| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y % |
| % MM MM O O R R P P H H O O L O O G Y Y % |
| % M M M O O RRRR PPPP HHHHH O O L O O G GGG Y % |
| % M M O O R R P H H O O L O O G G Y % |
| % M M OOO R R P H H OOO LLLLL OOO GGG Y % |
| % % |
| % % |
| % MagickCore Morphology Methods % |
| % % |
| % Software Design % |
| % Anthony Thyssen % |
| % January 2010 % |
| % % |
| % % |
| % Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization % |
| % dedicated to making software imaging solutions freely available. % |
| % % |
| % You may not use this file except in compliance with the License. You may % |
| % obtain a copy of the License at % |
| % % |
| % https://imagemagick.org/script/license.php % |
| % % |
| % Unless required by applicable law or agreed to in writing, software % |
| % distributed under the License is distributed on an "AS IS" BASIS, % |
| % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| % See the License for the specific language governing permissions and % |
| % limitations under the License. % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % Morphology is the application of various kernels, of any size or shape, to an |
| % image in various ways (typically binary, but not always). |
| % |
| % Convolution (weighted sum or average) is just one specific type of |
| % morphology. Just one that is very common for image bluring and sharpening |
| % effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring. |
| % |
| % This module provides not only a general morphology function, and the ability |
| % to apply more advanced or iterative morphologies, but also functions for the |
| % generation of many different types of kernel arrays from user supplied |
| % arguments. Prehaps even the generation of a kernel from a small image. |
| */ |
| |
| /* |
| Include declarations. |
| */ |
| #include "MagickCore/studio.h" |
| #include "MagickCore/artifact.h" |
| #include "MagickCore/cache-view.h" |
| #include "MagickCore/channel.h" |
| #include "MagickCore/color-private.h" |
| #include "MagickCore/enhance.h" |
| #include "MagickCore/exception.h" |
| #include "MagickCore/exception-private.h" |
| #include "MagickCore/gem.h" |
| #include "MagickCore/gem-private.h" |
| #include "MagickCore/image.h" |
| #include "MagickCore/image-private.h" |
| #include "MagickCore/linked-list.h" |
| #include "MagickCore/list.h" |
| #include "MagickCore/magick.h" |
| #include "MagickCore/memory_.h" |
| #include "MagickCore/memory-private.h" |
| #include "MagickCore/monitor-private.h" |
| #include "MagickCore/morphology.h" |
| #include "MagickCore/morphology-private.h" |
| #include "MagickCore/option.h" |
| #include "MagickCore/pixel-accessor.h" |
| #include "MagickCore/pixel-private.h" |
| #include "MagickCore/prepress.h" |
| #include "MagickCore/quantize.h" |
| #include "MagickCore/resource_.h" |
| #include "MagickCore/registry.h" |
| #include "MagickCore/semaphore.h" |
| #include "MagickCore/splay-tree.h" |
| #include "MagickCore/statistic.h" |
| #include "MagickCore/string_.h" |
| #include "MagickCore/string-private.h" |
| #include "MagickCore/thread-private.h" |
| #include "MagickCore/token.h" |
| #include "MagickCore/utility.h" |
| #include "MagickCore/utility-private.h" |
| |
| /* |
| Other global definitions used by module. |
| */ |
| #define Minimize(assign,value) assign=MagickMin(assign,value) |
| #define Maximize(assign,value) assign=MagickMax(assign,value) |
| |
| /* Integer Factorial Function - for a Binomial kernel */ |
| #if 1 |
| static inline size_t fact(size_t n) |
| { |
| size_t f,l; |
| for(f=1, l=2; l <= n; f=f*l, l++); |
| return(f); |
| } |
| #elif 1 /* glibc floating point alternatives */ |
| #define fact(n) ((size_t)tgamma((double)n+1)) |
| #else |
| #define fact(n) ((size_t)lgamma((double)n+1)) |
| #endif |
| |
| |
| /* Currently these are only internal to this module */ |
| static void |
| CalcKernelMetaData(KernelInfo *), |
| ExpandMirrorKernelInfo(KernelInfo *), |
| ExpandRotateKernelInfo(KernelInfo *, const double), |
| RotateKernelInfo(KernelInfo *, double); |
| |
| |
| /* Quick function to find last kernel in a kernel list */ |
| static inline KernelInfo *LastKernelInfo(KernelInfo *kernel) |
| { |
| while (kernel->next != (KernelInfo *) NULL) |
| kernel=kernel->next; |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelInfo() takes the given string (generally supplied by the |
| % user) and converts it into a Morphology/Convolution Kernel. This allows |
| % users to specify a kernel from a number of pre-defined kernels, or to fully |
| % specify their own kernel for a specific Convolution or Morphology |
| % Operation. |
| % |
| % The kernel so generated can be any rectangular array of floating point |
| % values (doubles) with the 'control point' or 'pixel being affected' |
| % anywhere within that array of values. |
| % |
| % Previously IM was restricted to a square of odd size using the exact |
| % center as origin, this is no longer the case, and any rectangular kernel |
| % with any value being declared the origin. This in turn allows the use of |
| % highly asymmetrical kernels. |
| % |
| % The floating point values in the kernel can also include a special value |
| % known as 'nan' or 'not a number' to indicate that this value is not part |
| % of the kernel array. This allows you to shaped the kernel within its |
| % rectangular area. That is 'nan' values provide a 'mask' for the kernel |
| % shape. However at least one non-nan value must be provided for correct |
| % working of a kernel. |
| % |
| % The returned kernel should be freed using the DestroyKernelInfo() when you |
| % are finished with it. Do not free this memory yourself. |
| % |
| % Input kernel defintion strings can consist of any of three types. |
| % |
| % "name:args[[@><]" |
| % Select from one of the built in kernels, using the name and |
| % geometry arguments supplied. See AcquireKernelBuiltIn() |
| % |
| % "WxH[+X+Y][@><]:num, num, num ..." |
| % a kernel of size W by H, with W*H floating point numbers following. |
| % the 'center' can be optionally be defined at +X+Y (such that +0+0 |
| % is top left corner). If not defined the pixel in the center, for |
| % odd sizes, or to the immediate top or left of center for even sizes |
| % is automatically selected. |
| % |
| % "num, num, num, num, ..." |
| % list of floating point numbers defining an 'old style' odd sized |
| % square kernel. At least 9 values should be provided for a 3x3 |
| % square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc. |
| % Values can be space or comma separated. This is not recommended. |
| % |
| % You can define a 'list of kernels' which can be used by some morphology |
| % operators A list is defined as a semi-colon separated list kernels. |
| % |
| % " kernel ; kernel ; kernel ; " |
| % |
| % Any extra ';' characters, at start, end or between kernel defintions are |
| % simply ignored. |
| % |
| % The special flags will expand a single kernel, into a list of rotated |
| % kernels. A '@' flag will expand a 3x3 kernel into a list of 45-degree |
| % cyclic rotations, while a '>' will generate a list of 90-degree rotations. |
| % The '<' also exands using 90-degree rotates, but giving a 180-degree |
| % reflected kernel before the +/- 90-degree rotations, which can be important |
| % for Thinning operations. |
| % |
| % Note that 'name' kernels will start with an alphabetic character while the |
| % new kernel specification has a ':' character in its specification string. |
| % If neither is the case, it is assumed an old style of a simple list of |
| % numbers generating a odd-sized square kernel has been given. |
| % |
| % The format of the AcquireKernal method is: |
| % |
| % KernelInfo *AcquireKernelInfo(const char *kernel_string) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel_string: the Morphology/Convolution kernel wanted. |
| % |
| */ |
| |
| /* This was separated so that it could be used as a separate |
| ** array input handling function, such as for -color-matrix |
| */ |
| static KernelInfo *ParseKernelArray(const char *kernel_string) |
| { |
| KernelInfo |
| *kernel; |
| |
| char |
| token[MagickPathExtent]; |
| |
| const char |
| *p, |
| *end; |
| |
| ssize_t |
| i; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| MagickStatusType |
| flags; |
| |
| GeometryInfo |
| args; |
| |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| (void) memset(kernel,0,sizeof(*kernel)); |
| kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->type = UserDefinedKernel; |
| kernel->next = (KernelInfo *) NULL; |
| kernel->signature=MagickCoreSignature; |
| if (kernel_string == (const char *) NULL) |
| return(kernel); |
| |
| /* find end of this specific kernel definition string */ |
| end = strchr(kernel_string, ';'); |
| if ( end == (char *) NULL ) |
| end = strchr(kernel_string, '\0'); |
| |
| /* clear flags - for Expanding kernel lists thorugh rotations */ |
| flags = NoValue; |
| |
| /* Has a ':' in argument - New user kernel specification |
| FUTURE: this split on ':' could be done by StringToken() |
| */ |
| p = strchr(kernel_string, ':'); |
| if ( p != (char *) NULL && p < end) |
| { |
| /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
| memcpy(token, kernel_string, (size_t) (p-kernel_string)); |
| token[p-kernel_string] = '\0'; |
| SetGeometryInfo(&args); |
| flags = ParseGeometry(token, &args); |
| |
| /* Size handling and checks of geometry settings */ |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 1.0; /* then width = 1 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| kernel->width = (size_t)args.rho; |
| kernel->height = (size_t)args.sigma; |
| |
| /* Offset Handling and Checks */ |
| if ( args.xi < 0.0 || args.psi < 0.0 ) |
| return(DestroyKernelInfo(kernel)); |
| kernel->x = ((flags & XValue)!=0) ? (ssize_t)args.xi |
| : (ssize_t) (kernel->width-1)/2; |
| kernel->y = ((flags & YValue)!=0) ? (ssize_t)args.psi |
| : (ssize_t) (kernel->height-1)/2; |
| if ( kernel->x >= (ssize_t) kernel->width || |
| kernel->y >= (ssize_t) kernel->height ) |
| return(DestroyKernelInfo(kernel)); |
| |
| p++; /* advance beyond the ':' */ |
| } |
| else |
| { /* ELSE - Old old specification, forming odd-square kernel */ |
| /* count up number of values given */ |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| for (i=0; p < end; i++) |
| { |
| (void) GetNextToken(p,&p,MagickPathExtent,token); |
| if (*token == ',') |
| (void) GetNextToken(p,&p,MagickPathExtent,token); |
| } |
| /* set the size of the kernel - old sized square */ |
| kernel->width = kernel->height= (size_t) sqrt((double) i+1.0); |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| p=(const char *) kernel_string; |
| while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\'')) |
| p++; /* ignore "'" chars for convolve filter usage - Cristy */ |
| } |
| |
| /* Read in the kernel values from rest of input string argument */ |
| kernel->values=(MagickRealType *) MagickAssumeAligned(AcquireAlignedMemory( |
| kernel->width,kernel->height*sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| kernel->minimum=MagickMaximumValue; |
| kernel->maximum=(-MagickMaximumValue); |
| kernel->negative_range = kernel->positive_range = 0.0; |
| for (i=0; (i < (ssize_t) (kernel->width*kernel->height)) && (p < end); i++) |
| { |
| (void) GetNextToken(p,&p,MagickPathExtent,token); |
| if (*token == ',') |
| (void) GetNextToken(p,&p,MagickPathExtent,token); |
| if ( LocaleCompare("nan",token) == 0 |
| || LocaleCompare("-",token) == 0 ) { |
| kernel->values[i] = nan; /* this value is not part of neighbourhood */ |
| } |
| else { |
| kernel->values[i] = StringToDouble(token,(char **) NULL); |
| ( kernel->values[i] < 0) |
| ? ( kernel->negative_range += kernel->values[i] ) |
| : ( kernel->positive_range += kernel->values[i] ); |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| } |
| } |
| |
| /* sanity check -- no more values in kernel definition */ |
| (void) GetNextToken(p,&p,MagickPathExtent,token); |
| if ( *token != '\0' && *token != ';' && *token != '\'' ) |
| return(DestroyKernelInfo(kernel)); |
| |
| #if 0 |
| /* this was the old method of handling a incomplete kernel */ |
| if ( i < (ssize_t) (kernel->width*kernel->height) ) { |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| for ( ; i < (ssize_t) (kernel->width*kernel->height); i++) |
| kernel->values[i]=0.0; |
| } |
| #else |
| /* Number of values for kernel was not enough - Report Error */ |
| if ( i < (ssize_t) (kernel->width*kernel->height) ) |
| return(DestroyKernelInfo(kernel)); |
| #endif |
| |
| /* check that we recieved at least one real (non-nan) value! */ |
| if (kernel->minimum == MagickMaximumValue) |
| return(DestroyKernelInfo(kernel)); |
| |
| if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel size */ |
| ExpandRotateKernelInfo(kernel, 45.0); /* cyclic rotate 3x3 kernels */ |
| else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 90.0); /* 90 degree rotate of kernel */ |
| else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
| ExpandMirrorKernelInfo(kernel); /* 90 degree mirror rotate */ |
| |
| return(kernel); |
| } |
| |
| static KernelInfo *ParseKernelName(const char *kernel_string, |
| ExceptionInfo *exception) |
| { |
| char |
| token[MagickPathExtent]; |
| |
| const char |
| *p, |
| *end; |
| |
| GeometryInfo |
| args; |
| |
| KernelInfo |
| *kernel; |
| |
| MagickStatusType |
| flags; |
| |
| ssize_t |
| type; |
| |
| /* Parse special 'named' kernel */ |
| (void) GetNextToken(kernel_string,&p,MagickPathExtent,token); |
| type=ParseCommandOption(MagickKernelOptions,MagickFalse,token); |
| if ( type < 0 || type == UserDefinedKernel ) |
| return((KernelInfo *) NULL); /* not a valid named kernel */ |
| |
| while (((isspace((int) ((unsigned char) *p)) != 0) || |
| (*p == ',') || (*p == ':' )) && (*p != '\0') && (*p != ';')) |
| p++; |
| |
| end = strchr(p, ';'); /* end of this kernel defintion */ |
| if ( end == (char *) NULL ) |
| end = strchr(p, '\0'); |
| |
| /* ParseGeometry() needs the geometry separated! -- Arrgghh */ |
| memcpy(token, p, (size_t) (end-p)); |
| token[end-p] = '\0'; |
| SetGeometryInfo(&args); |
| flags = ParseGeometry(token, &args); |
| |
| #if 0 |
| /* For Debugging Geometry Input */ |
| (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
| flags, args.rho, args.sigma, args.xi, args.psi ); |
| #endif |
| |
| /* special handling of missing values in input string */ |
| switch( type ) { |
| /* Shape Kernel Defaults */ |
| case UnityKernel: |
| if ( (flags & WidthValue) == 0 ) |
| args.rho = 1.0; /* Default scale = 1.0, zero is valid */ |
| break; |
| case SquareKernel: |
| case DiamondKernel: |
| case OctagonKernel: |
| case DiskKernel: |
| case PlusKernel: |
| case CrossKernel: |
| if ( (flags & HeightValue) == 0 ) |
| args.sigma = 1.0; /* Default scale = 1.0, zero is valid */ |
| break; |
| case RingKernel: |
| if ( (flags & XValue) == 0 ) |
| args.xi = 1.0; /* Default scale = 1.0, zero is valid */ |
| break; |
| case RectangleKernel: /* Rectangle - set size defaults */ |
| if ( (flags & WidthValue) == 0 ) /* if no width then */ |
| args.rho = args.sigma; /* then width = height */ |
| if ( args.rho < 1.0 ) /* if width too small */ |
| args.rho = 3; /* then width = 3 */ |
| if ( args.sigma < 1.0 ) /* if height too small */ |
| args.sigma = args.rho; /* then height = width */ |
| if ( (flags & XValue) == 0 ) /* center offset if not defined */ |
| args.xi = (double)(((ssize_t)args.rho-1)/2); |
| if ( (flags & YValue) == 0 ) |
| args.psi = (double)(((ssize_t)args.sigma-1)/2); |
| break; |
| /* Distance Kernel Defaults */ |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case OctagonalKernel: |
| case EuclideanKernel: |
| if ( (flags & HeightValue) == 0 ) /* no distance scale */ |
| args.sigma = 100.0; /* default distance scaling */ |
| else if ( (flags & AspectValue ) != 0 ) /* '!' flag */ |
| args.sigma = QuantumRange/(args.sigma+1); /* maximum pixel distance */ |
| else if ( (flags & PercentValue ) != 0 ) /* '%' flag */ |
| args.sigma *= QuantumRange/100.0; /* percentage of color range */ |
| break; |
| default: |
| break; |
| } |
| |
| kernel = AcquireKernelBuiltIn((KernelInfoType)type, &args, exception); |
| if ( kernel == (KernelInfo *) NULL ) |
| return(kernel); |
| |
| /* global expand to rotated kernel list - only for single kernels */ |
| if ( kernel->next == (KernelInfo *) NULL ) { |
| if ( (flags & AreaValue) != 0 ) /* '@' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 45.0); |
| else if ( (flags & GreaterValue) != 0 ) /* '>' symbol in kernel args */ |
| ExpandRotateKernelInfo(kernel, 90.0); |
| else if ( (flags & LessValue) != 0 ) /* '<' symbol in kernel args */ |
| ExpandMirrorKernelInfo(kernel); |
| } |
| |
| return(kernel); |
| } |
| |
| MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string, |
| ExceptionInfo *exception) |
| { |
| KernelInfo |
| *kernel, |
| *new_kernel; |
| |
| char |
| *kernel_cache, |
| token[MagickPathExtent]; |
| |
| const char |
| *p; |
| |
| if (kernel_string == (const char *) NULL) |
| return(ParseKernelArray(kernel_string)); |
| p=kernel_string; |
| kernel_cache=(char *) NULL; |
| if (*kernel_string == '@') |
| { |
| kernel_cache=FileToString(kernel_string+1,~0UL,exception); |
