blob: c0240eadf7779e413db7af835f7573e9ea3264e2 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <UnitTest++/UnitTest++.h>
#include <gsl/multi_span>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <string>
#include <vector>
using namespace std;
using namespace gsl;
namespace
{
struct BaseClass
{
};
struct DerivedClass : BaseClass
{
};
}
SUITE(multi_span_tests)
{
TEST(default_constructor)
{
{
multi_span<int> s;
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int> cs;
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
multi_span<int, 0> s;
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int, 0> cs;
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 1> s;
CHECK(s.length() == 1 && s.data() == nullptr); // explains why it can't compile
#endif
}
{
multi_span<int> s{};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int> cs{};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
}
TEST(from_nullptr_constructor)
{
{
multi_span<int> s = nullptr;
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int> cs = nullptr;
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
multi_span<int, 0> s = nullptr;
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int, 0> cs = nullptr;
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 1> s = nullptr;
CHECK(s.length() == 1 && s.data() == nullptr); // explains why it can't compile
#endif
}
{
multi_span<int> s{nullptr};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int> cs{nullptr};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
multi_span<int*> s{nullptr};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int*> cs{nullptr};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
}
TEST(from_nullptr_length_constructor)
{
{
multi_span<int> s{nullptr, 0};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int> cs{nullptr, 0};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
multi_span<int, 0> s{nullptr, 0};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int, 0> cs{nullptr, 0};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 1> s{nullptr, 0};
CHECK(s.length() == 1 && s.data() == nullptr); // explains why it can't compile
#endif
}
{
auto workaround_macro = []() { multi_span<int> s{nullptr, 1}; };
CHECK_THROW(workaround_macro(), fail_fast);
auto const_workaround_macro = []() { multi_span<const int> cs{nullptr, 1}; };
CHECK_THROW(const_workaround_macro(), fail_fast);
}
{
auto workaround_macro = []() { multi_span<int, 0> s{nullptr, 1}; };
CHECK_THROW(workaround_macro(), fail_fast);
auto const_workaround_macro = []() { multi_span<const int, 0> s{nullptr, 1}; };
CHECK_THROW(const_workaround_macro(), fail_fast);
}
{
multi_span<int*> s{nullptr, 0};
CHECK(s.length() == 0 && s.data() == nullptr);
multi_span<const int*> cs{nullptr, 0};
CHECK(cs.length() == 0 && cs.data() == nullptr);
}
}
TEST(from_element_constructor)
{
int i = 5;
{
multi_span<int> s = i;
CHECK(s.length() == 1 && s.data() == &i);
CHECK(s[0] == 5);
multi_span<const int> cs = i;
CHECK(cs.length() == 1 && cs.data() == &i);
CHECK(cs[0] == 5);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
const j = 1;
multi_span<int, 0> s = j;
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 0> s = i;
CHECK(s.length() == 0 && s.data() == &i);
#endif
}
{
multi_span<int, 1> s = i;
CHECK(s.length() == 1 && s.data() == &i);
CHECK(s[0] == 5);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 2> s = i;
CHECK(s.length() == 2 && s.data() == &i);
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_a_temp = []() -> int { return 4; };
auto use_a_span = [](multi_span<int> s) { (void) s; };
use_a_span(get_a_temp());
#endif
}
}
TEST(from_pointer_length_constructor)
{
int arr[4] = {1, 2, 3, 4};
{
multi_span<int> s{&arr[0], 2};
CHECK(s.length() == 2 && s.data() == &arr[0]);
CHECK(s[0] == 1 && s[1] == 2);
}
{
multi_span<int, 2> s{&arr[0], 2};
CHECK(s.length() == 2 && s.data() == &arr[0]);
CHECK(s[0] == 1 && s[1] == 2);
}
{
int* p = nullptr;
multi_span<int> s{p, 0};
