+i],q); |
| } |
| q+=GetPixelChannels(sample_image); |
| } |
| if (SyncCacheViewAuthenticPixels(sample_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp critical (MagickCore_SampleImage) |
| #endif |
| proceed=SetImageProgress(image,SampleImageTag,progress++,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| image_view=DestroyCacheView(image_view); |
| sample_view=DestroyCacheView(sample_view); |
| x_offset=(ssize_t *) RelinquishMagickMemory(x_offset); |
| sample_image->type=image->type; |
| if (status == MagickFalse) |
| sample_image=DestroyImage(sample_image); |
| return(sample_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleImage() changes the size of an image to the given dimensions. |
| % |
| % The format of the ScaleImage method is: |
| % |
| % Image *ScaleImage(const Image *image,const size_t columns, |
| % const size_t rows,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the scaled image. |
| % |
| % o rows: the number of rows in the scaled image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *ScaleImage(const Image *image,const size_t columns, |
| const size_t rows,ExceptionInfo *exception) |
| { |
| #define ScaleImageTag "Scale/Image" |
| |
| CacheView |
| *image_view, |
| *scale_view; |
| |
| double |
| alpha, |
| pixel[CompositePixelChannel], |
| *scale_scanline, |
| *scanline, |
| *x_vector, |
| *y_vector; |
| |
| Image |
| *scale_image; |
| |
| MagickBooleanType |
| next_column, |
| next_row, |
| proceed, |
| status; |
| |
| PixelTrait |
| scale_traits; |
| |
| PointInfo |
| scale, |
| span; |
| |
| register ssize_t |
| i; |
| |
| ssize_t |
| n, |
| number_rows, |
| y; |
| |
| /* |
| Initialize scaled image attributes. |
| */ |
| assert(image != (const Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| if ((columns == 0) || (rows == 0)) |
| ThrowImageException(ImageError,"NegativeOrZeroImageSize"); |
| if ((columns == image->columns) && (rows == image->rows)) |
| return(CloneImage(image,0,0,MagickTrue,exception)); |
| scale_image=CloneImage(image,columns,rows,MagickTrue,exception); |
| if (scale_image == (Image *) NULL) |
| return((Image *) NULL); |
| if (SetImageStorageClass(scale_image,DirectClass,exception) == MagickFalse) |
| { |
| scale_image=DestroyImage(scale_image); |
| return((Image *) NULL); |
| } |
| /* |
| Allocate memory. |
| */ |
| x_vector=(double *) AcquireQuantumMemory((size_t) image->columns, |
| MaxPixelChannels*sizeof(*x_vector)); |
| scanline=x_vector; |
| if (image->rows != scale_image->rows) |
| scanline=(double *) AcquireQuantumMemory((size_t) image->columns, |
| MaxPixelChannels*sizeof(*scanline)); |
| scale_scanline=(double *) AcquireQuantumMemory((size_t) scale_image->columns, |
| MaxPixelChannels*sizeof(*scale_scanline)); |
| y_vector=(double *) AcquireQuantumMemory((size_t) image->columns, |
| MaxPixelChannels*sizeof(*y_vector)); |
| if ((scanline == (double *) NULL) || (scale_scanline == (double *) NULL) || |
| (x_vector == (double *) NULL) || (y_vector == (double *) NULL)) |
| { |
| if ((image->rows != scale_image->rows) && (scanline != (double *) NULL)) |
| scanline=(double *) RelinquishMagickMemory(scanline); |
| if (scale_scanline != (double *) NULL) |
| scale_scanline=(double *) RelinquishMagickMemory(scale_scanline); |
| if (x_vector != (double *) NULL) |
| x_vector=(double *) RelinquishMagickMemory(x_vector); |
| if (y_vector != (double *) NULL) |
| y_vector=(double *) RelinquishMagickMemory(y_vector); |
| scale_image=DestroyImage(scale_image); |
| ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); |
| } |
| /* |
| Scale image. |
| */ |
| number_rows=0; |
| next_row=MagickTrue; |
| span.y=1.0; |
| scale.y=(double) scale_image->rows/(double) image->rows; |
| (void) ResetMagickMemory(y_vector,0,(size_t) MaxPixelChannels*image->columns* |
| sizeof(*y_vector)); |
| n=0; |
| status=MagickTrue; |
| image_view=AcquireVirtualCacheView(image,exception); |
| scale_view=AcquireAuthenticCacheView(scale_image,exception); |
| for (y=0; y < (ssize_t) scale_image->rows; y++) |
| { |
| register const Quantum |
| *magick_restrict p; |
| |
| register Quantum |
| *magick_restrict q; |
| |