| if (kernel_cache == (char *) NULL) |
| return((KernelInfo *) NULL); |
| p=(const char *) kernel_cache; |
| } |
| kernel=NULL; |
| while (GetNextToken(p,(const char **) NULL,MagickPathExtent,token), *token != '\0') |
| { |
| /* ignore extra or multiple ';' kernel separators */ |
| if (*token != ';') |
| { |
| /* tokens starting with alpha is a Named kernel */ |
| if (isalpha((int) ((unsigned char) *token)) != 0) |
| new_kernel=ParseKernelName(p,exception); |
| else /* otherwise a user defined kernel array */ |
| new_kernel=ParseKernelArray(p); |
| |
| /* Error handling -- this is not proper error handling! */ |
| if (new_kernel == (KernelInfo *) NULL) |
| { |
| if (kernel != (KernelInfo *) NULL) |
| kernel=DestroyKernelInfo(kernel); |
| return((KernelInfo *) NULL); |
| } |
| |
| /* initialise or append the kernel list */ |
| if (kernel == (KernelInfo *) NULL) |
| kernel=new_kernel; |
| else |
| LastKernelInfo(kernel)->next=new_kernel; |
| } |
| |
| /* look for the next kernel in list */ |
| p=strchr(p,';'); |
| if (p == (char *) NULL) |
| break; |
| p++; |
| } |
| if (kernel_cache != (char *) NULL) |
| kernel_cache=DestroyString(kernel_cache); |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % A c q u i r e K e r n e l B u i l t I n % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % AcquireKernelBuiltIn() returned one of the 'named' built-in types of |
| % kernels used for special purposes such as gaussian blurring, skeleton |
| % pruning, and edge distance determination. |
| % |
| % They take a KernelType, and a set of geometry style arguments, which were |
| % typically decoded from a user supplied string, or from a more complex |
| % Morphology Method that was requested. |
| % |
| % The format of the AcquireKernalBuiltIn method is: |
| % |
| % KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| % const GeometryInfo args) |
| % |
| % A description of each parameter follows: |
| % |
| % o type: the pre-defined type of kernel wanted |
| % |
| % o args: arguments defining or modifying the kernel |
| % |
| % Convolution Kernels |
| % |
| % Unity |
| % The a No-Op or Scaling single element kernel. |
| % |
| % Gaussian:{radius},{sigma} |
| % Generate a two-dimensional gaussian kernel, as used by -gaussian. |
| % The sigma for the curve is required. The resulting kernel is |
| % normalized, |
| % |
| % If 'sigma' is zero, you get a single pixel on a field of zeros. |
| % |
| % NOTE: that the 'radius' is optional, but if provided can limit (clip) |
| % the final size of the resulting kernel to a square 2*radius+1 in size. |
| % The radius should be at least 2 times that of the sigma value, or |
| % sever clipping and aliasing may result. If not given or set to 0 the |
| % radius will be determined so as to produce the best minimal error |
| % result, which is usally much larger than is normally needed. |
| % |
| % LoG:{radius},{sigma} |
| % "Laplacian of a Gaussian" or "Mexician Hat" Kernel. |
| % The supposed ideal edge detection, zero-summing kernel. |
| % |
| % An alturnative to this kernel is to use a "DoG" with a sigma ratio of |
| % approx 1.6 (according to wikipedia). |
| % |
| % DoG:{radius},{sigma1},{sigma2} |
| % "Difference of Gaussians" Kernel. |
| % As "Gaussian" but with a gaussian produced by 'sigma2' subtracted |
| % from the gaussian produced by 'sigma1'. Typically sigma2 > sigma1. |
| % The result is a zero-summing kernel. |
| % |
| % Blur:{radius},{sigma}[,{angle}] |
| % Generates a 1 dimensional or linear gaussian blur, at the angle given |
| % (current restricted to orthogonal angles). If a 'radius' is given the |
| % kernel is clipped to a width of 2*radius+1. Kernel can be rotated |
| % by a 90 degree angle. |
| % |
| % If 'sigma' is zero, you get a single pixel on a field of zeros. |
| % |
| % Note that two convolutions with two "Blur" kernels perpendicular to |
| % each other, is equivalent to a far larger "Gaussian" kernel with the |
| % same sigma value, However it is much faster to apply. This is how the |
| % "-blur" operator actually works. |
| % |
| % Comet:{width},{sigma},{angle} |
| % Blur in one direction only, much like how a bright object leaves |
| % a comet like trail. The Kernel is actually half a gaussian curve, |
| % Adding two such blurs in opposite directions produces a Blur Kernel. |
| % Angle can be rotated in multiples of 90 degrees. |
| % |
| % Note that the first argument is the width of the kernel and not the |
| % radius of the kernel. |
| % |
| % Binomial:[{radius}] |
| % Generate a discrete kernel using a 2 dimentional Pascel's Triangle |
| % of values. Used for special forma of image filters. |
| % |
| % # Still to be implemented... |
| % # |
| % # Filter2D |
| % # Filter1D |
| % # Set kernel values using a resize filter, and given scale (sigma) |
| % # Cylindrical or Linear. Is this possible with an image? |
| % # |
| % |
| % Named Constant Convolution Kernels |
| % |
| % All these are unscaled, zero-summing kernels by default. As such for |
| % non-HDRI version of ImageMagick some form of normalization, user scaling, |
| % and biasing the results is recommended, to prevent the resulting image |
| % being 'clipped'. |
| % |
| % The 3x3 kernels (most of these) can be circularly rotated in multiples of |
| % 45 degrees to generate the 8 angled varients of each of the kernels. |
| % |
| % Laplacian:{type} |
| % Discrete Lapacian Kernels, (without normalization) |
| % Type 0 : 3x3 with center:8 surounded by -1 (8 neighbourhood) |
| % Type 1 : 3x3 with center:4 edge:-1 corner:0 (4 neighbourhood) |
| % Type 2 : 3x3 with center:4 edge:1 corner:-2 |
| % Type 3 : 3x3 with center:4 edge:-2 corner:1 |
| % Type 5 : 5x5 laplacian |
| % Type 7 : 7x7 laplacian |
| % Type 15 : 5x5 LoG (sigma approx 1.4) |
| % Type 19 : 9x9 LoG (sigma approx 1.4) |
| % |
| % Sobel:{angle} |
| % Sobel 'Edge' convolution kernel (3x3) |
| % | -1, 0, 1 | |
| % | -2, 0,-2 | |
| % | -1, 0, 1 | |
| % |
| % Roberts:{angle} |
| % Roberts convolution kernel (3x3) |
| % | 0, 0, 0 | |
| % | -1, 1, 0 | |
| % | 0, 0, 0 | |
| % |
| % Prewitt:{angle} |
| % Prewitt Edge convolution kernel (3x3) |
| % | -1, 0, 1 | |
| % | -1, 0, 1 | |
| % | -1, 0, 1 | |
| % |
| % Compass:{angle} |
| % Prewitt's "Compass" convolution kernel (3x3) |
| % | -1, 1, 1 | |
| % | -1,-2, 1 | |
| % | -1, 1, 1 | |
| % |
| % Kirsch:{angle} |
| % Kirsch's "Compass" convolution kernel (3x3) |
| % | -3,-3, 5 | |
| % | -3, 0, 5 | |
| % | -3,-3, 5 | |
| % |
| % FreiChen:{angle} |
| % Frei-Chen Edge Detector is based on a kernel that is similar to |
| % the Sobel Kernel, but is designed to be isotropic. That is it takes |
| % into account the distance of the diagonal in the kernel. |
| % |
| % | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | |
| % | 1, 0, -1 | |
| % |
| % FreiChen:{type},{angle} |
| % |
| % Frei-Chen Pre-weighted kernels... |
| % |
| % Type 0: default un-nomalized version shown above. |
| % |
| % Type 1: Orthogonal Kernel (same as type 11 below) |
| % | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 1, 0, -1 | |
| % |
| % Type 2: Diagonal form of Kernel... |
| % | 1, sqrt(2), 0 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 0, -sqrt(2) -1 | |
| % |
| % However this kernel is als at the heart of the FreiChen Edge Detection |
| % Process which uses a set of 9 specially weighted kernel. These 9 |
| % kernels not be normalized, but directly applied to the image. The |
| % results is then added together, to produce the intensity of an edge in |
| % a specific direction. The square root of the pixel value can then be |
| % taken as the cosine of the edge, and at least 2 such runs at 90 degrees |
| % from each other, both the direction and the strength of the edge can be |
| % determined. |
| % |
| % Type 10: All 9 of the following pre-weighted kernels... |
| % |
| % Type 11: | 1, 0, -1 | |
| % | sqrt(2), 0, -sqrt(2) | / 2*sqrt(2) |
| % | 1, 0, -1 | |
| % |
| % Type 12: | 1, sqrt(2), 1 | |
| % | 0, 0, 0 | / 2*sqrt(2) |
| % | 1, sqrt(2), 1 | |
| % |
| % Type 13: | sqrt(2), -1, 0 | |
| % | -1, 0, 1 | / 2*sqrt(2) |
| % | 0, 1, -sqrt(2) | |
| % |
| % Type 14: | 0, 1, -sqrt(2) | |
| % | -1, 0, 1 | / 2*sqrt(2) |
| % | sqrt(2), -1, 0 | |
| % |
| % Type 15: | 0, -1, 0 | |
| % | 1, 0, 1 | / 2 |
| % | 0, -1, 0 | |
| % |
| % Type 16: | 1, 0, -1 | |
| % | 0, 0, 0 | / 2 |
| % | -1, 0, 1 | |
| % |
| % Type 17: | 1, -2, 1 | |
| % | -2, 4, -2 | / 6 |
| % | -1, -2, 1 | |
| % |
| % Type 18: | -2, 1, -2 | |
| % | 1, 4, 1 | / 6 |
| % | -2, 1, -2 | |
| % |
| % Type 19: | 1, 1, 1 | |
| % | 1, 1, 1 | / 3 |
| % | 1, 1, 1 | |
| % |
| % The first 4 are for edge detection, the next 4 are for line detection |
| % and the last is to add a average component to the results. |
| % |
| % Using a special type of '-1' will return all 9 pre-weighted kernels |
| % as a multi-kernel list, so that you can use them directly (without |
| % normalization) with the special "-set option:morphology:compose Plus" |
| % setting to apply the full FreiChen Edge Detection Technique. |
| % |
| % If 'type' is large it will be taken to be an actual rotation angle for |
| % the default FreiChen (type 0) kernel. As such FreiChen:45 will look |
| % like a Sobel:45 but with 'sqrt(2)' instead of '2' values. |
| % |
| % WARNING: The above was layed out as per |
| % http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf |
| % But rotated 90 degrees so direction is from left rather than the top. |
| % I have yet to find any secondary confirmation of the above. The only |
| % other source found was actual source code at |
| % http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf |
| % Neigher paper defineds the kernels in a way that looks locical or |
| % correct when taken as a whole. |
| % |
| % Boolean Kernels |
| % |
| % Diamond:[{radius}[,{scale}]] |
| % Generate a diamond shaped kernel with given radius to the points. |
| % Kernel size will again be radius*2+1 square and defaults to radius 1, |
| % generating a 3x3 kernel that is slightly larger than a square. |
| % |
| % Square:[{radius}[,{scale}]] |
| % Generate a square shaped kernel of size radius*2+1, and defaulting |
| % to a 3x3 (radius 1). |
| % |
| % Octagon:[{radius}[,{scale}]] |
| % Generate octagonal shaped kernel of given radius and constant scale. |
| % Default radius is 3 producing a 7x7 kernel. A radius of 1 will result |
| % in "Diamond" kernel. |
| % |
| % Disk:[{radius}[,{scale}]] |
| % Generate a binary disk, thresholded at the radius given, the radius |
| % may be a float-point value. Final Kernel size is floor(radius)*2+1 |
| % square. A radius of 5.3 is the default. |
| % |
| % NOTE: That a low radii Disk kernels produce the same results as |
| % many of the previously defined kernels, but differ greatly at larger |
| % radii. Here is a table of equivalences... |
| % "Disk:1" => "Diamond", "Octagon:1", or "Cross:1" |
| % "Disk:1.5" => "Square" |
| % "Disk:2" => "Diamond:2" |
| % "Disk:2.5" => "Octagon" |
| % "Disk:2.9" => "Square:2" |
| % "Disk:3.5" => "Octagon:3" |
| % "Disk:4.5" => "Octagon:4" |
| % "Disk:5.4" => "Octagon:5" |
| % "Disk:6.4" => "Octagon:6" |
| % All other Disk shapes are unique to this kernel, but because a "Disk" |
| % is more circular when using a larger radius, using a larger radius is |
| % preferred over iterating the morphological operation. |
| % |
| % Rectangle:{geometry} |
| % Simply generate a rectangle of 1's with the size given. You can also |
| % specify the location of the 'control point', otherwise the closest |
| % pixel to the center of the rectangle is selected. |
| % |
| % Properly centered and odd sized rectangles work the best. |
| % |
| % Symbol Dilation Kernels |
| % |
| % These kernel is not a good general morphological kernel, but is used |
| % more for highlighting and marking any single pixels in an image using, |
| % a "Dilate" method as appropriate. |
| % |
| % For the same reasons iterating these kernels does not produce the |
| % same result as using a larger radius for the symbol. |
| % |
| % Plus:[{radius}[,{scale}]] |
| % Cross:[{radius}[,{scale}]] |
| % Generate a kernel in the shape of a 'plus' or a 'cross' with |
| % a each arm the length of the given radius (default 2). |
| % |
| % NOTE: "plus:1" is equivalent to a "Diamond" kernel. |
| % |
| % Ring:{radius1},{radius2}[,{scale}] |
| % A ring of the values given that falls between the two radii. |
| % Defaults to a ring of approximataly 3 radius in a 7x7 kernel. |
| % This is the 'edge' pixels of the default "Disk" kernel, |
| % More specifically, "Ring" -> "Ring:2.5,3.5,1.0" |
| % |
| % Hit and Miss Kernels |
| % |
| % Peak:radius1,radius2 |
| % Find any peak larger than the pixels the fall between the two radii. |
| % The default ring of pixels is as per "Ring". |
| % Edges |
| % Find flat orthogonal edges of a binary shape |
| % Corners |
| % Find 90 degree corners of a binary shape |
| % Diagonals:type |
| % A special kernel to thin the 'outside' of diagonals |
| % LineEnds:type |
| % Find end points of lines (for pruning a skeletion) |
| % Two types of lines ends (default to both) can be searched for |
| % Type 0: All line ends |
| % Type 1: single kernel for 4-conneected line ends |
| % Type 2: single kernel for simple line ends |
| % LineJunctions |
| % Find three line junctions (within a skeletion) |
| % Type 0: all line junctions |
| % Type 1: Y Junction kernel |
| % Type 2: Diagonal T Junction kernel |
| % Type 3: Orthogonal T Junction kernel |
| % Type 4: Diagonal X Junction kernel |
| % Type 5: Orthogonal + Junction kernel |
| % Ridges:type |
| % Find single pixel ridges or thin lines |
| % Type 1: Fine single pixel thick lines and ridges |
| % Type 2: Find two pixel thick lines and ridges |
| % ConvexHull |
| % Octagonal Thickening Kernel, to generate convex hulls of 45 degrees |
| % Skeleton:type |
| % Traditional skeleton generating kernels. |
| % Type 1: Tradional Skeleton kernel (4 connected skeleton) |
| % Type 2: HIPR2 Skeleton kernel (8 connected skeleton) |
| % Type 3: Thinning skeleton based on a ressearch paper by |
| % Dan S. Bloomberg (Default Type) |
| % ThinSE:type |
| % A huge variety of Thinning Kernels designed to preserve conectivity. |
| % many other kernel sets use these kernels as source definitions. |
| % Type numbers are 41-49, 81-89, 481, and 482 which are based on |
| % the super and sub notations used in the source research paper. |
| % |
| % Distance Measuring Kernels |
| % |
| % Different types of distance measuring methods, which are used with the |
| % a 'Distance' morphology method for generating a gradient based on |
| % distance from an edge of a binary shape, though there is a technique |
| % for handling a anti-aliased shape. |
| % |
| % See the 'Distance' Morphological Method, for information of how it is |
| % applied. |
| % |
| % Chebyshev:[{radius}][x{scale}[%!]] |
| % Chebyshev Distance (also known as Tchebychev or Chessboard distance) |
| % is a value of one to any neighbour, orthogonal or diagonal. One why |
| % of thinking of it is the number of squares a 'King' or 'Queen' in |
| % chess needs to traverse reach any other position on a chess board. |
| % It results in a 'square' like distance function, but one where |
| % diagonals are given a value that is closer than expected. |
| % |
| % Manhattan:[{radius}][x{scale}[%!]] |
| % Manhattan Distance (also known as Rectilinear, City Block, or the Taxi |
| % Cab distance metric), it is the distance needed when you can only |
| % travel in horizontal or vertical directions only. It is the |
| % distance a 'Rook' in chess would have to travel, and results in a |
| % diamond like distances, where diagonals are further than expected. |
| % |
| % Octagonal:[{radius}][x{scale}[%!]] |
| % An interleving of Manhatten and Chebyshev metrics producing an |
| % increasing octagonally shaped distance. Distances matches those of |
| % the "Octagon" shaped kernel of the same radius. The minimum radius |
| % and default is 2, producing a 5x5 kernel. |
| % |
| % Euclidean:[{radius}][x{scale}[%!]] |
| % Euclidean distance is the 'direct' or 'as the crow flys' distance. |
| % However by default the kernel size only has a radius of 1, which |
| % limits the distance to 'Knight' like moves, with only orthogonal and |
| % diagonal measurements being correct. As such for the default kernel |
| % you will get octagonal like distance function. |
| % |
| % However using a larger radius such as "Euclidean:4" you will get a |
| % much smoother distance gradient from the edge of the shape. Especially |
| % if the image is pre-processed to include any anti-aliasing pixels. |
| % Of course a larger kernel is slower to use, and not always needed. |
| % |
| % The first three Distance Measuring Kernels will only generate distances |
| % of exact multiples of {scale} in binary images. As such you can use a |
| % scale of 1 without loosing any information. However you also need some |
| % scaling when handling non-binary anti-aliased shapes. |
| % |
| % The "Euclidean" Distance Kernel however does generate a non-integer |
| % fractional results, and as such scaling is vital even for binary shapes. |
| % |
| */ |
| |
| MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type, |
| const GeometryInfo *args,ExceptionInfo *exception) |
| { |
| KernelInfo |