CHECK(s.length() == 0 && s.data() == nullptr);
}
{
int* p = nullptr;
auto workaround_macro = [=]() { multi_span<int> s{p, 2}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
}
TEST(from_pointer_pointer_constructor)
{
int arr[4] = {1, 2, 3, 4};
{
multi_span<int> s{&arr[0], &arr[2]};
CHECK(s.length() == 2 && s.data() == &arr[0]);
CHECK(s[0] == 1 && s[1] == 2);
}
{
multi_span<int, 2> s{&arr[0], &arr[2]};
CHECK(s.length() == 2 && s.data() == &arr[0]);
CHECK(s[0] == 1 && s[1] == 2);
}
{
multi_span<int> s{&arr[0], &arr[0]};
CHECK(s.length() == 0 && s.data() == &arr[0]);
}
{
multi_span<int, 0> s{&arr[0], &arr[0]};
CHECK(s.length() == 0 && s.data() == &arr[0]);
}
{
auto workaround_macro = [&]() { multi_span<int> s{&arr[1], &arr[0]}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
{
int* p = nullptr;
auto workaround_macro = [&]() { multi_span<int> s{&arr[0], p}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
{
int* p = nullptr;
auto workaround_macro = [&]() { multi_span<int> s{p, p}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
{
int* p = nullptr;
auto workaround_macro = [&]() { multi_span<int> s{&arr[0], p}; };
CHECK_THROW(workaround_macro(), fail_fast);
}
}
TEST(from_array_constructor)
{
int arr[5] = {1, 2, 3, 4, 5};
{
multi_span<int> s{arr};
CHECK(s.length() == 5 && s.data() == &arr[0]);
}
{
multi_span<int, 5> s{arr};
CHECK(s.length() == 5 && s.data() == &arr[0]);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 6> s{arr};
#endif
}
{
multi_span<int, 0> s{arr};
CHECK(s.length() == 0 && s.data() == &arr[0]);
}
int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
{
multi_span<int> s{arr2d};
CHECK(s.length() == 6 && s.data() == &arr2d[0][0]);
CHECK(s[0] == 1 && s[5] == 6);
}
{
multi_span<int, 0> s{arr2d};
CHECK(s.length() == 0 && s.data() == &arr2d[0][0]);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 5> s{arr2d};
#endif
}
{
multi_span<int, 6> s{arr2d};
CHECK(s.length() == 6 && s.data() == &arr2d[0][0]);
CHECK(s[0] == 1 && s[5] == 6);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 7> s{arr2d};
#endif
}
{
multi_span<int[3]> s{arr2d[0]};
CHECK(s.length() == 1 && s.data() == &arr2d[0]);
}
{
multi_span<int, 2, 3> s{arr2d};
CHECK(s.length() == 6 && s.data() == &arr2d[0][0]);
auto workaround_macro = [&]() { return s[{1, 2}] == 6; };
CHECK(workaround_macro());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 3, 3> s{arr2d};
#endif
}
int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
{
multi_span<int> s{arr3d};
CHECK(s.length() == 12 && s.data() == &arr3d[0][0][0]);
CHECK(s[0] == 1 && s[11] == 12);
}
{
multi_span<int, 0> s{arr3d};
CHECK(s.length() == 0 && s.data() == &arr3d[0][0][0]);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 11> s{arr3d};
#endif
}
{
multi_span<int, 12> s{arr3d};
CHECK(s.length() == 12 && s.data() == &arr3d[0][0][0]);
CHECK(s[0] == 1 && s[5] == 6);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 13> s{arr3d};
#endif
}
{
multi_span<int[3][2]> s{arr3d[0]};
CHECK(s.length() == 1 && s.data() == &arr3d[0]);
}
{
multi_span<int, 3, 2, 2> s{arr3d};
CHECK(s.length() == 12 && s.data() == &arr3d[0][0][0]);
auto workaround_macro = [&]() { return s[{2, 1, 0}] == 11; };
CHECK(workaround_macro());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 3, 3, 3> s{arr3d};
#endif
}
}
TEST(from_dynamic_array_constructor)
{
double(*arr)[3][4] = new double[100][3][4];
{
multi_span<double, dynamic_range, 3, 4> s(arr, 10);
CHECK(s.length() == 120 && s.data() == &arr[0][0][0]);
CHECK_THROW(s[10][3][4], fail_fast);
}
{
multi_span<double, dynamic_range, 4, 3> s(arr, 10);
CHECK(s.length() == 120 && s.data() == &arr[0][0][0]);
}
{
multi_span<double> s(arr, 10);
CHECK(s.length() == 120 && s.data() == &arr[0][0][0]);
}
{
multi_span<double, dynamic_range, 3, 4> s(arr, 0);
CHECK(s.length() == 0 && s.data() == &arr[0][0][0]);
}
delete[] arr;
}
TEST(from_std_array_constructor)
{
std::array<int, 4> arr = {1, 2, 3, 4};
{
multi_span<int> s{arr};
CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