| register ssize_t |
| x; |
| |
| if (status == MagickFalse) |
| break; |
| q=QueueCacheViewAuthenticPixels(scale_view,0,y,scale_image->columns,1, |
| exception); |
| if (q == (Quantum *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| alpha=1.0; |
| if (scale_image->rows == image->rows) |
| { |
| /* |
| Read a new scanline. |
| */ |
| p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1, |
| exception); |
| if (p == (const Quantum *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if (GetPixelWriteMask(image,p) <= (QuantumRange/2)) |
| { |
| p+=GetPixelChannels(image); |
| continue; |
| } |
| if (image->alpha_trait != UndefinedPixelTrait) |
| alpha=QuantumScale*GetPixelAlpha(image,p); |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| if ((traits & BlendPixelTrait) == 0) |
| { |
| x_vector[x*GetPixelChannels(image)+i]=(double) p[i]; |
| continue; |
| } |
| x_vector[x*GetPixelChannels(image)+i]=alpha*p[i]; |
| } |
| p+=GetPixelChannels(image); |
| } |
| } |
| else |
| { |
| /* |
| Scale Y direction. |
| */ |
| while (scale.y < span.y) |
| { |
| if ((next_row != MagickFalse) && |
| (number_rows < (ssize_t) image->rows)) |
| { |
| /* |
| Read a new scanline. |
| */ |
| p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1, |
| exception); |
| if (p == (const Quantum *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if (GetPixelWriteMask(image,p) <= (QuantumRange/2)) |
| { |
| p+=GetPixelChannels(image); |
| continue; |
| } |
| if (image->alpha_trait != UndefinedPixelTrait) |
| alpha=QuantumScale*GetPixelAlpha(image,p); |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| if ((traits & BlendPixelTrait) == 0) |
| { |
| x_vector[x*GetPixelChannels(image)+i]=(double) p[i]; |
| continue; |
| } |
| x_vector[x*GetPixelChannels(image)+i]=alpha*p[i]; |
| } |
| p+=GetPixelChannels(image); |
| } |
| number_rows++; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| y_vector[x*GetPixelChannels(image)+i]+=scale.y* |
| x_vector[x*GetPixelChannels(image)+i]; |
| span.y-=scale.y; |
| scale.y=(double) scale_image->rows/(double) image->rows; |
| next_row=MagickTrue; |
| } |
| if ((next_row != MagickFalse) && (number_rows < (ssize_t) image->rows)) |
| { |
| /* |
| Read a new scanline. |
| */ |
| p=GetCacheViewVirtualPixels(image_view,0,n++,image->columns,1, |
| exception); |
| if (p == (const Quantum *) NULL) |
| { |
| status=MagickFalse; |
| break; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| if (GetPixelWriteMask(image,p) <= (QuantumRange/2)) |
| { |
| p+=GetPixelChannels(image); |
| continue; |
| } |
| if (image->alpha_trait != UndefinedPixelTrait) |
| alpha=QuantumScale*GetPixelAlpha(image,p); |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| if ((traits & BlendPixelTrait) == 0) |
| { |
| x_vector[x*GetPixelChannels(image)+i]=(double) p[i]; |
| continue; |
| } |
| x_vector[x*GetPixelChannels(image)+i]=alpha*p[i]; |
| } |
| p+=GetPixelChannels(image); |
| } |
| number_rows++; |
| next_row=MagickFalse; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| pixel[i]=y_vector[x*GetPixelChannels(image)+i]+span.y* |
| x_vector[x*GetPixelChannels(image)+i]; |
| scanline[x*GetPixelChannels(image)+i]=pixel[i]; |
| y_vector[x*GetPixelChannels(image)+i]=0.0; |
| } |
| } |
| scale.y-=span.y; |
| if (scale.y <= 0) |
| { |
| scale.y=(double) scale_image->rows/(double) image->rows; |
| next_row=MagickTrue; |
| } |
| span.y=1.0; |
| } |
| if (scale_image->columns == image->columns) |
| { |
| /* |
| Transfer scanline to scaled image. |
| */ |
| for (x=0; x < (ssize_t) scale_image->columns; x++) |
| { |
| if (GetPixelWriteMask(scale_image,q) <= (QuantumRange/2)) |
| { |
| q+=GetPixelChannels(scale_image); |
| continue; |
| } |
| if (image->alpha_trait != UndefinedPixelTrait) |
| { |
| alpha=QuantumScale*scanline[x*GetPixelChannels(image)+ |
| GetPixelChannelOffset(image,AlphaPixelChannel)]; |
| alpha=PerceptibleReciprocal(alpha); |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| scale_traits=GetPixelChannelTraits(scale_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (scale_traits == UndefinedPixelTrait)) |
| continue; |
| if ((traits & BlendPixelTrait) == 0) |
