blob: 31948d3fe189f61bada551d325b05de1ff4fcab7 [file] [log] [blame]
//
// Copyright (c) 2023 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "procs.h"
#include "test_base.h"
const char *smoothstep_fn_code_pattern =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s%s *e0, __global %s%s *e1, __global %s%s "
"*x, __global %s%s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" dst[tid] = smoothstep(e0[tid], e1[tid], x[tid]);\n"
"}\n";
const char *smoothstep_fn_code_pattern_v3 =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *e0, __global %s *e1, __global %s *x, "
"__global %s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(smoothstep(vload3(tid,e0), vload3(tid,e1), vload3(tid,x)), "
"tid, dst);\n"
"}\n";
const char *smoothstep_fn_code_pattern_v3_scalar =
"%s\n" /* optional pragma */
"__kernel void test_fn(__global %s *e0, __global %s *e1, __global %s *x, "
"__global %s *dst)\n"
"{\n"
" int tid = get_global_id(0);\n"
"\n"
" vstore3(smoothstep(e0[tid], e1[tid], vload3(tid,x)), tid, dst);\n"
"}\n";
#define MAX_ERR (1e-5f)
namespace {
template <typename T>
int verify_smoothstep(const T *const edge0, const T *const edge1,
const T *const x, const T *const outptr, const int n,
const int veclen, const bool vecParam)
{
T r, t;
float delta = 0;
if (vecParam)
{
for (int i = 0; i < n * veclen; i++)
{
t = (x[i] - edge0[i]) / (edge1[i] - edge0[i]);
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
r = t * t * (3.0f - 2.0f * t);
delta = (float)fabs(r - outptr[i]);
if (delta > MAX_ERR)
{
log_error("%d) verification error: smoothstep(%a, %a, %a) = "
"*%a vs. %a\n",
i, x[i], edge0[i], edge1[i], r, outptr[i]);
return -1;
}
}
}
else
{
for (int i = 0; i < n; ++i)
{
int ii = i / veclen;
int vi = i * veclen;
for (int j = 0; j < veclen; ++j, ++vi)
{
t = (x[vi] - edge0[i]) / (edge1[i] - edge0[i]);
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
r = t * t * (3.0f - 2.0f * t);
delta = (float)fabs(r - outptr[vi]);
if (delta > MAX_ERR)
{
log_error("{%d, element %d}) verification error: "
"smoothstep(%a, %a, %a) = *%a vs. %a\n",
ii, j, x[vi], edge0[i], edge1[i], r, outptr[vi]);
return -1;
}
}
}
}
return 0;
}
}
template <typename T>
int test_smoothstep_fn(cl_device_id device, cl_context context,
cl_command_queue queue, int n_elems, bool vecParam)
{
clMemWrapper streams[4];
std::vector<T> input_ptr[3], output_ptr;
std::vector<clProgramWrapper> programs;
std::vector<clKernelWrapper> kernels;
int err, i;
MTdataHolder d = MTdataHolder(gRandomSeed);
assert(BaseFunctionTest::type2name.find(sizeof(T))
!= BaseFunctionTest::type2name.end());
auto tname = BaseFunctionTest::type2name[sizeof(T)];
programs.resize(kTotalVecCount);
kernels.resize(kTotalVecCount);
int num_elements = n_elems * (1 << (kTotalVecCount - 1));
for (i = 0; i < 3; i++) input_ptr[i].resize(num_elements);
output_ptr.resize(num_elements);
for (i = 0; i < 4; i++)
{
streams[i] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(T) * num_elements, NULL, &err);
test_error(err, "clCreateBuffer failed");
}
std::string pragma_str;
if (std::is_same<T, float>::value)
{
for (i = 0; i < num_elements; i++)
{
input_ptr[0][i] = get_random_float(-0x00200000, 0x00010000, d);
input_ptr[1][i] = get_random_float(input_ptr[0][i], 0x00200000, d);
input_ptr[2][i] = get_random_float(-0x20000000, 0x20000000, d);
}
}