multi_span<const int> cs{arr};
CHECK(cs.size() == narrow_cast<ptrdiff_t>(arr.size()) && cs.data() == arr.data());
}
{
multi_span<int, 4> s{arr};
CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
multi_span<const int, 4> cs{arr};
CHECK(cs.size() == narrow_cast<ptrdiff_t>(arr.size()) && cs.data() == arr.data());
}
{
multi_span<int, 2> s{arr};
CHECK(s.size() == 2 && s.data() == arr.data());
multi_span<const int, 2> cs{arr};
CHECK(cs.size() == 2 && cs.data() == arr.data());
}
{
multi_span<int, 0> s{arr};
CHECK(s.size() == 0 && s.data() == arr.data());
multi_span<const int, 0> cs{arr};
CHECK(cs.size() == 0 && cs.data() == arr.data());
}
// TODO This is currently an unsupported scenario. We will come back to it as we revise
// the multidimensional interface and what transformations between dimensionality look like
//{
// multi_span<int, 2, 2> s{arr};
// CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
//}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 5> s{arr};
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_an_array = []() { return std::array<int, 4>{1, 2, 3, 4}; };
auto take_a_span = [](multi_span<int> s) { (void) s; };
// try to take a temporary std::array
take_a_span(get_an_array());
#endif
}
}
TEST(from_const_std_array_constructor)
{
const std::array<int, 4> arr = {1, 2, 3, 4};
{
multi_span<const int> s{arr};
CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
}
{
multi_span<const int, 4> s{arr};
CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
}
{
multi_span<const int, 2> s{arr};
CHECK(s.size() == 2 && s.data() == arr.data());
}
{
multi_span<const int, 0> s{arr};
CHECK(s.size() == 0 && s.data() == arr.data());
}
// TODO This is currently an unsupported scenario. We will come back to it as we revise
// the multidimensional interface and what transformations between dimensionality look like
//{
// multi_span<int, 2, 2> s{arr};
// CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
//}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<const int, 5> s{arr};
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_an_array = []() -> const std::array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_span = [](multi_span<const int> s) { (void) s; };
// try to take a temporary std::array
take_a_span(get_an_array());
#endif
}
}
TEST(from_container_constructor)
{
std::vector<int> v = {1, 2, 3};
const std::vector<int> cv = v;
{
multi_span<int> s{v};
CHECK(s.size() == narrow_cast<std::ptrdiff_t>(v.size()) && s.data() == v.data());
multi_span<const int> cs{v};
CHECK(cs.size() == narrow_cast<std::ptrdiff_t>(v.size()) && cs.data() == v.data());
}
std::string str = "hello";
const std::string cstr = "hello";
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<char> s{str};
CHECK(s.size() == narrow_cast<std::ptrdiff_t>(str.size()) && s.data() == str.data());
#endif
multi_span<const char> cs{str};
CHECK(cs.size() == narrow_cast<std::ptrdiff_t>(str.size()) && cs.data() == str.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<char> s{cstr};
#endif
multi_span<const char> cs{cstr};
CHECK(cs.size() == narrow_cast<std::ptrdiff_t>(cstr.size()) &&
cs.data() == cstr.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> std::vector<int> { return {}; };
auto use_span = [](multi_span<int> s) { (void) s; };
use_span(get_temp_vector());
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_string = []() -> std::string { return {}; };
auto use_span = [](multi_span<char> s) { (void) s; };
use_span(get_temp_string());
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> const std::vector<int> { return {}; };
auto use_span = [](multi_span<const char> s) { (void) s; };
use_span(get_temp_vector());
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_string = []() -> const std::string { return {}; };
auto use_span = [](multi_span<const char> s) { (void) s; };
use_span(get_temp_string());
#endif
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
std::map<int, int> m;
multi_span<int> s{m};