| *kernel; |
| |
| ssize_t |
| i; |
| |
| ssize_t |
| u, |
| v; |
| |
| double |
| nan = sqrt((double)-1.0); /* Special Value : Not A Number */ |
| |
| /* Generate a new empty kernel if needed */ |
| kernel=(KernelInfo *) NULL; |
| switch(type) { |
| case UndefinedKernel: /* These should not call this function */ |
| case UserDefinedKernel: |
| assert("Should not call this function" != (char *) NULL); |
| break; |
| case LaplacianKernel: /* Named Descrete Convolution Kernels */ |
| case SobelKernel: /* these are defined using other kernels */ |
| case RobertsKernel: |
| case PrewittKernel: |
| case CompassKernel: |
| case KirschKernel: |
| case FreiChenKernel: |
| case EdgesKernel: /* Hit and Miss kernels */ |
| case CornersKernel: |
| case DiagonalsKernel: |
| case LineEndsKernel: |
| case LineJunctionsKernel: |
| case RidgesKernel: |
| case ConvexHullKernel: |
| case SkeletonKernel: |
| case ThinSEKernel: |
| break; /* A pre-generated kernel is not needed */ |
| #if 0 |
| /* set to 1 to do a compile-time check that we haven't missed anything */ |
| case UnityKernel: |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| case BlurKernel: |
| case CometKernel: |
| case BinomialKernel: |
| case DiamondKernel: |
| case SquareKernel: |
| case RectangleKernel: |
| case OctagonKernel: |
| case DiskKernel: |
| case PlusKernel: |
| case CrossKernel: |
| case RingKernel: |
| case PeaksKernel: |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case OctangonalKernel: |
| case EuclideanKernel: |
| #else |
| default: |
| #endif |
| /* Generate the base Kernel Structure */ |
| kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| (void) memset(kernel,0,sizeof(*kernel)); |
| kernel->minimum = kernel->maximum = kernel->angle = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->type = type; |
| kernel->next = (KernelInfo *) NULL; |
| kernel->signature=MagickCoreSignature; |
| break; |
| } |
| |
| switch(type) { |
| /* |
| Convolution Kernels |
| */ |
| case UnityKernel: |
| { |
| kernel->height = kernel->width = (size_t) 1; |
| kernel->x = kernel->y = (ssize_t) 0; |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(1,sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| kernel->maximum = kernel->values[0] = args->rho; |
| break; |
| } |
| break; |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| { double |
| sigma = fabs(args->sigma), |
| sigma2 = fabs(args->xi), |
| A, B, R; |
| |
| if ( args->rho >= 1.0 ) |
| kernel->width = (size_t)args->rho*2+1; |
| else if ( (type != DoGKernel) || (sigma >= sigma2) ) |
| kernel->width = GetOptimalKernelWidth2D(args->rho,sigma); |
| else |
| kernel->width = GetOptimalKernelWidth2D(args->rho,sigma2); |
| kernel->height = kernel->width; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* WARNING: The following generates a 'sampled gaussian' kernel. |
| * What we really want is a 'discrete gaussian' kernel. |
| * |
| * How to do this is I don't know, but appears to be basied on the |
| * Error Function 'erf()' (intergral of a gaussian) |
| */ |
| |
| if ( type == GaussianKernel || type == DoGKernel ) |
| { /* Calculate a Gaussian, OR positive half of a DoG */ |
| if ( sigma > MagickEpsilon ) |
| { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| B = (double) (1.0/(Magick2PI*sigma*sigma)); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = exp(-((double)(u*u+v*v))*A)*B; |
| } |
| else /* limiting case - a unity (normalized Dirac) kernel */ |
| { (void) memset(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(*kernel->values)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| } |
| |
| if ( type == DoGKernel ) |
| { /* Subtract a Negative Gaussian for "Difference of Gaussian" */ |
| if ( sigma2 > MagickEpsilon ) |
| { sigma = sigma2; /* simplify loop expressions */ |
| A = 1.0/(2.0*sigma*sigma); |
| B = (double) (1.0/(Magick2PI*sigma*sigma)); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] -= exp(-((double)(u*u+v*v))*A)*B; |
| } |
| else /* limiting case - a unity (normalized Dirac) kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] -= 1.0; |
| } |
| |
| if ( type == LoGKernel ) |
| { /* Calculate a Laplacian of a Gaussian - Or Mexician Hat */ |
| if ( sigma > MagickEpsilon ) |
| { A = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| B = (double) (1.0/(MagickPI*sigma*sigma*sigma*sigma)); |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| { R = ((double)(u*u+v*v))*A; |
| kernel->values[i] = (1-R)*exp(-R)*B; |
| } |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) memset(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(*kernel->values)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| } |
| |
| /* Note the above kernels may have been 'clipped' by a user defined |
| ** radius, producing a smaller (darker) kernel. Also for very small |
| ** sigma's (> 0.1) the central value becomes larger than one, and thus |
| ** producing a very bright kernel. |
| ** |
| ** Normalization will still be needed. |
| */ |
| |
| /* Normalize the 2D Gaussian Kernel |
| ** |
| ** NB: a CorrelateNormalize performs a normal Normalize if |
| ** there are no negative values. |
| */ |
| CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
| ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
| |
| break; |
| } |
| case BlurKernel: |
| { double |
| sigma = fabs(args->sigma), |
| alpha, beta; |
| |
| if ( args->rho >= 1.0 ) |
| kernel->width = (size_t)args->rho*2+1; |
| else |
| kernel->width = GetOptimalKernelWidth1D(args->rho,sigma); |
| kernel->height = 1; |
| kernel->x = (ssize_t) (kernel->width-1)/2; |
| kernel->y = 0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| #if 1 |
| #define KernelRank 3 |
| /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix). |
| ** It generates a gaussian 3 times the width, and compresses it into |
| ** the expected range. This produces a closer normalization of the |
| ** resulting kernel, especially for very low sigma values. |
| ** As such while wierd it is prefered. |
| ** |
| ** I am told this method originally came from Photoshop. |
| ** |
| ** A properly normalized curve is generated (apart from edge clipping) |
| ** even though we later normalize the result (for edge clipping) |
| ** to allow the correct generation of a "Difference of Blurs". |
| */ |
| |
| /* initialize */ |
| v = (ssize_t) (kernel->width*KernelRank-1)/2; /* start/end points to fit range */ |
| (void) memset(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(*kernel->values)); |
| /* Calculate a Positive 1D Gaussian */ |
| if ( sigma > MagickEpsilon ) |
| { sigma *= KernelRank; /* simplify loop expressions */ |
| alpha = 1.0/(2.0*sigma*sigma); |
| beta= (double) (1.0/(MagickSQ2PI*sigma )); |
| for ( u=-v; u <= v; u++) { |
| kernel->values[(u+v)/KernelRank] += |
| exp(-((double)(u*u))*alpha)*beta; |
| } |
| } |
| else /* special case - generate a unity kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| #else |
| /* Direct calculation without curve averaging |
| This is equivelent to a KernelRank of 1 */ |
| |
| /* Calculate a Positive Gaussian */ |
| if ( sigma > MagickEpsilon ) |
| { alpha = 1.0/(2.0*sigma*sigma); /* simplify loop expressions */ |
| beta = 1.0/(MagickSQ2PI*sigma); |
| for ( i=0, u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = exp(-((double)(u*u))*alpha)*beta; |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) memset(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(*kernel->values)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| } |
| #endif |
| /* Note the above kernel may have been 'clipped' by a user defined |
| ** radius, producing a smaller (darker) kernel. Also for very small |
| ** sigma's (> 0.1) the central value becomes larger than one, as a |
| ** result of not generating a actual 'discrete' kernel, and thus |
| ** producing a very bright 'impulse'. |
| ** |
| ** Becuase of these two factors Normalization is required! |
| */ |
| |
| /* Normalize the 1D Gaussian Kernel |
| ** |
| ** NB: a CorrelateNormalize performs a normal Normalize if |
| ** there are no negative values. |
| */ |
| CalcKernelMetaData(kernel); /* the other kernel meta-data */ |
| ScaleKernelInfo(kernel, 1.0, CorrelateNormalizeValue); |
| |
| /* rotate the 1D kernel by given angle */ |
| RotateKernelInfo(kernel, args->xi ); |
| break; |
| } |
| case CometKernel: |
| { double |
| sigma = fabs(args->sigma), |
| A; |
| |
| if ( args->rho < 1.0 ) |
| kernel->width = (GetOptimalKernelWidth1D(args->rho,sigma)-1)/2+1; |
| else |
| kernel->width = (size_t)args->rho; |
| kernel->x = kernel->y = 0; |
| kernel->height = 1; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* A comet blur is half a 1D gaussian curve, so that the object is |
| ** blurred in one direction only. This may not be quite the right |
| ** curve to use so may change in the future. The function must be |
| ** normalised after generation, which also resolves any clipping. |
| ** |
| ** As we are normalizing and not subtracting gaussians, |
| ** there is no need for a divisor in the gaussian formula |
| ** |
| ** It is less comples |
| */ |
| if ( sigma > MagickEpsilon ) |
| { |
| #if 1 |
| #define KernelRank 3 |
| v = (ssize_t) kernel->width*KernelRank; /* start/end points */ |
| (void) memset(kernel->values,0, (size_t) |
| kernel->width*sizeof(*kernel->values)); |
| sigma *= KernelRank; /* simplify the loop expression */ |
| A = 1.0/(2.0*sigma*sigma); |
| /* B = 1.0/(MagickSQ2PI*sigma); */ |
| for ( u=0; u < v; u++) { |
| kernel->values[u/KernelRank] += |
| exp(-((double)(u*u))*A); |
| /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
| } |
| for (i=0; i < (ssize_t) kernel->width; i++) |
| kernel->positive_range += kernel->values[i]; |
| #else |
| A = 1.0/(2.0*sigma*sigma); /* simplify the loop expression */ |
| /* B = 1.0/(MagickSQ2PI*sigma); */ |
| for ( i=0; i < (ssize_t) kernel->width; i++) |
| kernel->positive_range += |
| kernel->values[i] = exp(-((double)(i*i))*A); |
| /* exp(-((double)(i*i))/2.0*sigma*sigma)/(MagickSQ2PI*sigma); */ |
| #endif |
| } |
| else /* special case - generate a unity kernel */ |
| { (void) memset(kernel->values,0, (size_t) |
| kernel->width*kernel->height*sizeof(*kernel->values)); |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| kernel->positive_range = 1.0; |
| } |
| |
| kernel->minimum = 0.0; |
| kernel->maximum = kernel->values[0]; |
| kernel->negative_range = 0.0; |
| |
| ScaleKernelInfo(kernel, 1.0, NormalizeValue); /* Normalize */ |
| RotateKernelInfo(kernel, args->xi); /* Rotate by angle */ |
| break; |
| } |
| case BinomialKernel: |
| { |
| size_t |
| order_f; |
| |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| order_f = fact(kernel->width-1); |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within diamond area to scale given */ |
| for ( i=0, v=0; v < (ssize_t)kernel->height; v++) |
| { size_t |
| alpha = order_f / ( fact((size_t) v) * fact(kernel->height-v-1) ); |
| for ( u=0; u < (ssize_t)kernel->width; u++, i++) |
| kernel->positive_range += kernel->values[i] = (double) |
| (alpha * order_f / ( fact((size_t) u) * fact(kernel->height-u-1) )); |
| } |
| kernel->minimum = 1.0; |
| kernel->maximum = kernel->values[kernel->x+kernel->y*kernel->width]; |
| kernel->negative_range = 0.0; |
| break; |
| } |
| |
| /* |
| Convolution Kernels - Well Known Named Constant Kernels |
| */ |
| case LaplacianKernel: |
| { switch ( (int) args->rho ) { |
| case 0: |
| default: /* laplacian square filter -- default */ |
| kernel=ParseKernelArray("3: -1,-1,-1 -1,8,-1 -1,-1,-1"); |
| break; |
| case 1: /* laplacian diamond filter */ |
| kernel=ParseKernelArray("3: 0,-1,0 -1,4,-1 0,-1,0"); |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
| break; |
| case 3: |
| kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 1,-2,1"); |
| break; |
| case 5: /* a 5x5 laplacian */ |
| kernel=ParseKernelArray( |
| "5: -4,-1,0,-1,-4 -1,2,3,2,-1 0,3,4,3,0 -1,2,3,2,-1 -4,-1,0,-1,-4"); |
| break; |
| case 7: /* a 7x7 laplacian */ |
| kernel=ParseKernelArray( |
| "7:-10,-5,-2,-1,-2,-5,-10 -5,0,3,4,3,0,-5 -2,3,6,7,6,3,-2 -1,4,7,8,7,4,-1 -2,3,6,7,6,3,-2 -5,0,3,4,3,0,-5 -10,-5,-2,-1,-2,-5,-10" ); |
| break; |
| case 15: /* a 5x5 LoG (sigma approx 1.4) */ |
| kernel=ParseKernelArray( |
| "5: 0,0,-1,0,0 0,-1,-2,-1,0 -1,-2,16,-2,-1 0,-1,-2,-1,0 0,0,-1,0,0"); |
| break; |
| case 19: /* a 9x9 LoG (sigma approx 1.4) */ |
| /* http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue1/IJIP-15.pdf */ |
| kernel=ParseKernelArray( |
| "9: 0,-1,-1,-2,-2,-2,-1,-1,0 -1,-2,-4,-5,-5,-5,-4,-2,-1 -1,-4,-5,-3,-0,-3,-5,-4,-1 -2,-5,-3,12,24,12,-3,-5,-2 -2,-5,-0,24,40,24,-0,-5,-2 -2,-5,-3,12,24,12,-3,-5,-2 -1,-4,-5,-3,-0,-3,-5,-4,-1 -1,-2,-4,-5,-5,-5,-4,-2,-1 0,-1,-1,-2,-2,-2,-1,-1,0"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| break; |
| } |
| case SobelKernel: |
| { /* Simple Sobel Kernel */ |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case RobertsKernel: |
| { |
| kernel=ParseKernelArray("3: 0,0,0 1,-1,0 0,0,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case PrewittKernel: |
| { |
| kernel=ParseKernelArray("3: 1,0,-1 1,0,-1 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case CompassKernel: |
| { |
| kernel=ParseKernelArray("3: 1,1,-1 1,-2,-1 1,1,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case KirschKernel: |
| { |
| kernel=ParseKernelArray("3: 5,-3,-3 5,0,-3 5,-3,-3"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| case FreiChenKernel: |
| /* Direction is set to be left to right positive */ |
| /* http://www.math.tau.ac.il/~turkel/notes/edge_detectors.pdf -- RIGHT? */ |
| /* http://ltswww.epfl.ch/~courstiv/exos_labos/sol3.pdf -- WRONG? */ |
| { switch ( (int) args->rho ) { |
| default: |
| case 0: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[3] = +(MagickRealType) MagickSQ2; |
| kernel->values[5] = -(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: 1,2,0 2,0,-2 0,-2,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[1] = kernel->values[3]= +(MagickRealType) MagickSQ2; |
| kernel->values[5] = kernel->values[7]= -(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
| break; |
| case 10: |
| { |
| kernel=AcquireKernelInfo("FreiChen:11;FreiChen:12;FreiChen:13;FreiChen:14;FreiChen:15;FreiChen:16;FreiChen:17;FreiChen:18;FreiChen:19",exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| break; |
| } |
| case 1: |
| case 11: |
| kernel=ParseKernelArray("3: 1,0,-1 2,0,-2 1,0,-1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[3] = +(MagickRealType) MagickSQ2; |
| kernel->values[5] = -(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); /* recalculate meta-data */ |
| ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
| break; |
| case 12: |
| kernel=ParseKernelArray("3: 1,2,1 0,0,0 1,2,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[1] = +(MagickRealType) MagickSQ2; |
| kernel->values[7] = +(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
| break; |
| case 13: |
| kernel=ParseKernelArray("3: 2,-1,0 -1,0,1 0,1,-2"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[0] = +(MagickRealType) MagickSQ2; |
| kernel->values[8] = -(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
| break; |
| case 14: |
| kernel=ParseKernelArray("3: 0,1,-2 -1,0,1 2,-1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->values[2] = -(MagickRealType) MagickSQ2; |
| kernel->values[6] = +(MagickRealType) MagickSQ2; |
| CalcKernelMetaData(kernel); |
| ScaleKernelInfo(kernel, (double) (1.0/2.0*MagickSQ2), NoValue); |
| break; |
| case 15: |
| kernel=ParseKernelArray("3: 0,-1,0 1,0,1 0,-1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
| break; |
| case 16: |
| kernel=ParseKernelArray("3: 1,0,-1 0,0,0 -1,0,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/2.0, NoValue); |
| break; |
| case 17: |
| kernel=ParseKernelArray("3: 1,-2,1 -2,4,-2 -1,-2,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
| break; |
| case 18: |
| kernel=ParseKernelArray("3: -2,1,-2 1,4,1 -2,1,-2"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/6.0, NoValue); |
| break; |
| case 19: |
| kernel=ParseKernelArray("3: 1,1,1 1,1,1 1,1,1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ScaleKernelInfo(kernel, 1.0/3.0, NoValue); |
| break; |
| } |
| if ( fabs(args->sigma) >= MagickEpsilon ) |
| /* Rotate by correctly supplied 'angle' */ |
| RotateKernelInfo(kernel, args->sigma); |
| else if ( args->rho > 30.0 || args->rho < -30.0 ) |
| /* Rotate by out of bounds 'type' */ |
| RotateKernelInfo(kernel, args->rho); |
| break; |
| } |
| |
| /* |
| Boolean or Shaped Kernels |
| */ |
| case DiamondKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values within diamond area to scale given */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| if ( (labs((long) u)+labs((long) v)) <= (long) kernel->x) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case SquareKernel: |
| case RectangleKernel: |
| { double |
| scale; |
| if ( type == SquareKernel ) |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = (size_t) (2*args->rho+1); |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| scale = args->sigma; |
| } |
| else { |
| /* NOTE: user defaults set in "AcquireKernelInfo()" */ |
| if ( args->rho < 1.0 || args->sigma < 1.0 ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->width = (size_t)args->rho; |
| kernel->height = (size_t)args->sigma; |
