blob: 9f891fbe811f6aca62b12be78b155b3e321c7ba3 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h", 5: "ammintrin.h"}[SSE]
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert KERNEL_TILE >= 2
#include <assert.h>
$if SSE == 5:
#ifdef __GNUC__
#include <x86intrin.h>
#else
#include <immintrin.h>
#include <${SSE_HEADER}>
#endif
$else:
#include <${SSE_HEADER}>
#include <xnnpack/dwconv.h>
$ISA = {2: "sse2", 3: "ssse3", 4: "sse41", 5: "xop"}[SSE]
void xnn_qs8_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_mul16(
size_t channels,
size_t output_width,
const int8_t** input,
const void* weights,
int8_t* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const int8_t* zero,
const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
{
assert(channels != 0);
assert(output_width != 0);
do {
$for K in range(KERNEL_TILE):
const int8_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const int8_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const int8_t**) ((uintptr_t) input + input_stride);
size_t c = channels;
const int8_t* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w);
$for C in range(4, CHANNEL_TILE, 4):
__m128i vacc${ABC[C:C+4]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${C} * sizeof(int32_t)));
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K});
$else:
const __m128i vi${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${K} + ${C}));
$if SSE >= 4:
${"__m128i" if SSE == 5 else "const __m128i"} vxi${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[C:C+8]});
const __m128i vk${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(int8_t)));
$if SSE >= 4:
${"__m128i" if SSE == 5 else "const __m128i"} vxk${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[C:C+8]});
i${K} += ${CHANNEL_TILE};
$if SSE < 4:
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[C:C+8]}));
const __m128i vxk${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[C:C+8]}));
$if SSE == 5:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+4]} = _mm_maccd_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+4]});
vxi${K}x${ABC[C:C+8]} = _mm_unpackhi_epi64(vxi${K}x${ABC[C:C+8]}, vxi${K}x${ABC[C:C+8]});
vxk${K}x${ABC[C:C+8]} = _mm_unpackhi_epi64(vxk${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C+4:C+8]} = _mm_maccd_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vacc${ABC[C+4:C+8]});
$else:
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vp${K}x${ABC[C:C+8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
const __m128i vp${K}x${ABC[C:C+8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi));
vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(int8_t));
const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
$if SSE >= 4:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vacc${ABC[C+1:C+4:2]} = _mm_srli_epi64(vacc${ABC[C:C+4]}, 32);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vprod${ABC[C:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C:C+4]}, vmultiplier), vrounding);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vprod${ABC[C+1:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C+1:C+4:2]}, vmultiplier), vrounding);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(vprod${ABC[C:C+4:2]}, 31);
const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vprod${ABC[C+1:C+4:2]});
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vq31prod${ABC[C:C+4]} = _mm_blend_epi16(vq31prod${ABC[C:C+4:2]}, vq31prod${ABC[C+1:C+4:2]}, 0xCC);
$else:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vnmask${ABC[C:C+4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
$if SSE >= 3:
const __m128i vabsacc${ABC[C:C+4]} = _mm_abs_epi32(vacc${ABC[C:C+4]});
$else:
const __m128i vabsacc${ABC[C:C+4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[C:C+4]}, vnmask${ABC[C:C+4]}), vnmask${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsacc${ABC[C+1:C+4:2]} = _mm_srli_epi64(vabsacc${ABC[C:C+4]}, 32);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsprod${ABC[C:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C:C+4]}, vmultiplier);
const __m128i vabsprod${ABC[C+1:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C+1:C+4:2]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vnmask${ABC[C:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i vnmask${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1));
