| /////////////////////////////////////////////////////////////////////////////// |
| // |
| // Copyright (c) 2015 Microsoft Corporation. All rights reserved. |
| // |
| // This code is licensed under the MIT License (MIT). |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #include <UnitTest++/UnitTest++.h> |
| #include <gsl/multi_span> |
| |
| #include <string> |
| #include <vector> |
| #include <list> |
| #include <iostream> |
| #include <memory> |
| #include <map> |
| |
| using namespace std; |
| using namespace gsl; |
| |
| namespace |
| { |
| struct BaseClass {}; |
| struct DerivedClass : BaseClass {}; |
| } |
| |
| SUITE(strided_span_tests) |
| { |
| TEST (span_section_test) |
| { |
| int a[30][4][5]; |
| |
| auto av = as_multi_span(a); |
| auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2}); |
| auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1}); |
| (void)subsub; |
| } |
| |
| TEST(span_section) |
| { |
| std::vector<int> data(5 * 10); |
| std::iota(begin(data), end(data), 0); |
| const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>()); |
| |
| strided_span<int, 2> av_section_1 = av.section({ 1, 2 }, { 3, 4 }); |
| CHECK((av_section_1[{0, 0}] == 12)); |
| CHECK((av_section_1[{0, 1}] == 13)); |
| CHECK((av_section_1[{1, 0}] == 22)); |
| CHECK((av_section_1[{2, 3}] == 35)); |
| |
| strided_span<int, 2> av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 }); |
| CHECK((av_section_2[{0, 0}] == 24)); |
| CHECK((av_section_2[{0, 1}] == 25)); |
| CHECK((av_section_2[{1, 0}] == 34)); |
| } |
| |
| TEST(strided_span_constructors) |
| { |
| // Check stride constructor |
| { |
| int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; |
| |
| strided_span<int, 1> sav1{ arr, {{9}, {1}} }; // T -> T |
| CHECK(sav1.bounds().index_bounds() == index<1>{ 9 }); |
| CHECK(sav1.bounds().stride() == 1); |
| CHECK(sav1[0] == 1 && sav1[8] == 9); |
| |
| |
| strided_span<const int, 1> sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T |
| CHECK(sav2.bounds().index_bounds() == index<1>{ 4 }); |
| CHECK(sav2.bounds().strides() == index<1>{2}); |
| CHECK(sav2[0] == 1 && sav2[3] == 7); |
| |
| strided_span<int, 2> sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T |
| CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 })); |
| CHECK((sav3.bounds().strides() == index<2>{ 6, 2 })); |
| CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7)); |
| } |
| |
| // Check multi_span constructor |
| { |
| int arr[] = { 1, 2 }; |
| |
| // From non-cv-qualified source |
| { |
| const multi_span<int> src = arr; |
| |
| strided_span<int, 1> sav{ src, {2, 1} }; |
| CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav[1] == 2); |
| |
| #if _MSC_VER > 1800 |
| //strided_span<const int, 1> sav_c{ {src}, {2, 1} }; |
| strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} }; |
| #else |
| strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} }; |
| #endif |
| CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_c.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_c[1] == 2); |
| |
| #if _MSC_VER > 1800 |
| strided_span<volatile int, 1> sav_v{ src, {2, 1} }; |
| #else |
| strided_span<volatile int, 1> sav_v{ multi_span<volatile int>{src}, strided_bounds<1>{2, 1} }; |
| #endif |
| CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_v.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_v[1] == 2); |
| |
| #if _MSC_VER > 1800 |
| strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; |
| #else |
| strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; |
| #endif |
| CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_cv[1] == 2); |
| } |
| |
| // From const-qualified source |
| { |