| if ( args->xi < 0.0 || args->xi > (double)kernel->width || |
| args->psi < 0.0 || args->psi > (double)kernel->height ) |
| return(DestroyKernelInfo(kernel)); /* invalid args given */ |
| kernel->x = (ssize_t) args->xi; |
| kernel->y = (ssize_t) args->psi; |
| scale = 1.0; |
| } |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values to scale given */ |
| u=(ssize_t) (kernel->width*kernel->height); |
| for ( i=0; i < u; i++) |
| kernel->values[i] = scale; |
| kernel->minimum = kernel->maximum = scale; /* a flat shape */ |
| kernel->positive_range = scale*u; |
| break; |
| } |
| case OctagonKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius = 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| if ( (labs((long) u)+labs((long) v)) <= |
| ((long)kernel->x + (long)(kernel->x/2)) ) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case DiskKernel: |
| { |
| ssize_t |
| limit = (ssize_t)(args->rho*args->rho); |
| |
| if (args->rho < 0.4) /* default radius approx 4.3 */ |
| kernel->width = kernel->height = 9L, limit = 18L; |
| else |
| kernel->width = kernel->height = (size_t)fabs(args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| if ((u*u+v*v) <= limit) |
| kernel->positive_range += kernel->values[i] = args->sigma; |
| else |
| kernel->values[i] = nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| break; |
| } |
| case PlusKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values along axises to given scale */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = (u == 0 || v == 0) ? args->sigma : nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
| break; |
| } |
| case CrossKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 5; /* default radius 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set all kernel values along axises to given scale */ |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->values[i] = (u == v || u == -v) ? args->sigma : nan; |
| kernel->minimum = kernel->maximum = args->sigma; /* a flat shape */ |
| kernel->positive_range = args->sigma*(kernel->width*2.0 - 1.0); |
| break; |
| } |
| /* |
| HitAndMiss Kernels |
| */ |
| case RingKernel: |
| case PeaksKernel: |
| { |
| ssize_t |
| limit1, |
| limit2, |
| scale; |
| |
| if (args->rho < args->sigma) |
| { |
| kernel->width = ((size_t)args->sigma)*2+1; |
| limit1 = (ssize_t)(args->rho*args->rho); |
| limit2 = (ssize_t)(args->sigma*args->sigma); |
| } |
| else |
| { |
| kernel->width = ((size_t)args->rho)*2+1; |
| limit1 = (ssize_t)(args->sigma*args->sigma); |
| limit2 = (ssize_t)(args->rho*args->rho); |
| } |
| if ( limit2 <= 0 ) |
| kernel->width = 7L, limit1 = 7L, limit2 = 11L; |
| |
| kernel->height = kernel->width; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| /* set a ring of points of 'scale' ( 0.0 for PeaksKernel ) */ |
| scale = (ssize_t) (( type == PeaksKernel) ? 0.0 : args->xi); |
| for ( i=0, v= -kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| { ssize_t radius=u*u+v*v; |
| if (limit1 < radius && radius <= limit2) |
| kernel->positive_range += kernel->values[i] = (double) scale; |
| else |
| kernel->values[i] = nan; |
| } |
| kernel->minimum = kernel->maximum = (double) scale; |
| if ( type == PeaksKernel ) { |
| /* set the central point in the middle */ |
| kernel->values[kernel->x+kernel->y*kernel->width] = 1.0; |
| kernel->positive_range = 1.0; |
| kernel->maximum = 1.0; |
| } |
| break; |
| } |
| case EdgesKernel: |
| { |
| kernel=AcquireKernelInfo("ThinSE:482",exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandMirrorKernelInfo(kernel); /* mirror expansion of kernels */ |
| break; |
| } |
| case CornersKernel: |
| { |
| kernel=AcquireKernelInfo("ThinSE:87",exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* Expand 90 degree rotations */ |
| break; |
| } |
| case DiagonalsKernel: |
| { |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| { KernelInfo |
| *new_kernel; |
| kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| new_kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| ExpandMirrorKernelInfo(kernel); |
| return(kernel); |
| } |
| case 1: |
| kernel=ParseKernelArray("3: 0,0,0 0,-,1 1,1,-"); |
| break; |
| case 2: |
| kernel=ParseKernelArray("3: 0,0,1 0,-,1 0,1,-"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| case LineEndsKernel: |
| { /* Kernels for finding the end of thin lines */ |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| /* set of kernels to find all end of lines */ |
| return(AcquireKernelInfo("LineEnds:1>;LineEnds:2>",exception)); |
| case 1: |
| /* kernel for 4-connected line ends - no rotation */ |
| kernel=ParseKernelArray("3: 0,0,- 0,1,1 0,0,-"); |
| break; |
| case 2: |
| /* kernel to add for 8-connected lines - no rotation */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,0 0,0,1"); |
| break; |
| case 3: |
| /* kernel to add for orthogonal line ends - does not find corners */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,1 0,0,0"); |
| break; |
| case 4: |
| /* traditional line end - fails on last T end */ |
| kernel=ParseKernelArray("3: 0,0,0 0,1,- 0,0,-"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| case LineJunctionsKernel: |
| { /* kernels for finding the junctions of multiple lines */ |
| switch ( (int) args->rho ) { |
| case 0: |
| default: |
| /* set of kernels to find all line junctions */ |
| return(AcquireKernelInfo("LineJunctions:1@;LineJunctions:2>",exception)); |
| case 1: |
| /* Y Junction */ |
| kernel=ParseKernelArray("3: 1,-,1 -,1,- -,1,-"); |
| break; |
| case 2: |
| /* Diagonal T Junctions */ |
| kernel=ParseKernelArray("3: 1,-,- -,1,- 1,-,1"); |
| break; |
| case 3: |
| /* Orthogonal T Junctions */ |
| kernel=ParseKernelArray("3: -,-,- 1,1,1 -,1,-"); |
| break; |
| case 4: |
| /* Diagonal X Junctions */ |
| kernel=ParseKernelArray("3: 1,-,1 -,1,- 1,-,1"); |
| break; |
| case 5: |
| /* Orthogonal X Junctions - minimal diamond kernel */ |
| kernel=ParseKernelArray("3: -,1,- 1,1,1 -,1,-"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| case RidgesKernel: |
| { /* Ridges - Ridge finding kernels */ |
| KernelInfo |
| *new_kernel; |
| switch ( (int) args->rho ) { |
| case 1: |
| default: |
| kernel=ParseKernelArray("3x1:0,1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 2 rotated kernels (symmetrical) */ |
| break; |
| case 2: |
| kernel=ParseKernelArray("4x1:0,1,1,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotated kernels */ |
| |
| /* Kernels to find a stepped 'thick' line, 4 rotates + mirrors */ |
| /* Unfortunatally we can not yet rotate a non-square kernel */ |
| /* But then we can't flip a non-symetrical kernel either */ |
| new_kernel=ParseKernelArray("4x3+1+1:0,1,1,- -,1,1,- -,1,1,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+2+1:0,1,1,- -,1,1,- -,1,1,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+1+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("4x3+2+1:-,1,1,0 -,1,1,- 0,1,1,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+1:0,-,- 1,1,1 1,1,1 -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+2:0,-,- 1,1,1 1,1,1 -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+1:-,-,0 1,1,1 1,1,1 0,-,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| new_kernel=ParseKernelArray("3x4+1+2:-,-,0 1,1,1 1,1,1 0,-,-"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| LastKernelInfo(kernel)->next = new_kernel; |
| break; |
| } |
| break; |
| } |
| case ConvexHullKernel: |
| { |
| KernelInfo |
| *new_kernel; |
| /* first set of 8 kernels */ |
| kernel=ParseKernelArray("3: 1,1,- 1,0,- 1,-,0"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); |
| /* append the mirror versions too - no flip function yet */ |
| new_kernel=ParseKernelArray("3: 1,1,1 1,0,- -,-,0"); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| new_kernel->type = type; |
| ExpandRotateKernelInfo(new_kernel, 90.0); |
| LastKernelInfo(kernel)->next = new_kernel; |
| break; |
| } |
| case SkeletonKernel: |
| { |
| switch ( (int) args->rho ) { |
| case 1: |
| default: |
| /* Traditional Skeleton... |
| ** A cyclically rotated single kernel |
| */ |
| kernel=AcquireKernelInfo("ThinSE:482",exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| ExpandRotateKernelInfo(kernel, 45.0); /* 8 rotations */ |
| break; |
| case 2: |
| /* HIPR Variation of the cyclic skeleton |
| ** Corners of the traditional method made more forgiving, |
| ** but the retain the same cyclic order. |
| */ |
| kernel=AcquireKernelInfo("ThinSE:482; ThinSE:87x90;",exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| if (kernel->next == (KernelInfo *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| kernel->type = type; |
| kernel->next->type = type; |
| ExpandRotateKernelInfo(kernel, 90.0); /* 4 rotations of the 2 kernels */ |
| break; |
| case 3: |
| /* Dan Bloomberg Skeleton, from his paper on 3x3 thinning SE's |
| ** "Connectivity-Preserving Morphological Image Thransformations" |
| ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, |
| ** http://www.leptonica.com/papers/conn.pdf |
| */ |
| kernel=AcquireKernelInfo("ThinSE:41; ThinSE:42; ThinSE:43", |
| exception); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| kernel->next->type = type; |
| kernel->next->next->type = type; |
| ExpandMirrorKernelInfo(kernel); /* 12 kernels total */ |
| break; |
| } |
| break; |
| } |
| case ThinSEKernel: |
| { /* Special kernels for general thinning, while preserving connections |
| ** "Connectivity-Preserving Morphological Image Thransformations" |
| ** by Dan S. Bloomberg, available on Leptonica, Selected Papers, |
| ** http://www.leptonica.com/papers/conn.pdf |
| ** And |
| ** http://tpgit.github.com/Leptonica/ccthin_8c_source.html |
| ** |
| ** Note kernels do not specify the origin pixel, allowing them |
| ** to be used for both thickening and thinning operations. |
| */ |
| switch ( (int) args->rho ) { |
| /* SE for 4-connected thinning */ |
| case 41: /* SE_4_1 */ |
| kernel=ParseKernelArray("3: -,-,1 0,-,1 -,-,1"); |
| break; |
| case 42: /* SE_4_2 */ |
| kernel=ParseKernelArray("3: -,-,1 0,-,1 -,0,-"); |
| break; |
| case 43: /* SE_4_3 */ |
| kernel=ParseKernelArray("3: -,0,- 0,-,1 -,-,1"); |
| break; |
| case 44: /* SE_4_4 */ |
| kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,-"); |
| break; |
| case 45: /* SE_4_5 */ |
| kernel=ParseKernelArray("3: -,0,1 0,-,1 -,0,-"); |
| break; |
| case 46: /* SE_4_6 */ |
| kernel=ParseKernelArray("3: -,0,- 0,-,1 -,0,1"); |
| break; |
| case 47: /* SE_4_7 */ |
| kernel=ParseKernelArray("3: -,1,1 0,-,1 -,0,-"); |
| break; |
| case 48: /* SE_4_8 */ |
| kernel=ParseKernelArray("3: -,-,1 0,-,1 0,-,1"); |
| break; |
| case 49: /* SE_4_9 */ |
| kernel=ParseKernelArray("3: 0,-,1 0,-,1 -,-,1"); |
| break; |
| /* SE for 8-connected thinning - negatives of the above */ |
| case 81: /* SE_8_0 */ |
| kernel=ParseKernelArray("3: -,1,- 0,-,1 -,1,-"); |
| break; |
| case 82: /* SE_8_2 */ |
| kernel=ParseKernelArray("3: -,1,- 0,-,1 0,-,-"); |
| break; |
| case 83: /* SE_8_3 */ |
| kernel=ParseKernelArray("3: 0,-,- 0,-,1 -,1,-"); |
| break; |
| case 84: /* SE_8_4 */ |
| kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,-"); |
| break; |
| case 85: /* SE_8_5 */ |
| kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,-"); |
| break; |
| case 86: /* SE_8_6 */ |
| kernel=ParseKernelArray("3: 0,-,- 0,-,1 0,-,1"); |
| break; |
| case 87: /* SE_8_7 */ |
| kernel=ParseKernelArray("3: -,1,- 0,-,1 0,0,-"); |
| break; |
| case 88: /* SE_8_8 */ |
| kernel=ParseKernelArray("3: -,1,- 0,-,1 0,1,-"); |
| break; |
| case 89: /* SE_8_9 */ |
| kernel=ParseKernelArray("3: 0,1,- 0,-,1 -,1,-"); |
| break; |
| /* Special combined SE kernels */ |
| case 423: /* SE_4_2 , SE_4_3 Combined Kernel */ |
| kernel=ParseKernelArray("3: -,-,1 0,-,- -,0,-"); |
| break; |
| case 823: /* SE_8_2 , SE_8_3 Combined Kernel */ |
| kernel=ParseKernelArray("3: -,1,- -,-,1 0,-,-"); |
| break; |
| case 481: /* SE_48_1 - General Connected Corner Kernel */ |
| kernel=ParseKernelArray("3: -,1,1 0,-,1 0,0,-"); |
| break; |
| default: |
| case 482: /* SE_48_2 - General Edge Kernel */ |
| kernel=ParseKernelArray("3: 0,-,1 0,-,1 0,-,1"); |
| break; |
| } |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = type; |
| RotateKernelInfo(kernel, args->sigma); |
| break; |
| } |
| /* |
| Distance Measuring Kernels |
| */ |
| case ChebyshevKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*MagickMax(fabs((double)u),fabs((double)v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case ManhattanKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*(labs((long) u)+labs((long) v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case OctagonalKernel: |
| { |
| if (args->rho < 2.0) |
| kernel->width = kernel->height = 5; /* default/minimum radius = 2 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| { |
| double |
| r1 = MagickMax(fabs((double)u),fabs((double)v)), |
| r2 = floor((double)(labs((long)u)+labs((long)v)+1)/1.5); |
| kernel->positive_range += kernel->values[i] = |
| args->sigma*MagickMax(r1,r2); |
| } |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| case EuclideanKernel: |
| { |
| if (args->rho < 1.0) |
| kernel->width = kernel->height = 3; /* default radius = 1 */ |
| else |
| kernel->width = kernel->height = ((size_t)args->rho)*2+1; |
| kernel->x = kernel->y = (ssize_t) (kernel->width-1)/2; |
| |
| kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height* |
| sizeof(*kernel->values))); |
| if (kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(kernel)); |
| |
| for ( i=0, v=-kernel->y; v <= (ssize_t)kernel->y; v++) |
| for ( u=-kernel->x; u <= (ssize_t)kernel->x; u++, i++) |
| kernel->positive_range += ( kernel->values[i] = |
| args->sigma*sqrt((double)(u*u+v*v)) ); |
| kernel->maximum = kernel->values[0]; |
| break; |
| } |
| default: |
| { |
| /* No-Op Kernel - Basically just a single pixel on its own */ |
| kernel=ParseKernelArray("1:1"); |
| if (kernel == (KernelInfo *) NULL) |
| return(kernel); |
| kernel->type = UndefinedKernel; |
| break; |
| } |
| break; |
| } |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % C l o n e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % CloneKernelInfo() creates a new clone of the given Kernel List so that its |
| % can be modified without effecting the original. The cloned kernel should |
| % be destroyed using DestoryKernelInfo() when no longer needed. |
| % |
| % The format of the CloneKernelInfo method is: |
| % |
| % KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be cloned |
| % |
| */ |
| MagickExport KernelInfo *CloneKernelInfo(const KernelInfo *kernel) |
| { |
| ssize_t |
| i; |
| |
| KernelInfo |
| *new_kernel; |
| |
| assert(kernel != (KernelInfo *) NULL); |
| new_kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel)); |
| if (new_kernel == (KernelInfo *) NULL) |
| return(new_kernel); |
| *new_kernel=(*kernel); /* copy values in structure */ |
| |
| /* replace the values with a copy of the values */ |
| new_kernel->values=(MagickRealType *) MagickAssumeAligned( |
| AcquireAlignedMemory(kernel->width,kernel->height*sizeof(*kernel->values))); |
| if (new_kernel->values == (MagickRealType *) NULL) |
| return(DestroyKernelInfo(new_kernel)); |
| for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
| new_kernel->values[i]=kernel->values[i]; |
| |
| /* Also clone the next kernel in the kernel list */ |
| if ( kernel->next != (KernelInfo *) NULL ) { |
| new_kernel->next = CloneKernelInfo(kernel->next); |
| if ( new_kernel->next == (KernelInfo *) NULL ) |
| return(DestroyKernelInfo(new_kernel)); |
| } |
| |
| return(new_kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % D e s t r o y K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % DestroyKernelInfo() frees the memory used by a Convolution/Morphology |
| % kernel. |
| % |
| % The format of the DestroyKernelInfo method is: |
| % |
| % KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to be destroyed |
| % |
| */ |
| MagickExport KernelInfo *DestroyKernelInfo(KernelInfo *kernel) |
| { |
| assert(kernel != (KernelInfo *) NULL); |
| if (kernel->next != (KernelInfo *) NULL) |
| kernel->next=DestroyKernelInfo(kernel->next); |
| kernel->values=(MagickRealType *) RelinquishAlignedMemory(kernel->values); |
| kernel=(KernelInfo *) RelinquishMagickMemory(kernel); |
| return(kernel); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + E x p a n d M i r r o r K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ExpandMirrorKernelInfo() takes a single kernel, and expands it into a |
| % sequence of 90-degree rotated kernels but providing a reflected 180 |
| % rotatation, before the -/+ 90-degree rotations. |
| % |
| % This special rotation order produces a better, more symetrical thinning of |
| % objects. |
| % |
| % The format of the ExpandMirrorKernelInfo method is: |
| % |
| % void ExpandMirrorKernelInfo(KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % This function is only internel to this module, as it is not finalized, |
| % especially with regard to non-orthogonal angles, and rotation of larger |
| % 2D kernels. |
| */ |
| |
| #if 0 |
| static void FlopKernelInfo(KernelInfo *kernel) |
| { /* Do a Flop by reversing each row. */ |
| size_t |
| y; |
| ssize_t |
| x,r; |
| double |
| *k,t; |
| |
| for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) |