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vprod${ABC[C:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C:C+4:2]}, vnmask${ABC[C:C+4:2]}), vnmask${ABC[C:C+4:2]});
const __m128i vprod${ABC[C+1:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C+1:C+4:2]}, vnmask${ABC[C+1:C+4:2]}), vnmask${ABC[C+1:C+4:2]});
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C:C+4:2]}, vrounding), 31);
const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vrounding), 31);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]} = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(vq31prod${ABC[C:C+4:2]}), _mm_castsi128_ps(vq31prod${ABC[C+1:C+4:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vq31prod${ABC[C:C+4]} = _mm_shuffle_epi32(vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]}, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vrem${ABC[C:C+4]} =
_mm_add_epi32(_mm_and_si128(vq31prod${ABC[C:C+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[C:C+4]}));
const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold);
const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} =
_mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[C:C+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[C:C+4]}, vremainder_threshold));
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
$for C in range(0, CHANNEL_TILE, 8):
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
$for C in range(0, CHANNEL_TILE, 8):
vout${ABC[C:C+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[C:C+8]}, voutput_min), voutput_max);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]});
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
$if CHANNEL_TILE > 8:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 8:
const int8_t* k = (const int8_t*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t));
${"do " if CHANNEL_TILE > 8 else ""}{
__m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w);
__m128i vacc${ABC[4:8]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + 4 * sizeof(int32_t)));
$for K in range(KERNEL_TILE):
const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K});
$if SSE >= 4:
${"__m128i" if SSE == 5 else "const __m128i"} vxi${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[0:8]});
$if CHANNEL_TILE > 8:
$if K == 0:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) k);
$else:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}));
$else:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(int8_t)));
$if SSE >= 4:
${"__m128i" if SSE == 5 else "const __m128i"} vxk${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[0:8]});
i${K} += 8;
$if SSE < 4:
const __m128i vxi${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[0:8]}));
const __m128i vxk${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[0:8]}));
$if SSE == 5:
vacc${ABC[0:4]} = _mm_maccd_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vacc${ABC[0:4]});
vxi${K}x${ABC[0:8]} = _mm_unpackhi_epi64(vxi${K}x${ABC[0:8]}, vxi${K}x${ABC[0:8]});
vxk${K}x${ABC[0:8]} = _mm_unpackhi_epi64(vxk${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
vacc${ABC[4:8]} = _mm_maccd_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vacc${ABC[4:8]});
$else:
const __m128i vp${K}x${ABC[0:8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
const __m128i vp${K}x${ABC[0:8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi));
vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi));
w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t));
$if CHANNEL_TILE > 8:
k += 8;
const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
$if SSE >= 4:
const __m128i vacc${ABC[1:4:2]} = _mm_srli_epi64(vacc${ABC[0:4]}, 32);
const __m128i vacc${ABC[5:8:2]} = _mm_srli_epi64(vacc${ABC[4:8]}, 32);
const __m128i vprod${ABC[0:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[0:4]}, vmultiplier), vrounding);
const __m128i vprod${ABC[4:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[4:8]}, vmultiplier), vrounding);
const __m128i vprod${ABC[1:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[1:4:2]}, vmultiplier), vrounding);
const __m128i vprod${ABC[5:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[5:8:2]}, vmultiplier), vrounding);
const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(vprod${ABC[0:4:2]}, 31);
const __m128i vq31prod${ABC[1:4:2]} = _mm_add_epi64(vprod${ABC[1:4:2]}, vprod${ABC[1:4:2]});
const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(vprod${ABC[4:8:2]}, 31);