#endif
}
}
TEST(from_convertible_span_constructor)
{
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 7, 4, 2> av1(nullptr, b1);
auto f = [&]() { multi_span<int, 7, 4, 2> av1(nullptr); };
CHECK_THROW(f(), fail_fast);
#endif
#ifdef CONFIRM_COMPILATION_ERRORS
static_bounds<size_t, 7, dynamic_range, 2> b12(b11);
b12 = b11;
b11 = b12;
multi_span<int, dynamic_range> av1 = nullptr;
multi_span<int, 7, dynamic_range, 2> av2(av1);
multi_span<int, 7, 4, 2> av2(av1);
#endif
multi_span<DerivedClass> avd;
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<BaseClass> avb = avd;
#endif
multi_span<const DerivedClass> avcd = avd;
(void) avcd;
}
TEST(copy_move_and_assignment)
{
multi_span<int> s1;
CHECK(s1.empty());
int arr[] = {3, 4, 5};
multi_span<const int> s2 = arr;
CHECK(s2.length() == 3 && s2.data() == &arr[0]);
s2 = s1;
CHECK(s2.empty());
auto get_temp_span = [&]() -> multi_span<int> { return {&arr[1], 2}; };
auto use_span = [&](multi_span<const int> s) { CHECK(s.length() == 2 && s.data() == &arr[1]); };
use_span(get_temp_span());
s1 = get_temp_span();
CHECK(s1.length() == 2 && s1.data() == &arr[1]);
}
template <class Bounds>
void fn(const Bounds&)
{
static_assert(Bounds::static_size == 60, "static bounds is wrong size");
}
TEST(as_multi_span_reshape)
{
int a[3][4][5];
auto av = as_multi_span(a);
fn(av.bounds());
auto av2 = as_multi_span(av, dim<60>());
auto av3 = as_multi_span(av2, dim<3>(), dim<4>(), dim<5>());
auto av4 = as_multi_span(av3, dim<4>(), dim(3), dim<5>());
auto av5 = as_multi_span(av4, dim<3>(), dim<4>(), dim<5>());
auto av6 = as_multi_span(av5, dim<12>(), dim(5));
fill(av6.begin(), av6.end(), 1);
auto av7 = as_bytes(av6);
auto av8 = as_multi_span<int>(av7);
CHECK(av8.size() == av6.size());
for (auto i = 0; i < av8.size(); i++) {
CHECK(av8[i] == 1);
}
}
TEST(first)
{
int arr[5] = {1, 2, 3, 4, 5};
{
multi_span<int, 5> av = arr;
CHECK((av.first<2>().bounds() == static_bounds<2>()));
CHECK(av.first<2>().length() == 2);
CHECK(av.first(2).length() == 2);
}
{
multi_span<int, 5> av = arr;
CHECK((av.first<0>().bounds() == static_bounds<0>()));
CHECK(av.first<0>().length() == 0);
CHECK(av.first(0).length() == 0);
}
{
multi_span<int, 5> av = arr;
CHECK((av.first<5>().bounds() == static_bounds<5>()));
CHECK(av.first<5>().length() == 5);
CHECK(av.first(5).length() == 5);
}
{
multi_span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
CHECK(av.first<6>().bounds() == static_bounds<6>());
CHECK(av.first<6>().length() == 6);
CHECK(av.first<-1>().length() == -1);
#endif
CHECK_THROW(av.first(6).length(), fail_fast);
}
{
multi_span<int, dynamic_range> av;
CHECK((av.first<0>().bounds() == static_bounds<0>()));
CHECK(av.first<0>().length() == 0);
CHECK(av.first(0).length() == 0);
}
}
TEST(last)
{
int arr[5] = {1, 2, 3, 4, 5};
{
multi_span<int, 5> av = arr;
CHECK((av.last<2>().bounds() == static_bounds<2>()));
CHECK(av.last<2>().length() == 2);
CHECK(av.last(2).length() == 2);
}
{
multi_span<int, 5> av = arr;
CHECK((av.last<0>().bounds() == static_bounds<0>()));
CHECK(av.last<0>().length() == 0);
CHECK(av.last(0).length() == 0);
}
{
multi_span<int, 5> av = arr;
CHECK((av.last<5>().bounds() == static_bounds<5>()));
CHECK(av.last<5>().length() == 5);
CHECK(av.last(5).length() == 5);
}
{
multi_span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
CHECK((av.last<6>().bounds() == static_bounds<6>()));
CHECK(av.last<6>().length() == 6);
#endif
CHECK_THROW(av.last(6).length(), fail_fast);
}
{
multi_span<int, dynamic_range> av;
CHECK((av.last<0>().bounds() == static_bounds<0>()));
CHECK(av.last<0>().length() == 0);
CHECK(av.last(0).length() == 0);
}
}
TEST(subspan)
{
int arr[5] = {1, 2, 3, 4, 5};
{
multi_span<int, 5> av = arr;
CHECK((av.subspan<2, 2>().bounds() == static_bounds<2>()));
CHECK((av.subspan<2, 2>().length() == 2));
CHECK(av.subspan(2, 2).length() == 2);
CHECK(av.subspan(2, 3).length() == 3);
}
{
multi_span<int, 5> av = arr;
CHECK((av.subspan<0, 0>().bounds() == static_bounds<0>()));