| for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--) |
| t=k[x], k[x]=k[r], k[r]=t; |
| |
| kernel->x = kernel->width - kernel->x - 1; |
| angle = fmod(angle+180.0, 360.0); |
| } |
| #endif |
| |
| static void ExpandMirrorKernelInfo(KernelInfo *kernel) |
| { |
| KernelInfo |
| *clone, |
| *last; |
| |
| last = kernel; |
| |
| clone = CloneKernelInfo(last); |
| if (clone == (KernelInfo *) NULL) |
| return; |
| RotateKernelInfo(clone, 180); /* flip */ |
| LastKernelInfo(last)->next = clone; |
| last = clone; |
| |
| clone = CloneKernelInfo(last); |
| if (clone == (KernelInfo *) NULL) |
| return; |
| RotateKernelInfo(clone, 90); /* transpose */ |
| LastKernelInfo(last)->next = clone; |
| last = clone; |
| |
| clone = CloneKernelInfo(last); |
| if (clone == (KernelInfo *) NULL) |
| return; |
| RotateKernelInfo(clone, 180); /* flop */ |
| LastKernelInfo(last)->next = clone; |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + E x p a n d R o t a t e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ExpandRotateKernelInfo() takes a kernel list, and expands it by rotating |
| % incrementally by the angle given, until the kernel repeats. |
| % |
| % WARNING: 45 degree rotations only works for 3x3 kernels. |
| % While 90 degree roatations only works for linear and square kernels |
| % |
| % The format of the ExpandRotateKernelInfo method is: |
| % |
| % void ExpandRotateKernelInfo(KernelInfo *kernel, double angle) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o angle: angle to rotate in degrees |
| % |
| % This function is only internel to this module, as it is not finalized, |
| % especially with regard to non-orthogonal angles, and rotation of larger |
| % 2D kernels. |
| */ |
| |
| /* Internal Routine - Return true if two kernels are the same */ |
| static MagickBooleanType SameKernelInfo(const KernelInfo *kernel1, |
| const KernelInfo *kernel2) |
| { |
| size_t |
| i; |
| |
| /* check size and origin location */ |
| if ( kernel1->width != kernel2->width |
| || kernel1->height != kernel2->height |
| || kernel1->x != kernel2->x |
| || kernel1->y != kernel2->y ) |
| return MagickFalse; |
| |
| /* check actual kernel values */ |
| for (i=0; i < (kernel1->width*kernel1->height); i++) { |
| /* Test for Nan equivalence */ |
| if ( IsNaN(kernel1->values[i]) && !IsNaN(kernel2->values[i]) ) |
| return MagickFalse; |
| if ( IsNaN(kernel2->values[i]) && !IsNaN(kernel1->values[i]) ) |
| return MagickFalse; |
| /* Test actual values are equivalent */ |
| if ( fabs(kernel1->values[i] - kernel2->values[i]) >= MagickEpsilon ) |
| return MagickFalse; |
| } |
| |
| return MagickTrue; |
| } |
| |
| static void ExpandRotateKernelInfo(KernelInfo *kernel,const double angle) |
| { |
| KernelInfo |
| *clone_info, |
| *last; |
| |
| clone_info=(KernelInfo *) NULL; |
| last=kernel; |
| DisableMSCWarning(4127) |
| while (1) { |
| RestoreMSCWarning |
| clone_info=CloneKernelInfo(last); |
| if (clone_info == (KernelInfo *) NULL) |
| break; |
| RotateKernelInfo(clone_info,angle); |
| if (SameKernelInfo(kernel,clone_info) != MagickFalse) |
| break; |
| LastKernelInfo(last)->next=clone_info; |
| last=clone_info; |
| } |
| if (clone_info != (KernelInfo *) NULL) |
| clone_info=DestroyKernelInfo(clone_info); /* kernel repeated - junk */ |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + C a l c M e t a K e r n a l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % CalcKernelMetaData() recalculate the KernelInfo meta-data of this kernel only, |
| % using the kernel values. This should only ne used if it is not possible to |
| % calculate that meta-data in some easier way. |
| % |
| % It is important that the meta-data is correct before ScaleKernelInfo() is |
| % used to perform kernel normalization. |
| % |
| % The format of the CalcKernelMetaData method is: |
| % |
| % void CalcKernelMetaData(KernelInfo *kernel, const double scale ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to modify |
| % |
| % WARNING: Minimum and Maximum values are assumed to include zero, even if |
| % zero is not part of the kernel (as in Gaussian Derived kernels). This |
| % however is not true for flat-shaped morphological kernels. |
| % |
| % WARNING: Only the specific kernel pointed to is modified, not a list of |
| % multiple kernels. |
| % |
| % This is an internal function and not expected to be useful outside this |
| % module. This could change however. |
| */ |
| static void CalcKernelMetaData(KernelInfo *kernel) |
| { |
| size_t |
| i; |
| |
| kernel->minimum = kernel->maximum = 0.0; |
| kernel->negative_range = kernel->positive_range = 0.0; |
| for (i=0; i < (kernel->width*kernel->height); i++) |
| { |
| if ( fabs(kernel->values[i]) < MagickEpsilon ) |
| kernel->values[i] = 0.0; |
| ( kernel->values[i] < 0) |
| ? ( kernel->negative_range += kernel->values[i] ) |
| : ( kernel->positive_range += kernel->values[i] ); |
| Minimize(kernel->minimum, kernel->values[i]); |
| Maximize(kernel->maximum, kernel->values[i]); |
| } |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M o r p h o l o g y A p p l y % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MorphologyApply() applies a morphological method, multiple times using |
| % a list of multiple kernels. This is the method that should be called by |
| % other 'operators' that internally use morphology operations as part of |
| % their processing. |
| % |
| % It is basically equivalent to as MorphologyImage() (see below) but without |
| % any user controls. This allows internel programs to use this method to |
| % perform a specific task without possible interference by any API user |
| % supplied settings. |
| % |
| % It is MorphologyImage() task to extract any such user controls, and |
| % pass them to this function for processing. |
| % |
| % More specifically all given kernels should already be scaled, normalised, |
| % and blended appropriatally before being parred to this routine. The |
| % appropriate bias, and compose (typically 'UndefinedComposeOp') given. |
| % |
| % The format of the MorphologyApply method is: |
| % |
| % Image *MorphologyApply(const Image *image,MorphologyMethod method, |
| % const ssize_t iterations,const KernelInfo *kernel, |
| % const CompositeMethod compose,const double bias, |
| % ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the source image |
| % |
| % o method: the morphology method to be applied. |
| % |
| % o iterations: apply the operation this many times (or no change). |
| % A value of -1 means loop until no change found. |
| % How this is applied may depend on the morphology method. |
| % Typically this is a value of 1. |
| % |
| % o channel: the channel type. |
| % |
| % o kernel: An array of double representing the morphology kernel. |
| % |
| % o compose: How to handle or merge multi-kernel results. |
| % If 'UndefinedCompositeOp' use default for the Morphology method. |
| % If 'NoCompositeOp' force image to be re-iterated by each kernel. |
| % Otherwise merge the results using the compose method given. |
| % |
| % o bias: Convolution Output Bias. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| static ssize_t MorphologyPrimitive(const Image *image,Image *morphology_image, |
| const MorphologyMethod method,const KernelInfo *kernel,const double bias, |
| ExceptionInfo *exception) |
| { |
| #define MorphologyTag "Morphology/Image" |
| |
| CacheView |
| *image_view, |
| *morphology_view; |
| |
| OffsetInfo |
| offset; |
| |
| ssize_t |
| j, |
| y; |
| |
| size_t |
| *changes, |
| changed, |
| width; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| assert(morphology_image != (Image *) NULL); |
| assert(morphology_image->signature == MagickCoreSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickCoreSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| status=MagickTrue; |
| progress=0; |
| image_view=AcquireVirtualCacheView(image,exception); |
| morphology_view=AcquireAuthenticCacheView(morphology_image,exception); |
| width=image->columns+kernel->width-1; |
| offset.x=0; |
| offset.y=0; |
| switch (method) |
| { |
| case ConvolveMorphology: |
| case DilateMorphology: |
| case DilateIntensityMorphology: |
| case IterativeDistanceMorphology: |
| { |
| /* |
| Kernel needs to used with reflection about origin. |
| */ |
| offset.x=(ssize_t) kernel->width-kernel->x-1; |
| offset.y=(ssize_t) kernel->height-kernel->y-1; |
| break; |
| } |
| case ErodeMorphology: |
| case ErodeIntensityMorphology: |
| case HitAndMissMorphology: |
| case ThinningMorphology: |
| case ThickenMorphology: |
| { |
| offset.x=kernel->x; |
| offset.y=kernel->y; |
| break; |
| } |
| default: |
| { |
| assert("Not a Primitive Morphology Method" != (char *) NULL); |
| break; |
| } |
| } |
| changed=0; |
| changes=(size_t *) AcquireQuantumMemory(GetOpenMPMaximumThreads(), |
| sizeof(*changes)); |
| if (changes == (size_t *) NULL) |
| ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); |
| for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
| changes[j]=0; |
| |
| if ((method == ConvolveMorphology) && (kernel->width == 1)) |
| { |
| ssize_t |
| x; |
| |
| /* |
| Special handling (for speed) of vertical (blur) kernels. This performs |
| its handling in columns rather than in rows. This is only done |
| for convolve as it is the only method that generates very large 1-D |
| vertical kernels (such as a 'BlurKernel') |
| */ |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static) shared(progress,status) \ |
| magick_number_threads(image,morphology_image,image->columns,1) |
| #endif |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| const int |
| id = GetOpenMPThreadId(); |
| |
| const Quantum |
| *magick_restrict p; |
| |
| Quantum |
| *magick_restrict q; |
| |
| ssize_t |
| r; |
| |
| ssize_t |
| center; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(image_view,x,-offset.y,1,image->rows+ |
| kernel->height-1,exception); |
| q=GetCacheViewAuthenticPixels(morphology_view,x,0,1, |
| morphology_image->rows,exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| center=(ssize_t) GetPixelChannels(image)*offset.y; |
| for (r=0; r < (ssize_t) image->rows; r++) |
| { |
| ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| alpha, |
| gamma, |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| morphology_traits, |
| traits; |
| |
| const MagickRealType |
| *magick_restrict k; |
| |
| const Quantum |
| *magick_restrict pixels; |
| |
| ssize_t |
| v; |
| |
| size_t |
| count; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| morphology_traits=GetPixelChannelTraits(morphology_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (morphology_traits == UndefinedPixelTrait)) |
| continue; |
| if ((traits & CopyPixelTrait) != 0) |
| { |
| SetPixelChannel(morphology_image,channel,p[center+i],q); |
| continue; |
| } |
| k=(&kernel->values[kernel->height-1]); |
| pixels=p; |
| pixel=bias; |
| gamma=1.0; |
| count=0; |
| if (((image->alpha_trait & BlendPixelTrait) == 0) || |
| ((morphology_traits & BlendPixelTrait) == 0)) |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| if (!IsNaN(*k)) |
| { |
| pixel+=(*k)*pixels[i]; |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| else |
| { |
| gamma=0.0; |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| if (!IsNaN(*k)) |
| { |
| alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels)); |
| pixel+=alpha*(*k)*pixels[i]; |
| gamma+=alpha*(*k); |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| } |
| if (fabs(pixel-p[center+i]) > MagickEpsilon) |
| changes[id]++; |
| gamma=PerceptibleReciprocal(gamma); |
| if (count != 0) |
| gamma*=(double) kernel->height/count; |
| SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma* |
| pixel),q); |
| } |
| p+=GetPixelChannels(image); |
| q+=GetPixelChannels(morphology_image); |
| } |
| if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp atomic |
| #endif |
| progress++; |
| proceed=SetImageProgress(image,MorphologyTag,progress,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| morphology_image->type=image->type; |
| morphology_view=DestroyCacheView(morphology_view); |
| image_view=DestroyCacheView(image_view); |
| for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
| changed+=changes[j]; |
| changes=(size_t *) RelinquishMagickMemory(changes); |
| return(status ? (ssize_t) changed : 0); |
| } |
| /* |
| Normal handling of horizontal or rectangular kernels (row by row). |
| */ |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp parallel for schedule(static) shared(progress,status) \ |
| magick_number_threads(image,morphology_image,image->rows,1) |
| #endif |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| const int |
| id = GetOpenMPThreadId(); |
| |
| const Quantum |
| *magick_restrict p; |
| |
| Quantum |
| *magick_restrict q; |
| |
| ssize_t |
| x; |
| |
| ssize_t |
| center; |
| |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width, |
| kernel->height,exception); |
| q=GetCacheViewAuthenticPixels(morphology_view,0,y,morphology_image->columns, |
| 1,exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| center=(ssize_t) (GetPixelChannels(image)*width*offset.y+ |
| GetPixelChannels(image)*offset.x); |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| alpha, |
| gamma, |
| intensity, |
| maximum, |
| minimum, |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| morphology_traits, |
| traits; |
| |
| const MagickRealType |
| *magick_restrict k; |
| |
| const Quantum |
| *magick_restrict pixels, |
| *magick_restrict quantum_pixels; |
| |
| ssize_t |
| u; |
| |
| size_t |
| count; |
| |
| ssize_t |
| v; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| morphology_traits=GetPixelChannelTraits(morphology_image,channel); |
| if ((traits == UndefinedPixelTrait) || |
| (morphology_traits == UndefinedPixelTrait)) |
| continue; |
| if ((traits & CopyPixelTrait) != 0) |
| { |
| SetPixelChannel(morphology_image,channel,p[center+i],q); |
| continue; |
| } |
| pixels=p; |
| quantum_pixels=(const Quantum *) NULL; |
| maximum=0.0; |
| minimum=(double) QuantumRange; |
| switch (method) |
| { |
| case ConvolveMorphology: |
| { |
| pixel=bias; |
| break; |
| } |
| case DilateMorphology: |
| case ErodeIntensityMorphology: |
| { |
| pixel=0.0; |
| break; |
| } |
| case HitAndMissMorphology: |
| case ErodeMorphology: |
| { |
| pixel=QuantumRange; |
| break; |
| } |
| default: |
| { |
| pixel=(double) p[center+i]; |
| break; |
| } |
| } |
| count=0; |
| gamma=1.0; |
| switch (method) |
| { |
| case ConvolveMorphology: |
| { |
| /* |
| Weighted Average of pixels using reflected kernel |
| |
| For correct working of this operation for asymetrical kernels, |
| the kernel needs to be applied in its reflected form. That is |
| its values needs to be reversed. |
| |
| Correlation is actually the same as this but without reflecting |
| the kernel, and thus 'lower-level' that Convolution. However as |
| Convolution is the more common method used, and it does not |
| really cost us much in terms of processing to use a reflected |
| kernel, so it is Convolution that is implemented. |
| |
| Correlation will have its kernel reflected before calling this |
| function to do a Convolve. |
| |
| For more details of Correlation vs Convolution see |
| http://www.cs.umd.edu/~djacobs/CMSC426/Convolution.pdf |
| */ |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| if (((image->alpha_trait & BlendPixelTrait) == 0) || |
| ((morphology_traits & BlendPixelTrait) == 0)) |
| { |
| /* |
| No alpha blending. |
| */ |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| pixel+=(*k)*pixels[i]; |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| /* |
| Alpha blending. |
| */ |
| gamma=0.0; |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| alpha=(double) (QuantumScale*GetPixelAlpha(image,pixels)); |
| pixel+=alpha*(*k)*pixels[i]; |
| gamma+=alpha*(*k); |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case ErodeMorphology: |
| { |
| /* |
| Minimum value within kernel neighbourhood. |
| |
| The kernel is not reflected for this operation. In normal |
| Greyscale Morphology, the kernel value should be added |
| to the real value, this is currently not done, due to the |
| nature of the boolean kernels being used. |
| */ |
| k=kernel->values; |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k) && (*k >= 0.5)) |
| { |
| if ((double) pixels[i] < pixel) |
| pixel=(double) pixels[i]; |
| } |
| k++; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case DilateMorphology: |
| { |
| /* |
| Maximum value within kernel neighbourhood. |
| |
| For correct working of this operation for asymetrical kernels, |
| the kernel needs to be applied in its reflected form. That is |
| its values needs to be reversed. |
| |
| In normal Greyscale Morphology, the kernel value should be |
| added to the real value, this is currently not done, due to the |
| nature of the boolean kernels being used. |
| */ |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k) && (*k > 0.5)) |
| { |
| if ((double) pixels[i] > pixel) |
| pixel=(double) pixels[i]; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case HitAndMissMorphology: |
| case ThinningMorphology: |
| case ThickenMorphology: |
| { |
| /* |
| Minimum of foreground pixel minus maxumum of background pixels. |
| |