| const multi_span<const int> src{ arr }; |
| |
| strided_span<const int, 1> sav_c{ src, {2, 1} }; |
| CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_c.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_c[1] == 2); |
| |
| #if _MSC_VER > 1800 |
| strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; |
| #else |
| strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; |
| #endif |
| |
| CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_cv[1] == 2); |
| } |
| |
| // From volatile-qualified source |
| { |
| const multi_span<volatile int> src{ arr }; |
| |
| strided_span<volatile int, 1> sav_v{ src, {2, 1} }; |
| CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_v.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_v[1] == 2); |
| |
| #if _MSC_VER > 1800 |
| strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; |
| #else |
| strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; |
| #endif |
| CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_cv[1] == 2); |
| } |
| |
| // From cv-qualified source |
| { |
| const multi_span<const volatile int> src{ arr }; |
| |
| strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; |
| CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav_cv[1] == 2); |
| } |
| } |
| |
| // Check const-casting constructor |
| { |
| int arr[2] = { 4, 5 }; |
| |
| const multi_span<int, 2> av(arr, 2); |
| multi_span<const int, 2> av2{ av }; |
| CHECK(av2[1] == 5); |
| |
| static_assert(std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value, "ctor is not implicit!"); |
| |
| const strided_span<int, 1> src{ arr, {2, 1} }; |
| strided_span<const int, 1> sav{ src }; |
| CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav.bounds().stride() == 1); |
| CHECK(sav[1] == 5); |
| |
| static_assert(std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value, "ctor is not implicit!"); |
| } |
| |
| // Check copy constructor |
| { |
| int arr1[2] = { 3, 4 }; |
| const strided_span<int, 1> src1{ arr1, {2, 1} }; |
| strided_span<int, 1> sav1{ src1 }; |
| |
| CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav1.bounds().stride() == 1); |
| CHECK(sav1[0] == 3); |
| |
| int arr2[6] = { 1, 2, 3, 4, 5, 6 }; |
| const strided_span<const int, 2> src2{ arr2, {{ 3, 2 }, { 2, 1 }} }; |
| strided_span<const int, 2> sav2{ src2 }; |
| CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); |
| CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); |
| CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); |
| } |
| |
| // Check const-casting assignment operator |
| { |
| int arr1[2] = { 1, 2 }; |
| int arr2[6] = { 3, 4, 5, 6, 7, 8 }; |
| |
| const strided_span<int, 1> src{ arr1, {{2}, {1}} }; |
| strided_span<const int, 1> sav{ arr2, {{3}, {2}} }; |
| strided_span<const int, 1>& sav_ref = (sav = src); |
| CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav[0] == 1); |
| CHECK(&sav_ref == &sav); |
| } |
| |
| // Check copy assignment operator |
| { |
| int arr1[2] = { 3, 4 }; |
| int arr1b[1] = { 0 }; |
| const strided_span<int, 1> src1{ arr1, {2, 1} }; |
| strided_span<int, 1> sav1{ arr1b, {1, 1} }; |
| strided_span<int, 1>& sav1_ref = (sav1 = src1); |
| CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav1.bounds().strides() == index<1>{ 1 }); |
| CHECK(sav1[0] == 3); |
| CHECK(&sav1_ref == &sav1); |
| |
| const int arr2[6] = { 1, 2, 3, 4, 5, 6 }; |
| const int arr2b[1] = { 0 }; |
| const strided_span<const int, 2> src2{ arr2, {{ 3, 2 },{ 2, 1 }} }; |
| strided_span<const int, 2> sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} }; |
| strided_span<const int, 2>& sav2_ref = (sav2 = src2); |
| CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); |
| CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); |
| CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); |
| CHECK(&sav2_ref == &sav2); |
| } |
| } |
| |
| TEST(strided_span_slice) |
| { |
| std::vector<int> data(5 * 10); |
| std::iota(begin(data), end(data), 0); |
| const multi_span<int, 5, 10> src = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>()); |
| |
| const strided_span<int, 2> sav{ src, {{5, 10}, {10, 1}} }; |
| #ifdef CONFIRM_COMPILATION_ERRORS |
| const strided_span<const int, 2> csav{ {src},{ { 5, 10 },{ 10, 1 } } }; |
| #endif |
| const strided_span<const int, 2> csav{ multi_span<const int, 5, 10>{ src }, { { 5, 10 },{ 10, 1 } } }; |
| |
| strided_span<int, 1> sav_sl = sav[2]; |
| CHECK(sav_sl[0] == 20); |
| CHECK(sav_sl[9] == 29); |
| |
| strided_span<const int, 1> csav_sl = sav[3]; |
| CHECK(csav_sl[0] == 30); |
| CHECK(csav_sl[9] == 39); |
| |
| CHECK(sav[4][0] == 40); |
| CHECK(sav[4][9] == 49); |
| } |
| |
| TEST(strided_span_column_major) |
| { |
| // strided_span may be used to accomodate more peculiar |
| // use cases, such as column-major multidimensional array |
| // (aka. "FORTRAN" layout). |
| |
| int cm_array[3 * 5] = { |
| 1, 4, 7, 10, 13, |
| 2, 5, 8, 11, 14, |
| 3, 6, 9, 12, 15 |
| }; |
| strided_span<int, 2> cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} }; |
| |
| // Accessing elements |
| CHECK((cm_sav[{0, 0}] == 1)); |
| CHECK((cm_sav[{0, 1}] == 2)); |
| CHECK((cm_sav[{1, 0}] == 4)); |
| CHECK((cm_sav[{4, 2}] == 15)); |
| |
| // Slice |
| strided_span<int, 1> cm_sl = cm_sav[3]; |
| |
| CHECK(cm_sl[0] == 10); |
| CHECK(cm_sl[1] == 11); |
| CHECK(cm_sl[2] == 12); |
| |
| // Section |
| strided_span<int, 2> cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 }); |
| |
| CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2})); |
| CHECK((cm_sec[{0, 0}] == 8)); |
| CHECK((cm_sec[{0, 1}] == 9)); |
| CHECK((cm_sec[{1, 0}] == 11)); |
| CHECK((cm_sec[{2, 1}] == 15)); |
| } |
| |
| TEST(strided_span_bounds) |
| { |
| int arr[] = { 0, 1, 2, 3 }; |
| multi_span<int> av(arr); |
| |
| { |
| // incorrect sections |
| |
| CHECK_THROW(av.section(0, 0)[0], fail_fast); |
| CHECK_THROW(av.section(1, 0)[0], fail_fast); |
| CHECK_THROW(av.section(1, 1)[1], fail_fast); |
| |
| CHECK_THROW(av.section(2, 5), fail_fast); |
| CHECK_THROW(av.section(5, 2), fail_fast); |
| CHECK_THROW(av.section(5, 0), fail_fast); |
| CHECK_THROW(av.section(0, 5), fail_fast); |
| CHECK_THROW(av.section(5, 5), fail_fast); |
| } |
| |
| { |
| // zero stride |
| strided_span<int, 1> sav{ av,{ { 4 },{} } }; |
| CHECK(sav[0] == 0); |
| CHECK(sav[3] == 0); |
| CHECK_THROW(sav[4], fail_fast); |
| } |
| |
| { |
| // zero extent |
| strided_span<int, 1> sav{ av,{ {},{ 1 } } }; |
| CHECK_THROW(sav[0], fail_fast); |
| } |
| |
| { |
| // zero extent and stride |
| strided_span<int, 1> sav{ av,{ {},{} } }; |
| CHECK_THROW(sav[0], fail_fast); |
| } |
| |
| { |
| // strided array ctor with matching strided bounds |
| strided_span<int, 1> sav{ arr,{ 4, 1 } }; |
| CHECK(sav.bounds().index_bounds() == index<1>{ 4 }); |
| CHECK(sav[3] == 3); |
| CHECK_THROW(sav[4], fail_fast); |
| } |
| |
| { |
| // strided array ctor with smaller strided bounds |
| strided_span<int, 1> sav{ arr,{ 2, 1 } }; |
| CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav[1] == 1); |
| CHECK_THROW(sav[2], fail_fast); |
| } |
| |
| { |
| // strided array ctor with fitting irregular bounds |
| strided_span<int, 1> sav{ arr,{ 2, 3 } }; |
| CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); |
| CHECK(sav[0] == 0); |
| CHECK(sav[1] == 3); |
| CHECK_THROW(sav[2], fail_fast); |
| } |
| |
| { |
| // bounds cross data boundaries - from static arrays |