| { |
| SetPixelChannel(scale_image,channel,ClampToQuantum( |
| scanline[x*GetPixelChannels(image)+i]),q); |
| continue; |
| } |
| SetPixelChannel(scale_image,channel,ClampToQuantum(alpha*scanline[ |
| x*GetPixelChannels(image)+i]),q); |
| } |
| q+=GetPixelChannels(scale_image); |
| } |
| } |
| else |
| { |
| ssize_t |
| t; |
| |
| /* |
| Scale X direction. |
| */ |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| pixel[i]=0.0; |
| next_column=MagickFalse; |
| span.x=1.0; |
| t=0; |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| scale.x=(double) scale_image->columns/(double) image->columns; |
| while (scale.x >= span.x) |
| { |
| if (next_column != MagickFalse) |
| { |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| pixel[i]=0.0; |
| t++; |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| if (traits == UndefinedPixelTrait) |
| continue; |
| pixel[i]+=span.x*scanline[x*GetPixelChannels(image)+i]; |
| scale_scanline[t*GetPixelChannels(image)+i]=pixel[i]; |
| } |
| scale.x-=span.x; |
| span.x=1.0; |
| next_column=MagickTrue; |
| } |
| if (scale.x > 0) |
| { |
| if (next_column != MagickFalse) |
| { |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| pixel[i]=0.0; |
| next_column=MagickFalse; |
| t++; |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| pixel[i]+=scale.x*scanline[x*GetPixelChannels(image)+i]; |
| span.x-=scale.x; |
| } |
| } |
| if (span.x > 0) |
| { |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| pixel[i]+=span.x*scanline[(x-1)*GetPixelChannels(image)+i]; |
| } |
| if ((next_column == MagickFalse) && |
| (t < (ssize_t) scale_image->columns)) |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| scale_scanline[t*GetPixelChannels(image)+i]=pixel[i]; |
| /* |
| Transfer scanline to scaled image. |
| */ |
| for (x=0; x < (ssize_t) scale_image->columns; x++) |
| { |
| if (GetPixelWriteMask(scale_image,q) <= (QuantumRange/2)) |
| { |
| q+=GetPixelChannels(scale_image); |
| continue; |
| } |
| if (image->alpha_trait != UndefinedPixelTrait) |
| { |
| alpha=QuantumScale*scale_scanline[x*GetPixelChannels(image)+ |
| GetPixelChannelOffset(image,AlphaPixelChannel)]; |
| alpha=PerceptibleReciprocal(alpha); |
| } |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| PixelChannel channel = GetPixelChannelChannel(image,i); |
| PixelTrait traits = GetPixelChannelTraits(image,channel); |
| scale_traits=GetPixelChannelTraits(scale_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (scale_traits == UndefinedPixelTrait)) |
| continue; |
| if ((traits & BlendPixelTrait) == 0) |
| { |
| SetPixelChannel(scale_image,channel,ClampToQuantum( |
| scale_scanline[x*GetPixelChannels(image)+i]),q); |
| continue; |
| } |
| SetPixelChannel(scale_image,channel,ClampToQuantum(alpha* |
| scale_scanline[x*GetPixelChannels(image)+i]),q); |
| } |
| q+=GetPixelChannels(scale_image); |
| } |
| } |
| if (SyncCacheViewAuthenticPixels(scale_view,exception) == MagickFalse) |
| { |
| status=MagickFalse; |
| break; |
| } |
| proceed=SetImageProgress(image,ScaleImageTag,(MagickOffsetType) y, |
| image->rows); |
| if (proceed == MagickFalse) |
| { |
| status=MagickFalse; |
| break; |
| } |
| } |
| scale_view=DestroyCacheView(scale_view); |
| image_view=DestroyCacheView(image_view); |
| /* |
| Free allocated memory. |
| */ |
| y_vector=(double *) RelinquishMagickMemory(y_vector); |
| scale_scanline=(double *) RelinquishMagickMemory(scale_scanline); |
| if (scale_image->rows != image->rows) |
| scanline=(double *) RelinquishMagickMemory(scanline); |
| x_vector=(double *) RelinquishMagickMemory(x_vector); |
| scale_image->type=image->type; |
| if (status == MagickFalse) |
| scale_image=DestroyImage(scale_image); |
| return(scale_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % T h u m b n a i l I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ThumbnailImage() changes the size of an image to the given dimensions and |
| % removes any associated profiles. The goal is to produce small low cost |
| % thumbnail images suited for display on the Web. |
| % |
| % The format of the ThumbnailImage method is: |
| % |