| The kernel is not reflected for this operation, and consists |
| of both foreground and background pixel neighbourhoods, 0.0 for |
| background, and 1.0 for foreground with either Nan or 0.5 values |
| for don't care. |
| |
| This never produces a meaningless negative result. Such results |
| cause Thinning/Thicken to not work correctly when used against a |
| greyscale image. |
| */ |
| k=kernel->values; |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if (*k > 0.7) |
| { |
| if ((double) pixels[i] < pixel) |
| pixel=(double) pixels[i]; |
| } |
| else |
| if (*k < 0.3) |
| { |
| if ((double) pixels[i] > maximum) |
| maximum=(double) pixels[i]; |
| } |
| count++; |
| } |
| k++; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| pixel-=maximum; |
| if (pixel < 0.0) |
| pixel=0.0; |
| if (method == ThinningMorphology) |
| pixel=(double) p[center+i]-pixel; |
| else |
| if (method == ThickenMorphology) |
| pixel+=(double) p[center+i]+pixel; |
| break; |
| } |
| case ErodeIntensityMorphology: |
| { |
| /* |
| Select pixel with minimum intensity within kernel neighbourhood. |
| |
| The kernel is not reflected for this operation. |
| */ |
| k=kernel->values; |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k) && (*k >= 0.5)) |
| { |
| intensity=(double) GetPixelIntensity(image,pixels); |
| if (intensity < minimum) |
| { |
| quantum_pixels=pixels; |
| pixel=(double) pixels[i]; |
| minimum=intensity; |
| } |
| count++; |
| } |
| k++; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case DilateIntensityMorphology: |
| { |
| /* |
| Select pixel with maximum intensity within kernel neighbourhood. |
| |
| The kernel is not reflected for this operation. |
| */ |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k) && (*k >= 0.5)) |
| { |
| intensity=(double) GetPixelIntensity(image,pixels); |
| if (intensity > maximum) |
| { |
| pixel=(double) pixels[i]; |
| quantum_pixels=pixels; |
| maximum=intensity; |
| } |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case IterativeDistanceMorphology: |
| { |
| /* |
| Compute th iterative distance from black edge of a white image |
| shape. Essentially white values are decreased to the smallest |
| 'distance from edge' it can find. |
| |
| It works by adding kernel values to the neighbourhood, and |
| select the minimum value found. The kernel is rotated before |
| use, so kernel distances match resulting distances, when a user |
| provided asymmetric kernel is applied. |
| |
| This code is nearly identical to True GrayScale Morphology but |
| not quite. |
| |
| GreyDilate Kernel values added, maximum value found Kernel is |
| rotated before use. |
| |
| GrayErode: Kernel values subtracted and minimum value found No |
| kernel rotation used. |
| |
| Note the Iterative Distance method is essentially a |
| GrayErode, but with negative kernel values, and kernel rotation |
| applied. |
| */ |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| for (v=0; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| count++; |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| break; |
| } |
| case UndefinedMorphology: |
| default: |
| break; |
| } |
| if (fabs(pixel-p[center+i]) > MagickEpsilon) |
| changes[id]++; |
| if (quantum_pixels != (const Quantum *) NULL) |
| { |
| SetPixelChannel(morphology_image,channel,quantum_pixels[i],q); |
| continue; |
| } |
| gamma=PerceptibleReciprocal(gamma); |
| if (count != 0) |
| gamma*=(double) kernel->height*kernel->width/count; |
| SetPixelChannel(morphology_image,channel,ClampToQuantum(gamma*pixel),q); |
| } |
| p+=GetPixelChannels(image); |
| q+=GetPixelChannels(morphology_image); |
| } |
| if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp atomic |
| #endif |
| progress++; |
| proceed=SetImageProgress(image,MorphologyTag,progress,image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| morphology_view=DestroyCacheView(morphology_view); |
| image_view=DestroyCacheView(image_view); |
| for (j=0; j < (ssize_t) GetOpenMPMaximumThreads(); j++) |
| changed+=changes[j]; |
| changes=(size_t *) RelinquishMagickMemory(changes); |
| return(status ? (ssize_t) changed : -1); |
| } |
| |
| /* |
| This is almost identical to the MorphologyPrimative() function above, but |
| applies the primitive directly to the actual image using two passes, once in |
| each direction, with the results of the previous (and current) row being |
| re-used. |
| |
| That is after each row is 'Sync'ed' into the image, the next row makes use of |
| those values as part of the calculation of the next row. It repeats, but |
| going in the oppisite (bottom-up) direction. |
| |
| Because of this 're-use of results' this function can not make use of multi- |
| threaded, parellel processing. |
| */ |
| static ssize_t MorphologyPrimitiveDirect(Image *image, |
| const MorphologyMethod method,const KernelInfo *kernel, |
| ExceptionInfo *exception) |
| { |
| CacheView |
| *morphology_view, |
| *image_view; |
| |
| MagickBooleanType |
| status; |
| |
| MagickOffsetType |
| progress; |
| |
| OffsetInfo |
| offset; |
| |
| size_t |
| width, |
| changed; |
| |
| ssize_t |
| y; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickCoreSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| status=MagickTrue; |
| changed=0; |
| progress=0; |
| switch(method) |
| { |
| case DistanceMorphology: |
| case VoronoiMorphology: |
| { |
| /* |
| Kernel reflected about origin. |
| */ |
| offset.x=(ssize_t) kernel->width-kernel->x-1; |
| offset.y=(ssize_t) kernel->height-kernel->y-1; |
| break; |
| } |
| default: |
| { |
| offset.x=kernel->x; |
| offset.y=kernel->y; |
| break; |
| } |
| } |
| /* |
| Two views into same image, do not thread. |
| */ |
| image_view=AcquireVirtualCacheView(image,exception); |
| morphology_view=AcquireAuthenticCacheView(image,exception); |
| width=image->columns+kernel->width-1; |
| for (y=0; y < (ssize_t) image->rows; y++) |
| { |
| const Quantum |
| *magick_restrict p; |
| |
| Quantum |
| *magick_restrict q; |
| |
| ssize_t |
| x; |
| |
| /* |
| Read virtual pixels, and authentic pixels, from the same image! We read |
| using virtual to get virtual pixel handling, but write back into the same |
| image. |
| |
| Only top half of kernel is processed as we do a single pass downward |
| through the image iterating the distance function as we go. |
| */ |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(image_view,-offset.x,y-offset.y,width,(size_t) |
| offset.y+1,exception); |
| q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1, |
| exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| for (x=0; x < (ssize_t) image->columns; x++) |
| { |
| ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| traits; |
| |
| const MagickRealType |
| *magick_restrict k; |
| |
| const Quantum |
| *magick_restrict pixels; |
| |
| ssize_t |
| u; |
| |
| ssize_t |
| v; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| if (traits == UndefinedPixelTrait) |
| continue; |
| if ((traits & CopyPixelTrait) != 0) |
| continue; |
| pixels=p; |
| pixel=(double) QuantumRange; |
| switch (method) |
| { |
| case DistanceMorphology: |
| { |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| for (v=0; v <= offset.y; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| k=(&kernel->values[kernel->width*(kernel->y+1)-1]); |
| pixels=q-offset.x*GetPixelChannels(image); |
| for (u=0; u < offset.x; u++) |
| { |
| if (!IsNaN(*k) && ((x+u-offset.x) >= 0)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| break; |
| } |
| case VoronoiMorphology: |
| { |
| k=(&kernel->values[kernel->width*kernel->height-1]); |
| for (v=0; v < offset.y; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| k=(&kernel->values[kernel->width*(kernel->y+1)-1]); |
| pixels=q-offset.x*GetPixelChannels(image); |
| for (u=0; u < offset.x; u++) |
| { |
| if (!IsNaN(*k) && ((x+u-offset.x) >= 0)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if (fabs(pixel-q[i]) > MagickEpsilon) |
| changed++; |
| q[i]=ClampToQuantum(pixel); |
| } |
| p+=GetPixelChannels(image); |
| q+=GetPixelChannels(image); |
| } |
| if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp atomic |
| #endif |
| progress++; |
| proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| morphology_view=DestroyCacheView(morphology_view); |
| image_view=DestroyCacheView(image_view); |
| /* |
| Do the reverse pass through the image. |
| */ |
| image_view=AcquireVirtualCacheView(image,exception); |
| morphology_view=AcquireAuthenticCacheView(image,exception); |
| for (y=(ssize_t) image->rows-1; y >= 0; y--) |
| { |
| const Quantum |
| *magick_restrict p; |
| |
| Quantum |
| *magick_restrict q; |
| |
| ssize_t |
| x; |
| |
| /* |
| Read virtual pixels, and authentic pixels, from the same image. We |
| read using virtual to get virtual pixel handling, but write back |
| into the same image. |
| |
| Only the bottom half of the kernel is processed as we up the image. |
| */ |
| if (status == MagickFalse) |
| continue; |
| p=GetCacheViewVirtualPixels(image_view,-offset.x,y,width,(size_t) |
| kernel->y+1,exception); |
| q=GetCacheViewAuthenticPixels(morphology_view,0,y,image->columns,1, |
| exception); |
| if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) |
| { |
| status=MagickFalse; |
| continue; |
| } |
| p+=(image->columns-1)*GetPixelChannels(image); |
| q+=(image->columns-1)*GetPixelChannels(image); |
| for (x=(ssize_t) image->columns-1; x >= 0; x--) |
| { |
| ssize_t |
| i; |
| |
| for (i=0; i < (ssize_t) GetPixelChannels(image); i++) |
| { |
| double |
| pixel; |
| |
| PixelChannel |
| channel; |
| |
| PixelTrait |
| traits; |
| |
| const MagickRealType |
| *magick_restrict k; |
| |
| const Quantum |
| *magick_restrict pixels; |
| |
| ssize_t |
| u; |
| |
| ssize_t |
| v; |
| |
| channel=GetPixelChannelChannel(image,i); |
| traits=GetPixelChannelTraits(image,channel); |
| if (traits == UndefinedPixelTrait) |
| continue; |
| if ((traits & CopyPixelTrait) != 0) |
| continue; |
| pixels=p; |
| pixel=(double) QuantumRange; |
| switch (method) |
| { |
| case DistanceMorphology: |
| { |
| k=(&kernel->values[kernel->width*(kernel->y+1)-1]); |
| for (v=offset.y; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| k=(&kernel->values[kernel->width*kernel->y+kernel->x-1]); |
| pixels=q; |
| for (u=offset.x+1; u < (ssize_t) kernel->width; u++) |
| { |
| pixels+=GetPixelChannels(image); |
| if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| } |
| break; |
| } |
| case VoronoiMorphology: |
| { |
| k=(&kernel->values[kernel->width*(kernel->y+1)-1]); |
| for (v=offset.y; v < (ssize_t) kernel->height; v++) |
| { |
| for (u=0; u < (ssize_t) kernel->width; u++) |
| { |
| if (!IsNaN(*k)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| pixels+=GetPixelChannels(image); |
| } |
| pixels+=(image->columns-1)*GetPixelChannels(image); |
| } |
| k=(&kernel->values[kernel->width*(kernel->y+1)-1]); |
| pixels=q; |
| for (u=offset.x+1; u < (ssize_t) kernel->width; u++) |
| { |
| pixels+=GetPixelChannels(image); |
| if (!IsNaN(*k) && ((x+u-offset.x) < (ssize_t) image->columns)) |
| { |
| if ((pixels[i]+(*k)) < pixel) |
| pixel=(double) pixels[i]+(*k); |
| } |
| k--; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| if (fabs(pixel-q[i]) > MagickEpsilon) |
| changed++; |
| q[i]=ClampToQuantum(pixel); |
| } |
| p-=GetPixelChannels(image); |
| q-=GetPixelChannels(image); |
| } |
| if (SyncCacheViewAuthenticPixels(morphology_view,exception) == MagickFalse) |
| status=MagickFalse; |
| if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| { |
| MagickBooleanType |
| proceed; |
| |
| #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| #pragma omp atomic |
| #endif |
| progress++; |
| proceed=SetImageProgress(image,MorphologyTag,progress,2*image->rows); |
| if (proceed == MagickFalse) |
| status=MagickFalse; |
| } |
| } |
| morphology_view=DestroyCacheView(morphology_view); |
| image_view=DestroyCacheView(image_view); |
| return(status ? (ssize_t) changed : -1); |
| } |
| |
| /* |
| Apply a Morphology by calling one of the above low level primitive |
| application functions. This function handles any iteration loops, |
| composition or re-iteration of results, and compound morphology methods that |
| is based on multiple low-level (staged) morphology methods. |
| |
| Basically this provides the complex glue between the requested morphology |
| method and raw low-level implementation (above). |
| */ |
| MagickPrivate Image *MorphologyApply(const Image *image, |
| const MorphologyMethod method, const ssize_t iterations, |
| const KernelInfo *kernel, const CompositeOperator compose,const double bias, |
| ExceptionInfo *exception) |
| { |
| CompositeOperator |
| curr_compose; |
| |
| Image |
| *curr_image, /* Image we are working with or iterating */ |
| *work_image, /* secondary image for primitive iteration */ |
| *save_image, /* saved image - for 'edge' method only */ |
| *rslt_image; /* resultant image - after multi-kernel handling */ |
| |
| KernelInfo |
| *reflected_kernel, /* A reflected copy of the kernel (if needed) */ |
| *norm_kernel, /* the current normal un-reflected kernel */ |
| *rflt_kernel, /* the current reflected kernel (if needed) */ |
| *this_kernel; /* the kernel being applied */ |
| |
| MorphologyMethod |
| primitive; /* the current morphology primitive being applied */ |
| |
| CompositeOperator |
| rslt_compose; /* multi-kernel compose method for results to use */ |
| |
| MagickBooleanType |
| special, /* do we use a direct modify function? */ |
| verbose; /* verbose output of results */ |
| |
| size_t |
| method_loop, /* Loop 1: number of compound method iterations (norm 1) */ |
| method_limit, /* maximum number of compound method iterations */ |
| kernel_number, /* Loop 2: the kernel number being applied */ |
| stage_loop, /* Loop 3: primitive loop for compound morphology */ |
| stage_limit, /* how many primitives are in this compound */ |
| kernel_loop, /* Loop 4: iterate the kernel over image */ |
| kernel_limit, /* number of times to iterate kernel */ |
| count, /* total count of primitive steps applied */ |
| kernel_changed, /* total count of changed using iterated kernel */ |
| method_changed; /* total count of changed over method iteration */ |
| |
| ssize_t |
| changed; /* number pixels changed by last primitive operation */ |
| |
| char |
| v_info[MagickPathExtent]; |
| |
| assert(image != (Image *) NULL); |
| assert(image->signature == MagickCoreSignature); |
| assert(kernel != (KernelInfo *) NULL); |
| assert(kernel->signature == MagickCoreSignature); |
| assert(exception != (ExceptionInfo *) NULL); |
| assert(exception->signature == MagickCoreSignature); |
| |
| count = 0; /* number of low-level morphology primitives performed */ |
| if ( iterations == 0 ) |
| return((Image *) NULL); /* null operation - nothing to do! */ |
| |
| kernel_limit = (size_t) iterations; |
| if ( iterations < 0 ) /* negative interations = infinite (well alomst) */ |
| kernel_limit = image->columns>image->rows ? image->columns : image->rows; |
| |
| verbose = IsStringTrue(GetImageArtifact(image,"debug")); |
| |
| /* initialise for cleanup */ |
| curr_image = (Image *) image; |
| curr_compose = image->compose; |
| (void) curr_compose; |
| work_image = save_image = rslt_image = (Image *) NULL; |
| reflected_kernel = (KernelInfo *) NULL; |
| |
| /* Initialize specific methods |
| * + which loop should use the given iteratations |
| * + how many primitives make up the compound morphology |
| * + multi-kernel compose method to use (by default) |
| */ |
| method_limit = 1; /* just do method once, unless otherwise set */ |
| stage_limit = 1; /* assume method is not a compound */ |
| special = MagickFalse; /* assume it is NOT a direct modify primitive */ |
| rslt_compose = compose; /* and we are composing multi-kernels as given */ |
| switch( method ) { |
| case SmoothMorphology: /* 4 primitive compound morphology */ |
| stage_limit = 4; |
| break; |
| case OpenMorphology: /* 2 primitive compound morphology */ |
| case OpenIntensityMorphology: |
| case TopHatMorphology: |
| case CloseMorphology: |
| case CloseIntensityMorphology: |
| case BottomHatMorphology: |
| case EdgeMorphology: |
| stage_limit = 2; |
| break; |
| case HitAndMissMorphology: |
| rslt_compose = LightenCompositeOp; /* Union of multi-kernel results */ |
| /* FALL THUR */ |
| case ThinningMorphology: |
| case ThickenMorphology: |
| method_limit = kernel_limit; /* iterate the whole method */ |
| kernel_limit = 1; /* do not do kernel iteration */ |
| break; |
| case DistanceMorphology: |
| case VoronoiMorphology: |
| special = MagickTrue; /* use special direct primative */ |
| break; |
| default: |
| break; |
| } |
| |
| /* Apply special methods with special requirments |
| ** For example, single run only, or post-processing requirements |
| */ |
| if ( special != MagickFalse ) |
| { |
| rslt_image=CloneImage(image,0,0,MagickTrue,exception); |
| if (rslt_image == (Image *) NULL) |
| goto error_cleanup; |
| if (SetImageStorageClass(rslt_image,DirectClass,exception) == MagickFalse) |
| goto error_cleanup; |
| |
| changed=MorphologyPrimitiveDirect(rslt_image,method,kernel,exception); |
| |
| if (verbose != MagickFalse) |
| (void) (void) FormatLocaleFile(stderr, |
| "%s:%.20g.%.20g #%.20g => Changed %.20g\n", |