CHECK((av.subspan<0, 0>().length() == 0));
CHECK(av.subspan(0, 0).length() == 0);
}
{
multi_span<int, 5> av = arr;
CHECK((av.subspan<0, 5>().bounds() == static_bounds<5>()));
CHECK((av.subspan<0, 5>().length() == 5));
CHECK(av.subspan(0, 5).length() == 5);
CHECK_THROW(av.subspan(0, 6).length(), fail_fast);
CHECK_THROW(av.subspan(1, 5).length(), fail_fast);
}
{
multi_span<int, 5> av = arr;
CHECK((av.subspan<5, 0>().bounds() == static_bounds<0>()));
CHECK((av.subspan<5, 0>().length() == 0));
CHECK(av.subspan(5, 0).length() == 0);
CHECK_THROW(av.subspan(6, 0).length(), fail_fast);
}
{
multi_span<int, dynamic_range> av;
CHECK((av.subspan<0, 0>().bounds() == static_bounds<0>()));
CHECK((av.subspan<0, 0>().length() == 0));
CHECK(av.subspan(0, 0).length() == 0);
CHECK_THROW((av.subspan<1, 0>().length()), fail_fast);
}
{
multi_span<int> av;
CHECK(av.subspan(0).length() == 0);
CHECK_THROW(av.subspan(1).length(), fail_fast);
}
{
multi_span<int> av = arr;
CHECK(av.subspan(0).length() == 5);
CHECK(av.subspan(1).length() == 4);
CHECK(av.subspan(4).length() == 1);
CHECK(av.subspan(5).length() == 0);
CHECK_THROW(av.subspan(6).length(), fail_fast);
auto av2 = av.subspan(1);
for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
}
{
multi_span<int, 5> av = arr;
CHECK(av.subspan(0).length() == 5);
CHECK(av.subspan(1).length() == 4);
CHECK(av.subspan(4).length() == 1);
CHECK(av.subspan(5).length() == 0);
CHECK_THROW(av.subspan(6).length(), fail_fast);
auto av2 = av.subspan(1);
for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
}
}
TEST(rank)
{
int arr[2] = {1, 2};
{
multi_span<int> s;
CHECK(s.rank() == 1);
}
{
multi_span<int, 2> s = arr;
CHECK(s.rank() == 1);
}
int arr2d[1][1] = {};
{
multi_span<int, 1, 1> s = arr2d;
CHECK(s.rank() == 2);
}
}
TEST(extent)
{
{
multi_span<int> s;
CHECK(s.extent() == 0);
CHECK(s.extent(0) == 0);
CHECK_THROW(s.extent(1), fail_fast);
#ifdef CONFIRM_COMPILATION_ERRORS
CHECK(s.extent<1>() == 0);
#endif
}
{
multi_span<int, 0> s;
CHECK(s.extent() == 0);
CHECK(s.extent(0) == 0);
CHECK_THROW(s.extent(1), fail_fast);
}
{
int arr2d[1][2] = {};
multi_span<int, 1, 2> s = arr2d;
CHECK(s.extent() == 1);
CHECK(s.extent<0>() == 1);
CHECK(s.extent<1>() == 2);
CHECK(s.extent(0) == 1);
CHECK(s.extent(1) == 2);
CHECK_THROW(s.extent(3), fail_fast);
}
{
int arr2d[1][2] = {};
multi_span<int, 0, 2> s = arr2d;
CHECK(s.extent() == 0);
CHECK(s.extent<0>() == 0);
CHECK(s.extent<1>() == 2);
CHECK(s.extent(0) == 0);
CHECK(s.extent(1) == 2);
CHECK_THROW(s.extent(3), fail_fast);
}
}
TEST(operator_function_call)
{
int arr[4] = {1, 2, 3, 4};
{
multi_span<int> s = arr;
CHECK(s(0) == 1);
CHECK_THROW(s(5), fail_fast);
}
int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
{
multi_span<int, 2, 3> s = arr2d;
CHECK(s(0, 0) == 1);
CHECK(s(1, 2) == 6);
}
}
TEST(comparison_operators)
{
{
int arr[10][2];
auto s1 = as_multi_span(arr);
multi_span<const int, dynamic_range, 2> s2 = s1;
CHECK(s1 == s2);
multi_span<int, 20> s3 = as_multi_span(s1, dim(20));
CHECK(s3 == s2 && s3 == s1);
}
{
multi_span<int> s1 = nullptr;
multi_span<int> s2 = nullptr;
CHECK(s1 == s2);
CHECK(!(s1 != s2));
CHECK(!(s1 < s2));
CHECK(s1 <= s2);
CHECK(!(s1 > s2));
CHECK(s1 >= s2);
CHECK(s2 == s1);
CHECK(!(s2 != s1));
CHECK(!(s2 < s1));
CHECK(s2 <= s1);
CHECK(!(s2 > s1));
CHECK(s2 >= s1);
}
{
int arr[] = {2, 1}; // bigger
multi_span<int> s1 = nullptr;
multi_span<int> s2 = arr;
CHECK(s1 != s2);
CHECK(s2 != s1);
CHECK(!(s1 == s2));
CHECK(!(s2 == s1));
CHECK(s1 < s2);
CHECK(!(s2 < s1));
CHECK(s1 <= s2);
CHECK(!(s2 <= s1));
CHECK(s2 > s1);
CHECK(!(s1 > s2));
CHECK(s2 >= s1);
CHECK(!(s1 >= s2));
}
{
int arr1[] = {1, 2};
int arr2[] = {1, 2};
multi_span<int> s1 = arr1;
multi_span<int> s2 = arr2;
CHECK(s1 == s2);
CHECK(!(s1 != s2));
CHECK(!(s1 < s2));
CHECK(s1 <= s2);
CHECK(!(s1 > s2));
CHECK(s1 >= s2);
CHECK(s2 == s1);
CHECK(!(s2 != s1));
CHECK(!(s2 < s1));
CHECK(s2 <= s1);
CHECK(!(s2 > s1));
CHECK(s2 >= s1);
}
{
int arr[] = {1, 2, 3};
multi_span<int> s1 = {&arr[0], 2}; // shorter