| CHECK_THROW((strided_span<int, 1> { arr, { 3, 2 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { arr, { 3, 3 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { arr, { 4, 5 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { arr, { 5, 1 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { arr, { 5, 5 } }), fail_fast); |
| } |
| |
| { |
| // bounds cross data boundaries - from array view |
| CHECK_THROW((strided_span<int, 1> { av, { 3, 2 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av, { 3, 3 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av, { 4, 5 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av, { 5, 1 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av, { 5, 5 } }), fail_fast); |
| } |
| |
| { |
| // bounds cross data boundaries - from dynamic arrays |
| CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 2 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 3 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 4, 5 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 1 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 5 } }), fail_fast); |
| CHECK_THROW((strided_span<int, 1> { av.data(), 2, { 2, 2 } }), fail_fast); |
| } |
| |
| #ifdef CONFIRM_COMPILATION_ERRORS |
| { |
| strided_span<int, 1> sav0{ av.data(), { 3, 2 } }; |
| strided_span<int, 1> sav1{ arr, { 1 } }; |
| strided_span<int, 1> sav2{ arr, { 1,1,1 } }; |
| strided_span<int, 1> sav3{ av, { 1 } }; |
| strided_span<int, 1> sav4{ av, { 1,1,1 } }; |
| strided_span<int, 2> sav5{ av.as_multi_span(dim<2>(), dim<2>()), { 1 } }; |
| strided_span<int, 2> sav6{ av.as_multi_span(dim<2>(), dim<2>()), { 1,1,1 } }; |
| strided_span<int, 2> sav7{ av.as_multi_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } }; |
| |
| index<1> index{ 0, 1 }; |
| strided_span<int, 1> sav8{ arr,{ 1,{ 1,1 } } }; |
| strided_span<int, 1> sav9{ arr,{ { 1,1 },{ 1,1 } } }; |
| strided_span<int, 1> sav10{ av,{ 1,{ 1,1 } } }; |
| strided_span<int, 1> sav11{ av,{ { 1,1 },{ 1,1 } } }; |
| strided_span<int, 2> sav12{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } }; |
| strided_span<int, 2> sav13{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } }; |
| strided_span<int, 2> sav14{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } }; |
| } |
| #endif |
| } |
| |
| TEST(strided_span_type_conversion) |
| { |
| int arr[] = { 0, 1, 2, 3 }; |
| multi_span<int> av(arr); |
| |
| { |
| strided_span<int, 1> sav{ av.data(), av.size(), { av.size() / 2, 2 } }; |
| #ifdef CONFIRM_COMPILATION_ERRORS |
| strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>(); |
| #endif |
| } |
| { |
| strided_span<int, 1> sav{ av, { av.size() / 2, 2 } }; |
| #ifdef CONFIRM_COMPILATION_ERRORS |
| strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>(); |
| #endif |
| } |
| |
| multi_span<const byte, dynamic_range> bytes = as_bytes(av); |
| |
| // retype strided array with regular strides - from raw data |
| { |
| strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; |
| strided_span<const byte, 2> sav2{ bytes.data(), bytes.size(), bounds }; |
| strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>(); |
| CHECK(sav3[0][0] == 0); |
| CHECK(sav3[1][0] == 2); |
| CHECK_THROW(sav3[1][1], fail_fast); |
| CHECK_THROW(sav3[0][1], fail_fast); |
| } |
| |
| // retype strided array with regular strides - from multi_span |
| { |
| strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; |
| multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); |
| strided_span<const byte, 2> sav2{ bytes2, bounds }; |
| strided_span<int, 2> sav3 = sav2.as_strided_span<int>(); |
| CHECK(sav3[0][0] == 0); |
| CHECK(sav3[1][0] == 2); |
| CHECK_THROW(sav3[1][1], fail_fast); |