| CommandOptionToMnemonic(MagickMorphologyOptions, method), |
| 1.0,0.0,1.0, (double) changed); |
| |
| if ( changed < 0 ) |
| goto error_cleanup; |
| |
| if ( method == VoronoiMorphology ) { |
| /* Preserve the alpha channel of input image - but turned it off */ |
| (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, |
| exception); |
| (void) CompositeImage(rslt_image,image,CopyAlphaCompositeOp, |
| MagickTrue,0,0,exception); |
| (void) SetImageAlphaChannel(rslt_image, DeactivateAlphaChannel, |
| exception); |
| } |
| goto exit_cleanup; |
| } |
| |
| /* Handle user (caller) specified multi-kernel composition method */ |
| if ( compose != UndefinedCompositeOp ) |
| rslt_compose = compose; /* override default composition for method */ |
| if ( rslt_compose == UndefinedCompositeOp ) |
| rslt_compose = NoCompositeOp; /* still not defined! Then re-iterate */ |
| |
| /* Some methods require a reflected kernel to use with primitives. |
| * Create the reflected kernel for those methods. */ |
| switch ( method ) { |
| case CorrelateMorphology: |
| case CloseMorphology: |
| case CloseIntensityMorphology: |
| case BottomHatMorphology: |
| case SmoothMorphology: |
| reflected_kernel = CloneKernelInfo(kernel); |
| if (reflected_kernel == (KernelInfo *) NULL) |
| goto error_cleanup; |
| RotateKernelInfo(reflected_kernel,180); |
| break; |
| default: |
| break; |
| } |
| |
| /* Loops around more primitive morpholgy methods |
| ** erose, dilate, open, close, smooth, edge, etc... |
| */ |
| /* Loop 1: iterate the compound method */ |
| method_loop = 0; |
| method_changed = 1; |
| while ( method_loop < method_limit && method_changed > 0 ) { |
| method_loop++; |
| method_changed = 0; |
| |
| /* Loop 2: iterate over each kernel in a multi-kernel list */ |
| norm_kernel = (KernelInfo *) kernel; |
| this_kernel = (KernelInfo *) kernel; |
| rflt_kernel = reflected_kernel; |
| |
| kernel_number = 0; |
| while ( norm_kernel != NULL ) { |
| |
| /* Loop 3: Compound Morphology Staging - Select Primative to apply */ |
| stage_loop = 0; /* the compound morphology stage number */ |
| while ( stage_loop < stage_limit ) { |
| stage_loop++; /* The stage of the compound morphology */ |
| |
| /* Select primitive morphology for this stage of compound method */ |
| this_kernel = norm_kernel; /* default use unreflected kernel */ |
| primitive = method; /* Assume method is a primitive */ |
| switch( method ) { |
| case ErodeMorphology: /* just erode */ |
| case EdgeInMorphology: /* erode and image difference */ |
| primitive = ErodeMorphology; |
| break; |
| case DilateMorphology: /* just dilate */ |
| case EdgeOutMorphology: /* dilate and image difference */ |
| primitive = DilateMorphology; |
| break; |
| case OpenMorphology: /* erode then dialate */ |
| case TopHatMorphology: /* open and image difference */ |
| primitive = ErodeMorphology; |
| if ( stage_loop == 2 ) |
| primitive = DilateMorphology; |
| break; |
| case OpenIntensityMorphology: |
| primitive = ErodeIntensityMorphology; |
| if ( stage_loop == 2 ) |
| primitive = DilateIntensityMorphology; |
| break; |
| case CloseMorphology: /* dilate, then erode */ |
| case BottomHatMorphology: /* close and image difference */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primitive = DilateMorphology; |
| if ( stage_loop == 2 ) |
| primitive = ErodeMorphology; |
| break; |
| case CloseIntensityMorphology: |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primitive = DilateIntensityMorphology; |
| if ( stage_loop == 2 ) |
| primitive = ErodeIntensityMorphology; |
| break; |
| case SmoothMorphology: /* open, close */ |
| switch ( stage_loop ) { |
| case 1: /* start an open method, which starts with Erode */ |
| primitive = ErodeMorphology; |
| break; |
| case 2: /* now Dilate the Erode */ |
| primitive = DilateMorphology; |
| break; |
| case 3: /* Reflect kernel a close */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primitive = DilateMorphology; |
| break; |
| case 4: /* Finish the Close */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primitive = ErodeMorphology; |
| break; |
| } |
| break; |
| case EdgeMorphology: /* dilate and erode difference */ |
| primitive = DilateMorphology; |
| if ( stage_loop == 2 ) { |
| save_image = curr_image; /* save the image difference */ |
| curr_image = (Image *) image; |
| primitive = ErodeMorphology; |
| } |
| break; |
| case CorrelateMorphology: |
| /* A Correlation is a Convolution with a reflected kernel. |
| ** However a Convolution is a weighted sum using a reflected |
| ** kernel. It may seem stange to convert a Correlation into a |
| ** Convolution as the Correlation is the simplier method, but |
| ** Convolution is much more commonly used, and it makes sense to |
| ** implement it directly so as to avoid the need to duplicate the |
| ** kernel when it is not required (which is typically the |
| ** default). |
| */ |
| this_kernel = rflt_kernel; /* use the reflected kernel */ |
| primitive = ConvolveMorphology; |
| break; |
| default: |
| break; |
| } |
| assert( this_kernel != (KernelInfo *) NULL ); |
| |
| /* Extra information for debugging compound operations */ |
| if (verbose != MagickFalse) { |
| if ( stage_limit > 1 ) |
| (void) FormatLocaleString(v_info,MagickPathExtent,"%s:%.20g.%.20g -> ", |
| CommandOptionToMnemonic(MagickMorphologyOptions,method),(double) |
| method_loop,(double) stage_loop); |
| else if ( primitive != method ) |
| (void) FormatLocaleString(v_info, MagickPathExtent, "%s:%.20g -> ", |
| CommandOptionToMnemonic(MagickMorphologyOptions, method),(double) |
| method_loop); |
| else |
| v_info[0] = '\0'; |
| } |
| |
| /* Loop 4: Iterate the kernel with primitive */ |
| kernel_loop = 0; |
| kernel_changed = 0; |
| changed = 1; |
| while ( kernel_loop < kernel_limit && changed > 0 ) { |
| kernel_loop++; /* the iteration of this kernel */ |
| |
| /* Create a clone as the destination image, if not yet defined */ |
| if ( work_image == (Image *) NULL ) |
| { |
| work_image=CloneImage(image,0,0,MagickTrue,exception); |
| if (work_image == (Image *) NULL) |
| goto error_cleanup; |
| if (SetImageStorageClass(work_image,DirectClass,exception) == MagickFalse) |
| goto error_cleanup; |
| } |
| |
| /* APPLY THE MORPHOLOGICAL PRIMITIVE (curr -> work) */ |
| count++; |
| changed = MorphologyPrimitive(curr_image, work_image, primitive, |
| this_kernel, bias, exception); |
| if (verbose != MagickFalse) { |
| if ( kernel_loop > 1 ) |
| (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line from previous */ |
| (void) (void) FormatLocaleFile(stderr, |
| "%s%s%s:%.20g.%.20g #%.20g => Changed %.20g", |
| v_info,CommandOptionToMnemonic(MagickMorphologyOptions, |
| primitive),(this_kernel == rflt_kernel ) ? "*" : "", |
| (double) (method_loop+kernel_loop-1),(double) kernel_number, |
| (double) count,(double) changed); |
| } |
| if ( changed < 0 ) |
| goto error_cleanup; |
| kernel_changed += changed; |
| method_changed += changed; |
| |
| /* prepare next loop */ |
| { Image *tmp = work_image; /* swap images for iteration */ |
| work_image = curr_image; |
| curr_image = tmp; |
| } |
| if ( work_image == image ) |
| work_image = (Image *) NULL; /* replace input 'image' */ |
| |
| } /* End Loop 4: Iterate the kernel with primitive */ |
| |
| if (verbose != MagickFalse && kernel_changed != (size_t)changed) |
| (void) FormatLocaleFile(stderr, " Total %.20g",(double) kernel_changed); |
| if (verbose != MagickFalse && stage_loop < stage_limit) |
| (void) FormatLocaleFile(stderr, "\n"); /* add end-of-line before looping */ |
| |
| #if 0 |
| (void) FormatLocaleFile(stderr, "--E-- image=0x%lx\n", (unsigned long)image); |
| (void) FormatLocaleFile(stderr, " curr =0x%lx\n", (unsigned long)curr_image); |
| (void) FormatLocaleFile(stderr, " work =0x%lx\n", (unsigned long)work_image); |
| (void) FormatLocaleFile(stderr, " save =0x%lx\n", (unsigned long)save_image); |
| (void) FormatLocaleFile(stderr, " union=0x%lx\n", (unsigned long)rslt_image); |
| #endif |
| |
| } /* End Loop 3: Primative (staging) Loop for Coumpound Methods */ |
| |
| /* Final Post-processing for some Compound Methods |
| ** |
| ** The removal of any 'Sync' channel flag in the Image Compositon |
| ** below ensures the methematical compose method is applied in a |
| ** purely mathematical way, and only to the selected channels. |
| ** Turn off SVG composition 'alpha blending'. |
| */ |
| switch( method ) { |
| case EdgeOutMorphology: |
| case EdgeInMorphology: |
| case TopHatMorphology: |
| case BottomHatMorphology: |
| if (verbose != MagickFalse) |
| (void) FormatLocaleFile(stderr, |
| "\n%s: Difference with original image",CommandOptionToMnemonic( |
| MagickMorphologyOptions, method) ); |
| (void) CompositeImage(curr_image,image,DifferenceCompositeOp, |
| MagickTrue,0,0,exception); |
| break; |
| case EdgeMorphology: |
| if (verbose != MagickFalse) |
| (void) FormatLocaleFile(stderr, |
| "\n%s: Difference of Dilate and Erode",CommandOptionToMnemonic( |
| MagickMorphologyOptions, method) ); |
| (void) CompositeImage(curr_image,save_image,DifferenceCompositeOp, |
| MagickTrue,0,0,exception); |
| save_image = DestroyImage(save_image); /* finished with save image */ |
| break; |
| default: |
| break; |
| } |
| |
| /* multi-kernel handling: re-iterate, or compose results */ |
| if ( kernel->next == (KernelInfo *) NULL ) |
| rslt_image = curr_image; /* just return the resulting image */ |
| else if ( rslt_compose == NoCompositeOp ) |
| { if (verbose != MagickFalse) { |
| if ( this_kernel->next != (KernelInfo *) NULL ) |
| (void) FormatLocaleFile(stderr, " (re-iterate)"); |
| else |
| (void) FormatLocaleFile(stderr, " (done)"); |
| } |
| rslt_image = curr_image; /* return result, and re-iterate */ |
| } |
| else if ( rslt_image == (Image *) NULL) |
| { if (verbose != MagickFalse) |
| (void) FormatLocaleFile(stderr, " (save for compose)"); |
| rslt_image = curr_image; |
| curr_image = (Image *) image; /* continue with original image */ |
| } |
| else |
| { /* Add the new 'current' result to the composition |
| ** |
| ** The removal of any 'Sync' channel flag in the Image Compositon |
| ** below ensures the methematical compose method is applied in a |
| ** purely mathematical way, and only to the selected channels. |
| ** IE: Turn off SVG composition 'alpha blending'. |
| */ |
| if (verbose != MagickFalse) |
| (void) FormatLocaleFile(stderr, " (compose \"%s\")", |
| CommandOptionToMnemonic(MagickComposeOptions, rslt_compose) ); |
| (void) CompositeImage(rslt_image,curr_image,rslt_compose,MagickTrue, |
| 0,0,exception); |
| curr_image = DestroyImage(curr_image); |
| curr_image = (Image *) image; /* continue with original image */ |
| } |
| if (verbose != MagickFalse) |
| (void) FormatLocaleFile(stderr, "\n"); |
| |
| /* loop to the next kernel in a multi-kernel list */ |
| norm_kernel = norm_kernel->next; |
| if ( rflt_kernel != (KernelInfo *) NULL ) |
| rflt_kernel = rflt_kernel->next; |
| kernel_number++; |
| } /* End Loop 2: Loop over each kernel */ |
| |
| } /* End Loop 1: compound method interation */ |
| |
| goto exit_cleanup; |
| |
| /* Yes goto's are bad, but it makes cleanup lot more efficient */ |
| error_cleanup: |
| if ( curr_image == rslt_image ) |
| curr_image = (Image *) NULL; |
| if ( rslt_image != (Image *) NULL ) |
| rslt_image = DestroyImage(rslt_image); |
| exit_cleanup: |
| if ( curr_image == rslt_image || curr_image == image ) |
| curr_image = (Image *) NULL; |
| if ( curr_image != (Image *) NULL ) |
| curr_image = DestroyImage(curr_image); |
| if ( work_image != (Image *) NULL ) |
| work_image = DestroyImage(work_image); |
| if ( save_image != (Image *) NULL ) |
| save_image = DestroyImage(save_image); |
| if ( reflected_kernel != (KernelInfo *) NULL ) |
| reflected_kernel = DestroyKernelInfo(reflected_kernel); |
| return(rslt_image); |
| } |
| |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % M o r p h o l o g y I m a g e % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % MorphologyImage() applies a user supplied kernel to the image according to |
| % the given mophology method. |
| % |
| % This function applies any and all user defined settings before calling |
| % the above internal function MorphologyApply(). |
| % |
| % User defined settings include... |
| % * Output Bias for Convolution and correlation ("-define convolve:bias=??") |
| % * Kernel Scale/normalize settings ("-define convolve:scale=??") |
| % This can also includes the addition of a scaled unity kernel. |
| % * Show Kernel being applied ("-define morphology:showKernel=1") |
| % |
| % Other operators that do not want user supplied options interfering, |
| % especially "convolve:bias" and "morphology:showKernel" should use |
| % MorphologyApply() directly. |
| % |
| % The format of the MorphologyImage method is: |
| % |
| % Image *MorphologyImage(const Image *image,MorphologyMethod method, |
| % const ssize_t iterations,KernelInfo *kernel,ExceptionInfo *exception) |
| % |
| % A description of each parameter follows: |
| % |
| % o image: the image. |
| % |
| % o method: the morphology method to be applied. |
| % |
| % o iterations: apply the operation this many times (or no change). |
| % A value of -1 means loop until no change found. |
| % How this is applied may depend on the morphology method. |
| % Typically this is a value of 1. |
| % |
| % o kernel: An array of double representing the morphology kernel. |
| % Warning: kernel may be normalized for the Convolve method. |
| % |
| % o exception: return any errors or warnings in this structure. |
| % |
| */ |
| MagickExport Image *MorphologyImage(const Image *image, |
| const MorphologyMethod method,const ssize_t iterations, |
| const KernelInfo *kernel,ExceptionInfo *exception) |
| { |
| const char |
| *artifact; |
| |
| CompositeOperator |
| compose; |
| |
| double |
| bias; |
| |
| Image |
| *morphology_image; |
| |
| KernelInfo |
| *curr_kernel; |
| |
| curr_kernel = (KernelInfo *) kernel; |
| bias=0.0; |
| compose = UndefinedCompositeOp; /* use default for method */ |
| |
| /* Apply Convolve/Correlate Normalization and Scaling Factors. |
| * This is done BEFORE the ShowKernelInfo() function is called so that |
| * users can see the results of the 'option:convolve:scale' option. |
| */ |
| if ( method == ConvolveMorphology || method == CorrelateMorphology ) { |
| /* Get the bias value as it will be needed */ |
| artifact = GetImageArtifact(image,"convolve:bias"); |
| if ( artifact != (const char *) NULL) { |
| if (IsGeometry(artifact) == MagickFalse) |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| OptionWarning,"InvalidSetting","'%s' '%s'", |
| "convolve:bias",artifact); |
| else |
| bias=StringToDoubleInterval(artifact,(double) QuantumRange+1.0); |
| } |
| |
| /* Scale kernel according to user wishes */ |
| artifact = GetImageArtifact(image,"convolve:scale"); |
| if ( artifact != (const char *) NULL ) { |
| if (IsGeometry(artifact) == MagickFalse) |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| OptionWarning,"InvalidSetting","'%s' '%s'", |
| "convolve:scale",artifact); |
| else { |
| if ( curr_kernel == kernel ) |
| curr_kernel = CloneKernelInfo(kernel); |
| if (curr_kernel == (KernelInfo *) NULL) |
| return((Image *) NULL); |
| ScaleGeometryKernelInfo(curr_kernel, artifact); |
| } |
| } |
| } |
| |
| /* display the (normalized) kernel via stderr */ |
| artifact=GetImageArtifact(image,"morphology:showKernel"); |
| if (IsStringTrue(artifact) != MagickFalse) |
| ShowKernelInfo(curr_kernel); |
| |
| /* Override the default handling of multi-kernel morphology results |
| * If 'Undefined' use the default method |
| * If 'None' (default for 'Convolve') re-iterate previous result |
| * Otherwise merge resulting images using compose method given. |
| * Default for 'HitAndMiss' is 'Lighten'. |
| */ |
| { |
| ssize_t |
| parse; |
| |
| artifact = GetImageArtifact(image,"morphology:compose"); |
| if ( artifact != (const char *) NULL) { |
| parse=ParseCommandOption(MagickComposeOptions, |
| MagickFalse,artifact); |
| if ( parse < 0 ) |
| (void) ThrowMagickException(exception,GetMagickModule(), |
| OptionWarning,"UnrecognizedComposeOperator","'%s' '%s'", |
| "morphology:compose",artifact); |
| else |
| compose=(CompositeOperator)parse; |
| } |
| } |
| /* Apply the Morphology */ |
| morphology_image = MorphologyApply(image,method,iterations, |
| curr_kernel,compose,bias,exception); |
| |
| /* Cleanup and Exit */ |
| if ( curr_kernel != kernel ) |
| curr_kernel=DestroyKernelInfo(curr_kernel); |
| return(morphology_image); |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| + R o t a t e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % RotateKernelInfo() rotates the kernel by the angle given. |
| % |
| % Currently it is restricted to 90 degree angles, of either 1D kernels |
| % or square kernels. And 'circular' rotations of 45 degrees for 3x3 kernels. |
| % It will ignore usless rotations for specific 'named' built-in kernels. |
| % |
| % The format of the RotateKernelInfo method is: |
| % |
| % void RotateKernelInfo(KernelInfo *kernel, double angle) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o angle: angle to rotate in degrees |
| % |
| % This function is currently internal to this module only, but can be exported |
| % to other modules if needed. |
| */ |