| % Image *ThumbnailImage(const Image *image,const size_t columns, |
| % const size_t rows,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o columns: the number of columns in the scaled image. |
| % |
| % o rows: the number of rows in the scaled image. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *ThumbnailImage(const Image *image,const size_t columns, |
| const size_t rows,ExceptionInfo *exception) |
| { |
| #define SampleFactor 5 |
| |
| char |
| *url, |
| value[MagickPathExtent]; |
| |
| const char |
| *name; |
| |
| Image |
| *thumbnail_image; |
| |
| double |
| x_factor, |
| y_factor; |
| |
| struct stat |
| attributes; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| if (image->debug != MagickFalse) |
| (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| x_factor=(double) columns/(double) image->columns; |
| y_factor=(double) rows/(double) image->rows; |
| if ((x_factor*y_factor) > 0.1) |
| thumbnail_image=ResizeImage(image,columns,rows,image->filter,exception); |
| else |
| if (((SampleFactor*columns) < 128) || ((SampleFactor*rows) < 128)) |
| thumbnail_image=ResizeImage(image,columns,rows,image->filter,exception); |
| else |
| { |
| Image |
| *sample_image; |
| |
| sample_image=SampleImage(image,SampleFactor*columns,SampleFactor*rows, |
| exception); |
| if (sample_image == (Image *) NULL) |
| return((Image *) NULL); |
| thumbnail_image=ResizeImage(sample_image,columns,rows,image->filter, |
| exception); |
| sample_image=DestroyImage(sample_image); |
| } |
| if (thumbnail_image == (Image *) NULL) |
| return(thumbnail_image); |
| (void) ParseAbsoluteGeometry("0x0+0+0",&thumbnail_image->page); |
| if (thumbnail_image->alpha_trait == UndefinedPixelTrait) |
| (void) SetImageAlphaChannel(thumbnail_image,OpaqueAlphaChannel,exception); |
| thumbnail_image->depth=8; |
| thumbnail_image->interlace=NoInterlace; |
| /* |
| Strip all profiles except color profiles. |
| */ |
| ResetImageProfileIterator(thumbnail_image); |
| for (name=GetNextImageProfile(thumbnail_image); name != (const char *) NULL; ) |
| { |
| if ((LocaleCompare(name,"icc") != 0) && (LocaleCompare(name,"icm") != 0)) |
| { |
| (void) DeleteImageProfile(thumbnail_image,name); |
| ResetImageProfileIterator(thumbnail_image); |
| } |
| name=GetNextImageProfile(thumbnail_image); |
| } |
| (void) DeleteImageProperty(thumbnail_image,"comment"); |
| (void) CopyMagickString(value,image->magick_filename,MagickPathExtent); |
| if (strstr(image->magick_filename,"//") == (char *) NULL) |
| (void) FormatLocaleString(value,MagickPathExtent,"file://%s", |
| image->magick_filename); |
| (void) SetImageProperty(thumbnail_image,"Thumb::URI",value,exception); |
| (void) CopyMagickString(value,image->magick_filename,MagickPathExtent); |
| if ( GetPathAttributes(image->filename,&attributes) != MagickFalse ) |
| { |
| (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double) |
| attributes.st_mtime); |
| (void) SetImageProperty(thumbnail_image,"Thumb::MTime",value,exception); |
| } |
| (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double) |
| attributes.st_mtime); |
| (void) FormatMagickSize(GetBlobSize(image),MagickFalse,"B",MagickPathExtent, |
| value); |
| (void) SetImageProperty(thumbnail_image,"Thumb::Size",value,exception); |
| (void) FormatLocaleString(value,MagickPathExtent,"image/%s",image->magick); |
| LocaleLower(value); |
| (void) SetImageProperty(thumbnail_image,"Thumb::Mimetype",value,exception); |
| url=GetMagickHomeURL(); |
| (void) SetImageProperty(thumbnail_image,"software",url,exception); |
| url=DestroyString(url); |
| (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double) |
| image->magick_columns); |
| (void) SetImageProperty(thumbnail_image,"Thumb::Image::Width",value, |
| exception); |
| (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double) |
| image->magick_rows); |
| (void) SetImageProperty(thumbnail_image,"Thumb::Image::Height",value, |
| exception); |
| (void) FormatLocaleString(value,MagickPathExtent,"%.20g",(double) |
| GetImageListLength(image)); |
| (void) SetImageProperty(thumbnail_image,"Thumb::Document::Pages",value, |
| exception); |
| return(thumbnail_image); |
| } |