| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
| $SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h", 5: "ammintrin.h"}[SSE] |
| $assert CHANNEL_TILE % 8 == 0 |
| $assert CHANNEL_TILE >= 8 |
| $assert KERNEL_TILE >= 2 |
| #include <assert.h> |
| |
| $if SSE == 5: |
| #ifdef __GNUC__ |
| #include <x86intrin.h> |
| #else |
| #include <immintrin.h> |
| #include <${SSE_HEADER}> |
| #endif |
| $else: |
| #include <${SSE_HEADER}> |
| |
| #include <xnnpack/dwconv.h> |
| |
| |
| $ISA = {2: "sse2", 3: "ssse3", 4: "sse41", 5: "xop"}[SSE] |
| void xnn_qs8_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_mul16( |
| size_t channels, |
| size_t output_width, |
| const int8_t** input, |
| const void* weights, |
| int8_t* output, |
| size_t input_stride, |
| size_t output_increment, |
| size_t input_offset, |
| const int8_t* zero, |
| const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN |
| { |
| assert(channels != 0); |
| assert(output_width != 0); |
| |
| do { |
| $for K in range(KERNEL_TILE): |
| const int8_t* i${K} = input[${K}]; |
| assert(i${K} != NULL); |
| if XNN_UNPREDICTABLE(i${K} != zero) { |
| i${K} = (const int8_t*) ((uintptr_t) i${K} + input_offset); |
| } |
| input = (const int8_t**) ((uintptr_t) input + input_stride); |
| |
| size_t c = channels; |
| const int8_t* w = weights; |
| for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { |
| __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); |
| $for C in range(4, CHANNEL_TILE, 4): |
| __m128i vacc${ABC[C:C+4]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${C} * sizeof(int32_t))); |
| |
| $for K in range(KERNEL_TILE): |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| $if C == 0: |
| const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); |
| $else: |
| const __m128i vi${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${K} + ${C})); |
| $if SSE >= 4: |
| ${"__m128i" if SSE == 5 else "const __m128i"} vxi${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[C:C+8]}); |
| const __m128i vk${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(int8_t))); |
| $if SSE >= 4: |
| ${"__m128i" if SSE == 5 else "const __m128i"} vxk${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[C:C+8]}); |
| i${K} += ${CHANNEL_TILE}; |
| |
| $if SSE < 4: |
| $for C in range(0, CHANNEL_TILE, 8): |
| const __m128i vxi${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[C:C+8]})); |
| const __m128i vxk${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[C:C+8]})); |
| |
| $if SSE == 5: |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+4]} = _mm_maccd_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+4]}); |
| vxi${K}x${ABC[C:C+8]} = _mm_unpackhi_epi64(vxi${K}x${ABC[C:C+8]}, vxi${K}x${ABC[C:C+8]}); |
| vxk${K}x${ABC[C:C+8]} = _mm_unpackhi_epi64(vxk${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C+4:C+8]} = _mm_maccd_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vacc${ABC[C+4:C+8]}); |
| $else: |
| $for C in range(0, CHANNEL_TILE, 8): |
| const __m128i vp${K}x${ABC[C:C+8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| const __m128i vp${K}x${ABC[C:C+8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); |
| |
| $for C in range(0, CHANNEL_TILE, 8): |
| vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi)); |
| vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi)); |
| |
| w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(int8_t)); |
| |
| const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); |
| const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); |
| |
| $if SSE >= 4: |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vacc${ABC[C+1:C+4:2]} = _mm_srli_epi64(vacc${ABC[C:C+4]}, 32); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vprod${ABC[C:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C:C+4]}, vmultiplier), vrounding); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vprod${ABC[C+1:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C+1:C+4:2]}, vmultiplier), vrounding); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(vprod${ABC[C:C+4:2]}, 31); |
| const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vprod${ABC[C+1:C+4:2]}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vq31prod${ABC[C:C+4]} = _mm_blend_epi16(vq31prod${ABC[C:C+4:2]}, vq31prod${ABC[C+1:C+4:2]}, 0xCC); |
| $else: |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vnmask${ABC[C:C+4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[C:C+4]}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| $if SSE >= 3: |
| const __m128i vabsacc${ABC[C:C+4]} = _mm_abs_epi32(vacc${ABC[C:C+4]}); |
| $else: |
| const __m128i vabsacc${ABC[C:C+4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[C:C+4]}, vnmask${ABC[C:C+4]}), vnmask${ABC[C:C+4]}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vabsacc${ABC[C+1:C+4:2]} = _mm_srli_epi64(vabsacc${ABC[C:C+4]}, 32); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vabsprod${ABC[C:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C:C+4]}, vmultiplier); |
| const __m128i vabsprod${ABC[C+1:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C+1:C+4:2]}, vmultiplier); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vnmask${ABC[C:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i vnmask${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vprod${ABC[C:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C:C+4:2]}, vnmask${ABC[C:C+4:2]}), vnmask${ABC[C:C+4:2]}); |
| const __m128i vprod${ABC[C+1:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C+1:C+4:2]}, vnmask${ABC[C+1:C+4:2]}), vnmask${ABC[C+1:C+4:2]}); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C:C+4:2]}, vrounding), 31); |