| CHECK_THROW(sav3[0][1], fail_fast); |
| } |
| |
| // retype strided array with not enough elements - last dimension of the array is too small |
| { |
| strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } }; |
| multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); |
| strided_span<const byte, 2> sav2{ bytes2, bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| |
| // retype strided array with not enough elements - strides are too small |
| { |
| strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } }; |
| multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); |
| strided_span<const byte, 2> sav2{ bytes2, bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| |
| // retype strided array with not enough elements - last dimension does not divide by the new typesize |
| { |
| strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } }; |
| multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); |
| strided_span<const byte, 2> sav2{ bytes2, bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| |
| // retype strided array with not enough elements - strides does not divide by the new typesize |
| { |
| strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } }; |
| multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); |
| strided_span<const byte, 2> sav2{ bytes2, bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| |
| // retype strided array with irregular strides - from raw data |
| { |
| strided_bounds<1> bounds{ bytes.size() / 2, 2 }; |
| strided_span<const byte, 1> sav2{ bytes.data(), bytes.size(), bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| |
| // retype strided array with irregular strides - from multi_span |
| { |
| strided_bounds<1> bounds{ bytes.size() / 2, 2 }; |
| strided_span<const byte, 1> sav2{ bytes, bounds }; |
| CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); |
| } |
| } |
| |
| TEST(empty_strided_spans) |
| { |
| { |
| multi_span<int, 0> empty_av(nullptr); |
| strided_span<int, 1> empty_sav{ empty_av, { 0, 1 } }; |
| |
| CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); |
| CHECK_THROW(empty_sav[0], fail_fast); |
| CHECK_THROW(empty_sav.begin()[0], fail_fast); |
| CHECK_THROW(empty_sav.cbegin()[0], fail_fast); |
| |
| for (auto& v : empty_sav) |
| { |
| (void)v; |
| CHECK(false); |
| } |
| } |
| |
| { |
| strided_span<int, 1> empty_sav{ nullptr, 0, { 0, 1 } }; |
| |
| CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); |
| CHECK_THROW(empty_sav[0], fail_fast); |
| CHECK_THROW(empty_sav.begin()[0], fail_fast); |
| CHECK_THROW(empty_sav.cbegin()[0], fail_fast); |
| |
| for (auto& v : empty_sav) |
| { |
| (void)v; |
| CHECK(false); |
| } |
| } |
| } |
| |
| void iterate_every_other_element(multi_span<int, dynamic_range> av) |
| { |
| // pick every other element |
| |
| auto length = av.size() / 2; |
| #if _MSC_VER > 1800 |
| auto bounds = strided_bounds<1>({length}, {2}); |
| #else |
| auto bounds = strided_bounds<1>(index<1>{ length }, index<1>{ 2 }); |
| #endif |
| strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds); |
| |
| CHECK(strided.size() == length); |
| CHECK(strided.bounds().index_bounds()[0] == length); |
| for (auto i = 0; i < strided.size(); ++i) |
| { |
| CHECK(strided[i] == av[2 * i + 1]); |
| } |
| |
| int idx = 0; |
| for (auto num : strided) |
| { |
| CHECK(num == av[2 * idx + 1]); |
| idx++; |
| } |
| } |
| |
| TEST(strided_span_section_iteration) |
| { |
| int arr[8] = {4,0,5,1,6,2,7,3}; |
| |
| // static bounds |
| { |
| multi_span<int, 8> av(arr, 8); |
| iterate_every_other_element(av); |
| } |
| |
| // dynamic bounds |
| { |
| multi_span<int, dynamic_range> av(arr, 8); |
| iterate_every_other_element(av); |
| } |
| } |
| |