| static void RotateKernelInfo(KernelInfo *kernel, double angle) |
| { |
| /* angle the lower kernels first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| RotateKernelInfo(kernel->next, angle); |
| |
| /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical |
| ** |
| ** TODO: expand beyond simple 90 degree rotates, flips and flops |
| */ |
| |
| /* Modulus the angle */ |
| angle = fmod(angle, 360.0); |
| if ( angle < 0 ) |
| angle += 360.0; |
| |
| if ( 337.5 < angle || angle <= 22.5 ) |
| return; /* Near zero angle - no change! - At least not at this time */ |
| |
| /* Handle special cases */ |
| switch (kernel->type) { |
| /* These built-in kernels are cylindrical kernels, rotating is useless */ |
| case GaussianKernel: |
| case DoGKernel: |
| case LoGKernel: |
| case DiskKernel: |
| case PeaksKernel: |
| case LaplacianKernel: |
| case ChebyshevKernel: |
| case ManhattanKernel: |
| case EuclideanKernel: |
| return; |
| |
| /* These may be rotatable at non-90 angles in the future */ |
| /* but simply rotating them in multiples of 90 degrees is useless */ |
| case SquareKernel: |
| case DiamondKernel: |
| case PlusKernel: |
| case CrossKernel: |
| return; |
| |
| /* These only allows a +/-90 degree rotation (by transpose) */ |
| /* A 180 degree rotation is useless */ |
| case BlurKernel: |
| if ( 135.0 < angle && angle <= 225.0 ) |
| return; |
| if ( 225.0 < angle && angle <= 315.0 ) |
| angle -= 180; |
| break; |
| |
| default: |
| break; |
| } |
| /* Attempt rotations by 45 degrees -- 3x3 kernels only */ |
| if ( 22.5 < fmod(angle,90.0) && fmod(angle,90.0) <= 67.5 ) |
| { |
| if ( kernel->width == 3 && kernel->height == 3 ) |
| { /* Rotate a 3x3 square by 45 degree angle */ |
| double t = kernel->values[0]; |
| kernel->values[0] = kernel->values[3]; |
| kernel->values[3] = kernel->values[6]; |
| kernel->values[6] = kernel->values[7]; |
| kernel->values[7] = kernel->values[8]; |
| kernel->values[8] = kernel->values[5]; |
| kernel->values[5] = kernel->values[2]; |
| kernel->values[2] = kernel->values[1]; |
| kernel->values[1] = t; |
| /* rotate non-centered origin */ |
| if ( kernel->x != 1 || kernel->y != 1 ) { |
| ssize_t x,y; |
| x = (ssize_t) kernel->x-1; |
| y = (ssize_t) kernel->y-1; |
| if ( x == y ) x = 0; |
| else if ( x == 0 ) x = -y; |
| else if ( x == -y ) y = 0; |
| else if ( y == 0 ) y = x; |
| kernel->x = (ssize_t) x+1; |
| kernel->y = (ssize_t) y+1; |
| } |
| angle = fmod(angle+315.0, 360.0); /* angle reduced 45 degrees */ |
| kernel->angle = fmod(kernel->angle+45.0, 360.0); |
| } |
| else |
| perror("Unable to rotate non-3x3 kernel by 45 degrees"); |
| } |
| if ( 45.0 < fmod(angle, 180.0) && fmod(angle,180.0) <= 135.0 ) |
| { |
| if ( kernel->width == 1 || kernel->height == 1 ) |
| { /* Do a transpose of a 1 dimensional kernel, |
| ** which results in a fast 90 degree rotation of some type. |
| */ |
| ssize_t |
| t; |
| t = (ssize_t) kernel->width; |
| kernel->width = kernel->height; |
| kernel->height = (size_t) t; |
| t = kernel->x; |
| kernel->x = kernel->y; |
| kernel->y = t; |
| if ( kernel->width == 1 ) { |
| angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
| kernel->angle = fmod(kernel->angle+90.0, 360.0); |
| } else { |
| angle = fmod(angle+90.0, 360.0); /* angle increased 90 degrees */ |
| kernel->angle = fmod(kernel->angle+270.0, 360.0); |
| } |
| } |
| else if ( kernel->width == kernel->height ) |
| { /* Rotate a square array of values by 90 degrees */ |
| { ssize_t |
| i,j,x,y; |
| |
| MagickRealType |
| *k,t; |
| |
| k=kernel->values; |
| for( i=0, x=(ssize_t) kernel->width-1; i<=x; i++, x--) |
| for( j=0, y=(ssize_t) kernel->height-1; j<y; j++, y--) |
| { t = k[i+j*kernel->width]; |
| k[i+j*kernel->width] = k[j+x*kernel->width]; |
| k[j+x*kernel->width] = k[x+y*kernel->width]; |
| k[x+y*kernel->width] = k[y+i*kernel->width]; |
| k[y+i*kernel->width] = t; |
| } |
| } |
| /* rotate the origin - relative to center of array */ |
| { ssize_t x,y; |
| x = (ssize_t) (kernel->x*2-kernel->width+1); |
| y = (ssize_t) (kernel->y*2-kernel->height+1); |
| kernel->x = (ssize_t) ( -y +(ssize_t) kernel->width-1)/2; |
| kernel->y = (ssize_t) ( +x +(ssize_t) kernel->height-1)/2; |
| } |
| angle = fmod(angle+270.0, 360.0); /* angle reduced 90 degrees */ |
| kernel->angle = fmod(kernel->angle+90.0, 360.0); |
| } |
| else |
| perror("Unable to rotate a non-square, non-linear kernel 90 degrees"); |
| } |
| if ( 135.0 < angle && angle <= 225.0 ) |
| { |
| /* For a 180 degree rotation - also know as a reflection |
| * This is actually a very very common operation! |
| * Basically all that is needed is a reversal of the kernel data! |
| * And a reflection of the origon |
| */ |
| MagickRealType |
| t; |
| |
| MagickRealType |
| *k; |
| |
| ssize_t |
| i, |
| j; |
| |
| k=kernel->values; |
| j=(ssize_t) (kernel->width*kernel->height-1); |
| for (i=0; i < j; i++, j--) |
| t=k[i], k[i]=k[j], k[j]=t; |
| |
| kernel->x = (ssize_t) kernel->width - kernel->x - 1; |
| kernel->y = (ssize_t) kernel->height - kernel->y - 1; |
| angle = fmod(angle-180.0, 360.0); /* angle+180 degrees */ |
| kernel->angle = fmod(kernel->angle+180.0, 360.0); |
| } |
| /* At this point angle should at least between -45 (315) and +45 degrees |
| * In the future some form of non-orthogonal angled rotates could be |
| * performed here, posibily with a linear kernel restriction. |
| */ |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e G e o m e t r y K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleGeometryKernelInfo() takes a geometry argument string, typically |
| % provided as a "-set option:convolve:scale {geometry}" user setting, |
| % and modifies the kernel according to the parsed arguments of that setting. |
| % |
| % The first argument (and any normalization flags) are passed to |
| % ScaleKernelInfo() to scale/normalize the kernel. The second argument |
| % is then passed to UnityAddKernelInfo() to add a scled unity kernel |
| % into the scaled/normalized kernel. |
| % |
| % The format of the ScaleGeometryKernelInfo method is: |
| % |
| % void ScaleGeometryKernelInfo(KernelInfo *kernel, |
| % const double scaling_factor,const MagickStatusType normalize_flags) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel to modify |
| % |
| % o geometry: |
| % The geometry string to parse, typically from the user provided |
| % "-set option:convolve:scale {geometry}" setting. |
| % |
| */ |
| MagickExport void ScaleGeometryKernelInfo (KernelInfo *kernel, |
| const char *geometry) |
| { |
| MagickStatusType |
| flags; |
| |
| GeometryInfo |
| args; |
| |
| SetGeometryInfo(&args); |
| flags = ParseGeometry(geometry, &args); |
| |
| #if 0 |
| /* For Debugging Geometry Input */ |
| (void) FormatLocaleFile(stderr, "Geometry = 0x%04X : %lg x %lg %+lg %+lg\n", |
| flags, args.rho, args.sigma, args.xi, args.psi ); |
| #endif |
| |
| if ( (flags & PercentValue) != 0 ) /* Handle Percentage flag*/ |
| args.rho *= 0.01, args.sigma *= 0.01; |
| |
| if ( (flags & RhoValue) == 0 ) /* Set Defaults for missing args */ |
| args.rho = 1.0; |
| if ( (flags & SigmaValue) == 0 ) |
| args.sigma = 0.0; |
| |
| /* Scale/Normalize the input kernel */ |
| ScaleKernelInfo(kernel, args.rho, (GeometryFlags) flags); |
| |
| /* Add Unity Kernel, for blending with original */ |
| if ( (flags & SigmaValue) != 0 ) |
| UnityAddKernelInfo(kernel, args.sigma); |
| |
| return; |
| } |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S c a l e K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ScaleKernelInfo() scales the given kernel list by the given amount, with or |
| % without normalization of the sum of the kernel values (as per given flags). |
| % |
| % By default (no flags given) the values within the kernel is scaled |
| % directly using given scaling factor without change. |
| % |
| % If either of the two 'normalize_flags' are given the kernel will first be |
| % normalized and then further scaled by the scaling factor value given. |
| % |
| % Kernel normalization ('normalize_flags' given) is designed to ensure that |
| % any use of the kernel scaling factor with 'Convolve' or 'Correlate' |
| % morphology methods will fall into -1.0 to +1.0 range. Note that for |
| % non-HDRI versions of IM this may cause images to have any negative results |
| % clipped, unless some 'bias' is used. |
| % |
| % More specifically. Kernels which only contain positive values (such as a |
| % 'Gaussian' kernel) will be scaled so that those values sum to +1.0, |
| % ensuring a 0.0 to +1.0 output range for non-HDRI images. |
| % |
| % For Kernels that contain some negative values, (such as 'Sharpen' kernels) |
| % the kernel will be scaled by the absolute of the sum of kernel values, so |
| % that it will generally fall within the +/- 1.0 range. |
| % |
| % For kernels whose values sum to zero, (such as 'Laplician' kernels) kernel |
| % will be scaled by just the sum of the postive values, so that its output |
| % range will again fall into the +/- 1.0 range. |
| % |
| % For special kernels designed for locating shapes using 'Correlate', (often |
| % only containing +1 and -1 values, representing foreground/brackground |
| % matching) a special normalization method is provided to scale the positive |
| % values separately to those of the negative values, so the kernel will be |
| % forced to become a zero-sum kernel better suited to such searches. |
| % |
| % WARNING: Correct normalization of the kernel assumes that the '*_range' |
| % attributes within the kernel structure have been correctly set during the |
| % kernels creation. |
| % |
| % NOTE: The values used for 'normalize_flags' have been selected specifically |
| % to match the use of geometry options, so that '!' means NormalizeValue, '^' |
| % means CorrelateNormalizeValue. All other GeometryFlags values are ignored. |
| % |
| % The format of the ScaleKernelInfo method is: |
| % |
| % void ScaleKernelInfo(KernelInfo *kernel, const double scaling_factor, |
| % const MagickStatusType normalize_flags ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o scaling_factor: |
| % multiply all values (after normalization) by this factor if not |
| % zero. If the kernel is normalized regardless of any flags. |
| % |
| % o normalize_flags: |
| % GeometryFlags defining normalization method to use. |
| % specifically: NormalizeValue, CorrelateNormalizeValue, |
| % and/or PercentValue |
| % |
| */ |
| MagickExport void ScaleKernelInfo(KernelInfo *kernel, |
| const double scaling_factor,const GeometryFlags normalize_flags) |
| { |
| double |
| pos_scale, |
| neg_scale; |
| |
| ssize_t |
| i; |
| |
| /* do the other kernels in a multi-kernel list first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| ScaleKernelInfo(kernel->next, scaling_factor, normalize_flags); |
| |
| /* Normalization of Kernel */ |
| pos_scale = 1.0; |
| if ( (normalize_flags&NormalizeValue) != 0 ) { |
| if ( fabs(kernel->positive_range + kernel->negative_range) >= MagickEpsilon ) |
| /* non-zero-summing kernel (generally positive) */ |
| pos_scale = fabs(kernel->positive_range + kernel->negative_range); |
| else |
| /* zero-summing kernel */ |
| pos_scale = kernel->positive_range; |
| } |
| /* Force kernel into a normalized zero-summing kernel */ |
| if ( (normalize_flags&CorrelateNormalizeValue) != 0 ) { |
| pos_scale = ( fabs(kernel->positive_range) >= MagickEpsilon ) |
| ? kernel->positive_range : 1.0; |
| neg_scale = ( fabs(kernel->negative_range) >= MagickEpsilon ) |
| ? -kernel->negative_range : 1.0; |
| } |
| else |
| neg_scale = pos_scale; |
| |
| /* finialize scaling_factor for positive and negative components */ |
| pos_scale = scaling_factor/pos_scale; |
| neg_scale = scaling_factor/neg_scale; |
| |
| for (i=0; i < (ssize_t) (kernel->width*kernel->height); i++) |
| if (!IsNaN(kernel->values[i])) |
| kernel->values[i] *= (kernel->values[i] >= 0) ? pos_scale : neg_scale; |
| |
| /* convolution output range */ |
| kernel->positive_range *= pos_scale; |
| kernel->negative_range *= neg_scale; |
| /* maximum and minimum values in kernel */ |
| kernel->maximum *= (kernel->maximum >= 0.0) ? pos_scale : neg_scale; |
| kernel->minimum *= (kernel->minimum >= 0.0) ? pos_scale : neg_scale; |
| |
| /* swap kernel settings if user's scaling factor is negative */ |
| if ( scaling_factor < MagickEpsilon ) { |
| double t; |
| t = kernel->positive_range; |
| kernel->positive_range = kernel->negative_range; |
| kernel->negative_range = t; |
| t = kernel->maximum; |
| kernel->maximum = kernel->minimum; |
| kernel->minimum = 1; |
| } |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % S h o w K e r n e l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ShowKernelInfo() outputs the details of the given kernel defination to |
| % standard error, generally due to a users 'morphology:showKernel' option |
| % request. |
| % |
| % The format of the ShowKernel method is: |
| % |
| % void ShowKernelInfo(const KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| */ |
| MagickPrivate void ShowKernelInfo(const KernelInfo *kernel) |
| { |
| const KernelInfo |
| *k; |
| |
| size_t |
| c, i, u, v; |
| |
| for (c=0, k=kernel; k != (KernelInfo *) NULL; c++, k=k->next ) { |
| |
| (void) FormatLocaleFile(stderr, "Kernel"); |
| if ( kernel->next != (KernelInfo *) NULL ) |
| (void) FormatLocaleFile(stderr, " #%lu", (unsigned long) c ); |
| (void) FormatLocaleFile(stderr, " \"%s", |
| CommandOptionToMnemonic(MagickKernelOptions, k->type) ); |
| if ( fabs(k->angle) >= MagickEpsilon ) |
| (void) FormatLocaleFile(stderr, "@%lg", k->angle); |
| (void) FormatLocaleFile(stderr, "\" of size %lux%lu%+ld%+ld",(unsigned long) |
| k->width,(unsigned long) k->height,(long) k->x,(long) k->y); |
| (void) FormatLocaleFile(stderr, |
| " with values from %.*lg to %.*lg\n", |
| GetMagickPrecision(), k->minimum, |
| GetMagickPrecision(), k->maximum); |
| (void) FormatLocaleFile(stderr, "Forming a output range from %.*lg to %.*lg", |
| GetMagickPrecision(), k->negative_range, |
| GetMagickPrecision(), k->positive_range); |
| if ( fabs(k->positive_range+k->negative_range) < MagickEpsilon ) |
| (void) FormatLocaleFile(stderr, " (Zero-Summing)\n"); |
| else if ( fabs(k->positive_range+k->negative_range-1.0) < MagickEpsilon ) |
| (void) FormatLocaleFile(stderr, " (Normalized)\n"); |
| else |
| (void) FormatLocaleFile(stderr, " (Sum %.*lg)\n", |
| GetMagickPrecision(), k->positive_range+k->negative_range); |
| for (i=v=0; v < k->height; v++) { |
| (void) FormatLocaleFile(stderr, "%2lu:", (unsigned long) v ); |
| for (u=0; u < k->width; u++, i++) |
| if (IsNaN(k->values[i])) |
| (void) FormatLocaleFile(stderr," %*s", GetMagickPrecision()+3, "nan"); |
| else |
| (void) FormatLocaleFile(stderr," %*.*lg", GetMagickPrecision()+3, |
| GetMagickPrecision(), (double) k->values[i]); |
| (void) FormatLocaleFile(stderr,"\n"); |
| } |
| } |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % U n i t y A d d K e r n a l I n f o % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % UnityAddKernelInfo() Adds a given amount of the 'Unity' Convolution Kernel |
| % to the given pre-scaled and normalized Kernel. This in effect adds that |
| % amount of the original image into the resulting convolution kernel. This |
| % value is usually provided by the user as a percentage value in the |
| % 'convolve:scale' setting. |
| % |
| % The resulting effect is to convert the defined kernels into blended |
| % soft-blurs, unsharp kernels or into sharpening kernels. |
| % |
| % The format of the UnityAdditionKernelInfo method is: |
| % |
| % void UnityAdditionKernelInfo(KernelInfo *kernel, const double scale ) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| % o scale: |
| % scaling factor for the unity kernel to be added to |
| % the given kernel. |
| % |
| */ |
| MagickExport void UnityAddKernelInfo(KernelInfo *kernel, |
| const double scale) |
| { |
| /* do the other kernels in a multi-kernel list first */ |
| if ( kernel->next != (KernelInfo *) NULL) |
| UnityAddKernelInfo(kernel->next, scale); |
| |
| /* Add the scaled unity kernel to the existing kernel */ |
| kernel->values[kernel->x+kernel->y*kernel->width] += scale; |
| CalcKernelMetaData(kernel); /* recalculate the meta-data */ |
| |
| return; |
| } |
| |
| /* |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % % |
| % % |
| % % |
| % Z e r o K e r n e l N a n s % |
| % % |
| % % |
| % % |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| % |
| % ZeroKernelNans() replaces any special 'nan' value that may be present in |
| % the kernel with a zero value. This is typically done when the kernel will |
| % be used in special hardware (GPU) convolution processors, to simply |
| % matters. |
| % |
| % The format of the ZeroKernelNans method is: |
| % |
| % void ZeroKernelNans (KernelInfo *kernel) |
| % |
| % A description of each parameter follows: |
| % |
| % o kernel: the Morphology/Convolution kernel |
| % |
| */ |
| MagickPrivate void ZeroKernelNans(KernelInfo *kernel) |
| { |
| size_t |
| i; |
| |
| /* do the other kernels in a multi-kernel list first */ |
| if (kernel->next != (KernelInfo *) NULL) |
| ZeroKernelNans(kernel->next); |
| |
| for (i=0; i < (kernel->width*kernel->height); i++) |
| if (IsNaN(kernel->values[i])) |
| kernel->values[i]=0.0; |
| |
| return; |
| } |