| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <gtest/gtest.h> |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| class HSwishMicrokernelTester { |
| public: |
| enum class Variant { |
| Native, |
| Scalar, |
| }; |
| |
| inline HSwishMicrokernelTester& batch_size(size_t batch_size) { |
| assert(batch_size != 0); |
| this->batch_size_ = batch_size; |
| return *this; |
| } |
| |
| inline size_t batch_size() const { |
| return this->batch_size_; |
| } |
| |
| inline HSwishMicrokernelTester& inplace(bool inplace) { |
| this->inplace_ = inplace; |
| return *this; |
| } |
| |
| inline bool inplace() const { |
| return this->inplace_; |
| } |
| |
| inline HSwishMicrokernelTester& iterations(size_t iterations) { |
| this->iterations_ = iterations; |
| return *this; |
| } |
| |
| inline size_t iterations() const { |
| return this->iterations_; |
| } |
| |
| void Test(xnn_f16_hswish_ukernel_function hswish) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), std::ref(f16rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f16rng)); |
| } else { |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| } |
| const uint16_t* x_data = inplace() ? y.data() : x.data(); |
| |
| // Prepare parameters. |
| struct xnn_f16_hswish_params params = xnn_init_f16_hswish_params(); |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = (fp16_ieee_to_fp32_value(x_data[i]) / 6.0f) * std::max(std::min(fp16_ieee_to_fp32_value(x_data[i]) + 3.0f, 6.0f), 0.0f); |
| } |
| |
| // Call optimized micro-kernel. |
| hswish(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y_ref[i], fp16_ieee_to_fp32_value(y[i]), std::max(1.0e-3f, std::abs(y_ref[i]) * 1.0e-2f)) |
| << "at position " << i << ", batch_size = " << batch_size(); |
| } |
| } |
| } |
| |
| void Test(xnn_f32_hswish_ukernel_function hswish, Variant variant = Variant::Native) const { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng); |
| |
| std::vector<float> x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); |
| std::vector<float> y_ref(batch_size()); |
| for (size_t iteration = 0; iteration < iterations(); iteration++) { |
| std::generate(x.begin(), x.end(), std::ref(f32rng)); |
| if (inplace()) { |
| std::generate(y.begin(), y.end(), std::ref(f32rng)); |
| } else { |
| std::fill(y.begin(), y.end(), std::nanf("")); |
| } |
| const float* x_data = inplace() ? y.data() : x.data(); |
| |
| // Prepare parameters. |
| union xnn_f32_hswish_params params = { }; |
| switch (variant) { |
| case Variant::Native: |
| params = xnn_init_f32_hswish_params(); |
| break; |
| case Variant::Scalar: |
| params = xnn_init_scalar_f32_hswish_params(); |
| break; |
| } |
| |
| // Compute reference results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| y_ref[i] = (x_data[i] / 6.0f) * std::max(std::min(x_data[i] + 3.0f, 6.0f), 0.0f); |
| } |
| |
| // Call optimized micro-kernel. |
| hswish(batch_size() * sizeof(float), x_data, y.data(), ¶ms); |
| |
| // Verify results. |
| for (size_t i = 0; i < batch_size(); i++) { |
| ASSERT_NEAR(y_ref[i], y[i], std::abs(y_ref[i]) * 1.0e-6f) |
| << "at position " << i << ", batch_size = " << batch_size(); |
| } |
| } |
| } |
| |
| private: |
| size_t batch_size_{1}; |
| bool inplace_{false}; |
| size_t iterations_{5}; |
| }; |