| TEST(dynamic_strided_span_section_iteration) |
| { |
| auto arr = new int[8]; |
| for (int i = 0; i < 4; ++i) |
| { |
| arr[2 * i] = 4 + i; |
| arr[2 * i + 1] = i; |
| } |
| |
| auto av = as_multi_span(arr, 8); |
| iterate_every_other_element(av); |
| |
| delete[] arr; |
| } |
| |
| void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av) |
| { |
| int expected[6] = {2,3,10,11,18,19}; |
| auto section = av.section({0,1,0}, {3,1,2}); |
| |
| for (auto i = 0; i < section.extent<0>(); ++i) |
| { |
| for (auto j = 0; j < section.extent<1>(); ++j) |
| for (auto k = 0; k < section.extent<2>(); ++k) |
| { |
| auto idx = index<3>{i,j,k}; // avoid braces in the CHECK macro |
| CHECK(section[idx] == expected[2 * i + 2 * j + k]); |
| } |
| } |
| |
| for (auto i = 0; i < section.extent<0>(); ++i) |
| { |
| for (auto j = 0; j < section.extent<1>(); ++j) |
| for (auto k = 0; k < section.extent<2>(); ++k) |
| CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]); |
| } |
| |
| int i = 0; |
| for (auto num : section) |
| { |
| CHECK(num == expected[i]); |
| i++; |
| } |
| } |
| |
| TEST(strided_span_section_iteration_3d) |
| { |
| int arr[3][4][2]; |
| for (auto i = 0; i < 3; ++i) |
| { |
| for (auto j = 0; j < 4; ++j) |
| for (auto k = 0; k < 2; ++k) |
| arr[i][j][k] = 8 * i + 2 * j + k; |
| } |
| |
| { |
| multi_span<int, 3, 4, 2> av = arr; |
| iterate_second_slice(av); |
| } |
| } |
| |
| TEST(dynamic_strided_span_section_iteration_3d) |
| { |
| auto height = 12, width = 2; |
| auto size = height * width; |
| |
| auto arr = new int[size]; |
| for (auto i = 0; i < size; ++i) |
| { |
| arr[i] = i; |
| } |
| |
| { |
| auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>()); |
| iterate_second_slice(av); |
| } |
| |
| { |
| auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>()); |
| iterate_second_slice(av); |
| } |
| |
| { |
| auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>()); |
| iterate_second_slice(av); |
| } |
| |
| { |
| auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2)); |
| iterate_second_slice(av); |
| } |
| delete[] arr; |
| } |
| |
| TEST(strided_span_conversion) |
| { |
| // get an multi_span of 'c' values from the list of X's |
| |
| struct X { int a; int b; int c; }; |
| |
| X arr[4] = {{0,1,2},{3,4,5},{6,7,8},{9,10,11}}; |
| |
| int s = sizeof(int) / sizeof(byte); |
| auto d2 = 3 * s; |
| auto d1 = sizeof(int) * 12 / d2; |
| |
| // convert to 4x12 array of bytes |
| auto av = as_multi_span(as_bytes(as_multi_span(arr, 4)), dim(d1), dim(d2)); |
| |
| CHECK(av.bounds().index_bounds()[0] == 4); |
| CHECK(av.bounds().index_bounds()[1] == 12); |
| |
| // get the last 4 columns |
| auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], arr[0].c[3] } , { arr[1].c[0], ... } , ... } |
| |
| // convert to array 4x1 array of integers |
| auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... } |
| |
| CHECK(cs.bounds().index_bounds()[0] == 4); |
| CHECK(cs.bounds().index_bounds()[1] == 1); |
| |
| // transpose to 1x4 array |
| strided_bounds<2> reverse_bounds{ |
| {cs.bounds().index_bounds()[1] , cs.bounds().index_bounds()[0]}, |
| {cs.bounds().strides()[1], cs.bounds().strides()[0]} |
| }; |
| |
| strided_span<int, 2> transposed{cs.data(), cs.bounds().total_size(), reverse_bounds}; |
| |
| // slice to get a one-dimensional array of c's |
| strided_span<int, 1> result = transposed[0]; |
| |
| CHECK(result.bounds().index_bounds()[0] == 4); |
| CHECK_THROW(result.bounds().index_bounds()[1], fail_fast); |
| |
| int i = 0; |
| for (auto& num : result) |
| { |
| CHECK(num == arr[i].c); |
| i++; |
| } |
| |
| } |
| } |
| |
| int main(int, const char *[]) |
| { |
| return UnitTest::RunAllTests(); |
| } |