multi_span<int> s2 = arr; // longer
CHECK(s1 != s2);
CHECK(s2 != s1);
CHECK(!(s1 == s2));
CHECK(!(s2 == s1));
CHECK(s1 < s2);
CHECK(!(s2 < s1));
CHECK(s1 <= s2);
CHECK(!(s2 <= s1));
CHECK(s2 > s1);
CHECK(!(s1 > s2));
CHECK(s2 >= s1);
CHECK(!(s1 >= s2));
}
{
int arr1[] = {1, 2}; // smaller
int arr2[] = {2, 1}; // bigger
multi_span<int> s1 = arr1;
multi_span<int> s2 = arr2;
CHECK(s1 != s2);
CHECK(s2 != s1);
CHECK(!(s1 == s2));
CHECK(!(s2 == s1));
CHECK(s1 < s2);
CHECK(!(s2 < s1));
CHECK(s1 <= s2);
CHECK(!(s2 <= s1));
CHECK(s2 > s1);
CHECK(!(s1 > s2));
CHECK(s2 >= s1);
CHECK(!(s1 >= s2));
}
}
TEST(basics)
{
auto ptr = as_multi_span(new int[10], 10);
fill(ptr.begin(), ptr.end(), 99);
for (int num : ptr) {
CHECK(num == 99);
}
delete[] ptr.data();
}
TEST(bounds_checks)
{
int arr[10][2];
auto av = as_multi_span(arr);
fill(begin(av), end(av), 0);
av[2][0] = 1;
av[1][1] = 3;
// out of bounds
CHECK_THROW(av[1][3] = 3, fail_fast);
CHECK_THROW((av[{1, 3}] = 3), fail_fast);
CHECK_THROW(av[10][2], fail_fast);
CHECK_THROW((av[{10, 2}]), fail_fast);
CHECK_THROW(av[-1][0], fail_fast);
CHECK_THROW((av[{-1, 0}]), fail_fast);
CHECK_THROW(av[0][-1], fail_fast);
CHECK_THROW((av[{0, -1}]), fail_fast);
}
void overloaded_func(multi_span<const int, dynamic_range, 3, 5> exp, int expected_value)
{
for (auto val : exp) {
CHECK(val == expected_value);
}
}
void overloaded_func(multi_span<const char, dynamic_range, 3, 5> exp, char expected_value)
{
for (auto val : exp) {
CHECK(val == expected_value);
}
}
void fixed_func(multi_span<int, 3, 3, 5> exp, int expected_value)
{
for (auto val : exp) {
CHECK(val == expected_value);
}
}
TEST(span_parameter_test)
{
auto data = new int[4][3][5];
auto av = as_multi_span(data, 4);
CHECK(av.size() == 60);
fill(av.begin(), av.end(), 34);
int count = 0;
for_each(av.rbegin(), av.rend(), [&](int val) { count += val; });
CHECK(count == 34 * 60);
overloaded_func(av, 34);
overloaded_func(as_multi_span(av, dim(4), dim(3), dim(5)), 34);
// fixed_func(av, 34);
delete[] data;
}
TEST(md_access)
{
auto width = 5, height = 20;
auto imgSize = width * height;
auto image_ptr = new int[imgSize][3];
// size check will be done
auto image_view =
as_multi_span(as_multi_span(image_ptr, imgSize), dim(height), dim(width), dim<3>());
iota(image_view.begin(), image_view.end(), 1);
int expected = 0;
for (auto i = 0; i < height; i++) {
for (auto j = 0; j < width; j++) {
CHECK(expected + 1 == image_view[i][j][0]);
CHECK(expected + 2 == image_view[i][j][1]);
CHECK(expected + 3 == image_view[i][j][2]);
auto val = image_view[{i, j, 0}];
CHECK(expected + 1 == val);
val = image_view[{i, j, 1}];
CHECK(expected + 2 == val);
val = image_view[{i, j, 2}];
CHECK(expected + 3 == val);
expected += 3;
}
}
}
TEST(as_multi_span)
{
{
int* arr = new int[150];
auto av = as_multi_span(arr, dim<10>(), dim(3), dim<5>());
fill(av.begin(), av.end(), 24);
overloaded_func(av, 24);
delete[] arr;
array<int, 15> stdarr{0};
auto av2 = as_multi_span(stdarr);
overloaded_func(as_multi_span(av2, dim(1), dim<3>(), dim<5>()), 0);
string str = "ttttttttttttttt"; // size = 15
auto t = str.data();
(void) t;
auto av3 = as_multi_span(str);
overloaded_func(as_multi_span(av3, dim(1), dim<3>(), dim<5>()), 't');
}
{
string str;
multi_span<char> strspan = as_multi_span(str);
(void) strspan;
const string cstr;
multi_span<const char> cstrspan = as_multi_span(cstr);
(void) cstrspan;
}
{
int a[3][4][5];
auto av = as_multi_span(a);
const int(*b)[4][5];
b = a;
auto bv = as_multi_span(b, 3);
CHECK(av == bv);
const std::array<double, 3> arr = {0.0, 0.0, 0.0};
auto cv = as_multi_span(arr);
(void) cv;
vector<float> vec(3);
auto dv = as_multi_span(vec);
(void) dv;
#ifdef CONFIRM_COMPILATION_ERRORS
auto dv2 = as_multi_span(std::move(vec));
#endif
}
}
TEST(empty_spans)
{
{
multi_span<int, 0> empty_av(nullptr);
CHECK(empty_av.bounds().index_bounds() == index<1>{0});
CHECK_THROW(empty_av[0], fail_fast);
CHECK_THROW(empty_av.begin()[0], fail_fast);
CHECK_THROW(empty_av.cbegin()[0], fail_fast);