const __m128i vq31prod${ABC[5:8:2]} = _mm_add_epi64(vprod${ABC[5:8:2]}, vprod${ABC[5:8:2]});
const __m128i vq31prod${ABC[0:4]} = _mm_blend_epi16(vq31prod${ABC[0:4:2]}, vq31prod${ABC[1:4:2]}, 0xCC);
const __m128i vq31prod${ABC[4:8]} = _mm_blend_epi16(vq31prod${ABC[4:8:2]}, vq31prod${ABC[5:8:2]}, 0xCC);
$else:
const __m128i vnmask${ABC[0:4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]});
const __m128i vnmask${ABC[4:8]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]});
$if SSE >= 3:
const __m128i vabsacc${ABC[0:4]} = _mm_abs_epi32(vacc${ABC[0:4]});
const __m128i vabsacc${ABC[4:8]} = _mm_abs_epi32(vacc${ABC[4:8]});
$else:
const __m128i vabsacc${ABC[0:4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[0:4]}, vnmask${ABC[0:4]}), vnmask${ABC[0:4]});
const __m128i vabsacc${ABC[4:8]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[4:8]}, vnmask${ABC[4:8]}), vnmask${ABC[4:8]});
const __m128i vabsacc${ABC[1:4:2]} = _mm_srli_epi64(vabsacc${ABC[0:4]}, 32);
const __m128i vabsacc${ABC[5:8:2]} = _mm_srli_epi64(vabsacc${ABC[4:8]}, 32);
const __m128i vabsprod${ABC[0:4:2]} = _mm_mul_epu32(vabsacc${ABC[0:4]}, vmultiplier);
const __m128i vabsprod${ABC[1:4:2]} = _mm_mul_epu32(vabsacc${ABC[1:4:2]}, vmultiplier);
const __m128i vabsprod${ABC[4:8:2]} = _mm_mul_epu32(vabsacc${ABC[4:8]}, vmultiplier);
const __m128i vabsprod${ABC[5:8:2]} = _mm_mul_epu32(vabsacc${ABC[5:8:2]}, vmultiplier);
const __m128i vnmask${ABC[0:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i vnmask${ABC[1:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vnmask${ABC[4:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(2, 2, 0, 0));
const __m128i vnmask${ABC[5:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vprod${ABC[0:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[0:4:2]}, vnmask${ABC[0:4:2]}), vnmask${ABC[0:4:2]});
const __m128i vprod${ABC[1:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[1:4:2]}, vnmask${ABC[1:4:2]}), vnmask${ABC[1:4:2]});
const __m128i vprod${ABC[4:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[4:8:2]}, vnmask${ABC[4:8:2]}), vnmask${ABC[4:8:2]});
const __m128i vprod${ABC[5:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[5:8:2]}, vnmask${ABC[5:8:2]}), vnmask${ABC[5:8:2]});
const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[0:4:2]}, vrounding), 31);
const __m128i vq31prod${ABC[1:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[1:4:2]}, vrounding), 31);
const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[4:8:2]}, vrounding), 31);
const __m128i vq31prod${ABC[5:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[5:8:2]}, vrounding), 31);
const __m128i vq31prod${ABC[0:4:2]}${ABC[1:4:2]} = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(vq31prod${ABC[0:4:2]}), _mm_castsi128_ps(vq31prod${ABC[1:4:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vq31prod${ABC[4:8:2]}${ABC[5:8:2]} = _mm_castps_si128(_mm_shuffle_ps(
_mm_castsi128_ps(vq31prod${ABC[4:8:2]}), _mm_castsi128_ps(vq31prod${ABC[5:8:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vq31prod${ABC[0:4]} = _mm_shuffle_epi32(vq31prod${ABC[0:4:2]}${ABC[1:4:2]}, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vq31prod${ABC[4:8]} = _mm_shuffle_epi32(vq31prod${ABC[4:8:2]}${ABC[5:8:2]}, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask);
const __m128i vrem${ABC[0:4]} =
_mm_add_epi32(_mm_and_si128(vq31prod${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[0:4]}));
const __m128i vrem${ABC[4:8]} =
_mm_add_epi32(_mm_and_si128(vq31prod${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[4:8]}));
const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold);
const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
vacc${ABC[0:4]} =
_mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold));
vacc${ABC[4:8]} =
_mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold));
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, voutput_min), voutput_max);
__m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]});
$if CHANNEL_TILE > 8:
if XNN_LIKELY(c >= 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
c -= 8;
} else {
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
$if SSE >= 4:
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
output += 1;
}
c = 0;
}
$else:
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
$if SSE >= 4:
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 8 else ""}
}
output = (int8_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}