else if (std::is_same<T, double>::value)
{
pragma_str = "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n";
for (i = 0; i < num_elements; i++)
{
input_ptr[0][i] = get_random_double(-0x00200000, 0x00010000, d);
input_ptr[1][i] = get_random_double(input_ptr[0][i], 0x00200000, d);
input_ptr[2][i] = get_random_double(-0x20000000, 0x20000000, d);
}
}
for (i = 0; i < 3; i++)
{
err = clEnqueueWriteBuffer(queue, streams[i], CL_TRUE, 0,
sizeof(T) * num_elements,
&input_ptr[i].front(), 0, NULL, NULL);
test_error(err, "Unable to write input buffer");
}
char vecSizeNames[][3] = { "", "2", "4", "8", "16", "3" };
for (i = 0; i < kTotalVecCount; i++)
{
std::string kernelSource;
if (i >= kVectorSizeCount)
{
if (vecParam)
{
std::string str = smoothstep_fn_code_pattern_v3;
kernelSource =
string_format(str, pragma_str.c_str(), tname.c_str(),
tname.c_str(), tname.c_str(), tname.c_str());
}
else
{
std::string str = smoothstep_fn_code_pattern_v3_scalar;
kernelSource =
string_format(str, pragma_str.c_str(), tname.c_str(),
tname.c_str(), tname.c_str(), tname.c_str());
}
}
else
{
// regular path
std::string str = smoothstep_fn_code_pattern;
kernelSource =
string_format(str, pragma_str.c_str(), tname.c_str(),
vecParam ? vecSizeNames[i] : "", tname.c_str(),
vecParam ? vecSizeNames[i] : "", tname.c_str(),
vecSizeNames[i], tname.c_str(), vecSizeNames[i]);
}
const char *programPtr = kernelSource.c_str();
err =
create_single_kernel_helper(context, &programs[i], &kernels[i], 1,
(const char **)&programPtr, "test_fn");
test_error(err, "Unable to create kernel");
for (int j = 0; j < 4; j++)
{
err =
clSetKernelArg(kernels[i], j, sizeof(streams[j]), &streams[j]);
test_error(err, "Unable to set kernel argument");
}
size_t threads = (size_t)n_elems;
err = clEnqueueNDRangeKernel(queue, kernels[i], 1, NULL, &threads, NULL,
0, NULL, NULL);
test_error(err, "Unable to execute kernel");
err = clEnqueueReadBuffer(queue, streams[3], true, 0,
sizeof(T) * num_elements, &output_ptr[0], 0,
NULL, NULL);
test_error(err, "Unable to read results");
if (verify_smoothstep((T *)&input_ptr[0].front(),
(T *)&input_ptr[1].front(),
(T *)&input_ptr[2].front(), &output_ptr[0],
n_elems, g_arrVecSizes[i], vecParam))
{
log_error("smoothstep %s%d%s test failed\n", tname.c_str(),
((g_arrVecSizes[i])),
vecParam ? "" : std::string(", " + tname).c_str());
err = -1;
}
else
{
log_info("smoothstep %s%d%s test passed\n", tname.c_str(),
((g_arrVecSizes[i])),
vecParam ? "" : std::string(", " + tname).c_str());
err = 0;
}
if (err) break;
}
return err;
}
cl_int SmoothstepTest::Run()
{
cl_int error = CL_SUCCESS;
error =
test_smoothstep_fn<float>(device, context, queue, num_elems, vecParam);
test_error(error, "SmoothstepTest::Run<float> failed");
if (is_extension_available(device, "cl_khr_fp64"))
{
error = test_smoothstep_fn<double>(device, context, queue, num_elems,
vecParam);
test_error(error, "SmoothstepTest::Run<double> failed");
}
return error;
}
int test_smoothstep(cl_device_id device, cl_context context,
cl_command_queue queue, int n_elems)
{
return MakeAndRunTest<SmoothstepTest>(device, context, queue, n_elems,
"smoothstep", true);
}
int test_smoothstepf(cl_device_id device, cl_context context,
cl_command_queue queue, int n_elems)
{
return MakeAndRunTest<SmoothstepTest>(device, context, queue, n_elems,
"smoothstep", false);
}