for (auto& v : empty_av) {
(void) v;
CHECK(false);
}
}
{
multi_span<int> empty_av = {};
CHECK(empty_av.bounds().index_bounds() == index<1>{0});
CHECK_THROW(empty_av[0], fail_fast);
CHECK_THROW(empty_av.begin()[0], fail_fast);
CHECK_THROW(empty_av.cbegin()[0], fail_fast);
for (auto& v : empty_av) {
(void) v;
CHECK(false);
}
}
}
TEST(index_constructor)
{
auto arr = new int[8];
for (int i = 0; i < 4; ++i) {
arr[2 * i] = 4 + i;
arr[2 * i + 1] = i;
}
multi_span<int, dynamic_range> av(arr, 8);
ptrdiff_t a[1] = {0};
index<1> i = a;
CHECK(av[i] == 4);
auto av2 = as_multi_span(av, dim<4>(), dim(2));
ptrdiff_t a2[2] = {0, 1};
index<2> i2 = a2;
CHECK(av2[i2] == 0);
CHECK(av2[0][i] == 4);
delete[] arr;
}
TEST(index_constructors)
{
{
// components of the same type
index<3> i1(0, 1, 2);
CHECK(i1[0] == 0);
// components of different types
size_t c0 = 0;
size_t c1 = 1;
index<3> i2(c0, c1, 2);
CHECK(i2[0] == 0);
// from array
index<3> i3 = {0, 1, 2};
CHECK(i3[0] == 0);
// from other index of the same size type
index<3> i4 = i3;
CHECK(i4[0] == 0);
// default
index<3> i7;
CHECK(i7[0] == 0);
// default
index<3> i9 = {};
CHECK(i9[0] == 0);
}
{
// components of the same type
index<1> i1(0);
CHECK(i1[0] == 0);
// components of different types
size_t c0 = 0;
index<1> i2(c0);
CHECK(i2[0] == 0);
// from array
index<1> i3 = {0};
CHECK(i3[0] == 0);
// from int
index<1> i4 = 0;
CHECK(i4[0] == 0);
// from other index of the same size type
index<1> i5 = i3;
CHECK(i5[0] == 0);
// default
index<1> i8;
CHECK(i8[0] == 0);
// default
index<1> i9 = {};
CHECK(i9[0] == 0);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
index<3> i1(0, 1);
index<3> i2(0, 1, 2, 3);
index<3> i3 = {0};
index<3> i4 = {0, 1, 2, 3};
index<1> i5 = {0, 1};
}
#endif
}
TEST(index_operations)
{
ptrdiff_t a[3] = {0, 1, 2};
ptrdiff_t b[3] = {3, 4, 5};
index<3> i = a;
index<3> j = b;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
{
index<3> k = i + j;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 3);
CHECK(k[1] == 5);
CHECK(k[2] == 7);
}
{
index<3> k = i * 3;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 0);
CHECK(k[1] == 3);
CHECK(k[2] == 6);
}
{
index<3> k = 3 * i;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 0);
CHECK(k[1] == 3);
CHECK(k[2] == 6);
}
{
index<2> k = details::shift_left(i);
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 1);
CHECK(k[1] == 2);
}
}
void iterate_second_column(multi_span<int, dynamic_range, dynamic_range> av)
{
auto length = av.size() / 2;
// view to the second column
auto section = av.section({0, 1}, {length, 1});
CHECK(section.size() == length);
for (auto i = 0; i < section.size(); ++i) {
CHECK(section[i][0] == av[i][1]);
}
for (auto i = 0; i < section.size(); ++i) {
auto idx = index<2>{i, 0}; // avoid braces inside the CHECK macro
CHECK(section[idx] == av[i][1]);
}
CHECK(section.bounds().index_bounds()[0] == length);
CHECK(section.bounds().index_bounds()[1] == 1);
for (auto i = 0; i < section.bounds().index_bounds()[0]; ++i) {
for (auto j = 0; j < section.bounds().index_bounds()[1]; ++j) {
auto idx = index<2>{i, j}; // avoid braces inside the CHECK macro
CHECK(section[idx] == av[i][1]);
}
}
size_t check_sum = 0;
for (auto i = 0; i < length; ++i) {
check_sum += av[i][1];
}
{
auto idx = 0;
size_t sum = 0;
for (auto num : section) {
CHECK(num == av[idx][1]);
sum += num;
idx++;
}
CHECK(sum == check_sum);
}
{
size_t idx = length - 1;
size_t sum = 0;
for (auto iter = section.rbegin(); iter != section.rend(); ++iter) {
CHECK(*iter == av[idx][1]);
sum += *iter;
idx--;
}
CHECK(sum == check_sum);
}
}
TEST(span_section_iteration)
{
int arr[4][2] = {{4, 0}, {5, 1}, {6, 2}, {7, 3}};
// static bounds
{
multi_span<int, 4, 2> av = arr;
iterate_second_column(av);
}
// first bound is dynamic
{
multi_span<int, dynamic_range, 2> av = arr;
iterate_second_column(av);
}
// second bound is dynamic
{
multi_span<int, 4, dynamic_range> av = arr;
iterate_second_column(av);
}
// both bounds are dynamic
{
multi_span<int, dynamic_range, dynamic_range> av = arr;
iterate_second_column(av);
}
}
TEST(dynamic_span_section_iteration)
{
auto height = 4, width = 2;
auto size = height * width;
auto arr = new int[size];
for (auto i = 0; i < size; ++i) {
arr[i] = i;
}
auto av = as_multi_span(arr, size);
// first bound is dynamic
{
multi_span<int, dynamic_range, 2> av2 = as_multi_span(av, dim(height), dim(width));
iterate_second_column(av2);
}
// second bound is dynamic
{
multi_span<int, 4, dynamic_range> av2 = as_multi_span(av, dim(height), dim(width));
iterate_second_column(av2);
}
// both bounds are dynamic
{
multi_span<int, dynamic_range, dynamic_range> av2 = as_multi_span(av, dim(height), dim(width));
iterate_second_column(av2);
}
delete[] arr;
}
TEST(span_structure_size)
{
double(*arr)[3][4] = new double[100][3][4];
multi_span<double, dynamic_range, 3, 4> av1(arr, 10);
struct EffectiveStructure
{
double* v1;
ptrdiff_t v2;
};
CHECK(sizeof(av1) == sizeof(EffectiveStructure));
CHECK_THROW(av1[10][3][4], fail_fast);
multi_span<const double, dynamic_range, 6, 4> av2 = as_multi_span(av1, dim(5), dim<6>(), dim<4>());
(void) av2;
}
TEST(fixed_size_conversions)
{
int arr[] = {1, 2, 3, 4};
// converting to an multi_span from an equal size array is ok
multi_span<int, 4> av4 = arr;
CHECK(av4.length() == 4);
// converting to dynamic_range a_v is always ok
{
multi_span<int, dynamic_range> av = av4;
(void) av;
}
{
multi_span<int, dynamic_range> av = arr;
(void) av;
}
// initialization or assignment to static multi_span that REDUCES size is NOT ok
#ifdef CONFIRM_COMPILATION_ERRORS
{
multi_span<int, 2> av2 = arr;
}
{
multi_span<int, 2> av2 = av4;
}
#endif
{
multi_span<int, dynamic_range> av = arr;
multi_span<int, 2> av2 = av;
(void) av2;
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
multi_span<int, dynamic_range> av = arr;
multi_span<int, 2, 1> av2 = av.as_multi_span(dim<2>(), dim<2>());
}
#endif
{
multi_span<int, dynamic_range> av = arr;
multi_span<int, 2, 1> av2 = as_multi_span(av, dim(2), dim(2));
auto workaround_macro = [&]() { return av2[{1, 0}] == 2; };
CHECK(workaround_macro());
}
// but doing so explicitly is ok
// you can convert statically
{
multi_span<int, 2> av2 = {arr, 2};
(void) av2;
}
{
multi_span<int, 1> av2 = av4.first<1>();
(void) av2;
}
// ...or dynamically
{
// NB: implicit conversion to multi_span<int,2> from multi_span<int,dynamic_range>
multi_span<int, 1> av2 = av4.first(1);
(void) av2;
}
// initialization or assignment to static multi_span that requires size INCREASE is not ok.
int arr2[2] = {1, 2};
#ifdef CONFIRM_COMPILATION_ERRORS
{
multi_span<int, 4> av4 = arr2;
}
{
multi_span<int, 2> av2 = arr2;
multi_span<int, 4> av4 = av2;
}
#endif
{
auto f = [&]() {
multi_span<int, 4> av9 = {arr2, 2};
(void) av9;
};
CHECK_THROW(f(), fail_fast);
}
// this should fail - we are trying to assign a small dynamic a_v to a fixed_size larger one
multi_span<int, dynamic_range> av = arr2;
auto f = [&]() {
multi_span<int, 4> av2 = av;
(void) av2;
};
CHECK_THROW(f(), fail_fast);
}
TEST(as_writeable_bytes)
{
int a[] = {1, 2, 3, 4};
{
#ifdef CONFIRM_COMPILATION_ERRORS
// you should not be able to get writeable bytes for const objects
multi_span<const int, dynamic_range> av = a;
auto wav = av.as_writeable_bytes();
#endif
}
{
multi_span<int, dynamic_range> av;
auto wav = as_writeable_bytes(av);
CHECK(wav.length() == av.length());
CHECK(wav.length() == 0);
CHECK(wav.size_bytes() == 0);
}
{
multi_span<int, dynamic_range> av = a;
auto wav = as_writeable_bytes(av);
CHECK(wav.data() == (byte*) &a[0]);
CHECK(wav.length() == sizeof(a));
}
}
TEST(iterator)
{
int a[] = {1, 2, 3, 4};
{
multi_span<int, dynamic_range> av = a;
auto wav = as_writeable_bytes(av);
for (auto& b : wav) {
b = byte(0);
}
for (size_t i = 0; i < 4; ++i) {
CHECK(a[i] == 0);
}
}
{
multi_span<int, dynamic_range> av = a;
for (auto& n : av) {
n = 1;
}
for (size_t i = 0; i < 4; ++i) {
CHECK(a[i] == 1);
}
}
}
}
int main(int, const char* []) { return UnitTest::RunAllTests(); }