| const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vrounding), 31); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]} = _mm_castps_si128(_mm_shuffle_ps( |
| _mm_castsi128_ps(vq31prod${ABC[C:C+4:2]}), _mm_castsi128_ps(vq31prod${ABC[C+1:C+4:2]}), _MM_SHUFFLE(2, 0, 2, 0))); |
| |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vq31prod${ABC[C:C+4]} = _mm_shuffle_epi32(vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]}, _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); |
| $for C in range(0, CHANNEL_TILE, 4): |
| const __m128i vrem${ABC[C:C+4]} = |
| _mm_add_epi32(_mm_and_si128(vq31prod${ABC[C:C+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[C:C+4]})); |
| |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); |
| $for C in range(0, CHANNEL_TILE, 4): |
| vacc${ABC[C:C+4]} = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[C:C+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[C:C+4]}, vremainder_threshold)); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); |
| $for C in range(0, CHANNEL_TILE, 8): |
| __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); |
| $for C in range(0, CHANNEL_TILE, 8): |
| vout${ABC[C:C+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[C:C+8]}, voutput_min), voutput_max); |
| |
| $for C in range(0, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| __m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]}); |
| $else: |
| __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); |
| |
| $if CHANNEL_TILE > 8: |
| _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| $for C in range(16, CHANNEL_TILE, 16): |
| $if C + 8 < CHANNEL_TILE: |
| _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); |
| $else: |
| _mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]}); |
| output += ${CHANNEL_TILE}; |
| } |
| if XNN_UNLIKELY(c != 0) { |
| $if CHANNEL_TILE > 8: |
| const int8_t* k = (const int8_t*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)); |
| ${"do " if CHANNEL_TILE > 8 else ""}{ |
| __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); |
| __m128i vacc${ABC[4:8]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + 4 * sizeof(int32_t))); |
| |
| $for K in range(KERNEL_TILE): |
| |
| const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); |
| $if SSE >= 4: |
| ${"__m128i" if SSE == 5 else "const __m128i"} vxi${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[0:8]}); |
| $if CHANNEL_TILE > 8: |
| $if K == 0: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) k); |
| $else: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE})); |
| $else: |
| const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(int8_t))); |
| $if SSE >= 4: |
| ${"__m128i" if SSE == 5 else "const __m128i"} vxk${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[0:8]}); |
| i${K} += 8; |
| |
| $if SSE < 4: |
| const __m128i vxi${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[0:8]})); |
| const __m128i vxk${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[0:8]})); |
| |
| $if SSE == 5: |
| vacc${ABC[0:4]} = _mm_maccd_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vacc${ABC[0:4]}); |
| vxi${K}x${ABC[0:8]} = _mm_unpackhi_epi64(vxi${K}x${ABC[0:8]}, vxi${K}x${ABC[0:8]}); |
| vxk${K}x${ABC[0:8]} = _mm_unpackhi_epi64(vxk${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| vacc${ABC[4:8]} = _mm_maccd_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vacc${ABC[4:8]}); |
| $else: |
| const __m128i vp${K}x${ABC[0:8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| const __m128i vp${K}x${ABC[0:8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); |
| |
| vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi)); |
| vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi)); |
| |
| w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t)); |
| $if CHANNEL_TILE > 8: |
| k += 8; |
| |
| const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); |
| const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); |
| |
| $if SSE >= 4: |
| const __m128i vacc${ABC[1:4:2]} = _mm_srli_epi64(vacc${ABC[0:4]}, 32); |
| const __m128i vacc${ABC[5:8:2]} = _mm_srli_epi64(vacc${ABC[4:8]}, 32); |
| |
| const __m128i vprod${ABC[0:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[0:4]}, vmultiplier), vrounding); |
| const __m128i vprod${ABC[4:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[4:8]}, vmultiplier), vrounding); |
| |
| const __m128i vprod${ABC[1:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[1:4:2]}, vmultiplier), vrounding); |
| const __m128i vprod${ABC[5:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[5:8:2]}, vmultiplier), vrounding); |
| |
| const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(vprod${ABC[0:4:2]}, 31); |
| const __m128i vq31prod${ABC[1:4:2]} = _mm_add_epi64(vprod${ABC[1:4:2]}, vprod${ABC[1:4:2]}); |
| const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(vprod${ABC[4:8:2]}, 31); |
| const __m128i vq31prod${ABC[5:8:2]} = _mm_add_epi64(vprod${ABC[5:8:2]}, vprod${ABC[5:8:2]}); |
| |
| const __m128i vq31prod${ABC[0:4]} = _mm_blend_epi16(vq31prod${ABC[0:4:2]}, vq31prod${ABC[1:4:2]}, 0xCC); |
| const __m128i vq31prod${ABC[4:8]} = _mm_blend_epi16(vq31prod${ABC[4:8:2]}, vq31prod${ABC[5:8:2]}, 0xCC); |
| $else: |
| const __m128i vnmask${ABC[0:4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]}); |
| const __m128i vnmask${ABC[4:8]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]}); |
| |
| $if SSE >= 3: |
| const __m128i vabsacc${ABC[0:4]} = _mm_abs_epi32(vacc${ABC[0:4]}); |
| const __m128i vabsacc${ABC[4:8]} = _mm_abs_epi32(vacc${ABC[4:8]}); |
| $else: |
| const __m128i vabsacc${ABC[0:4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[0:4]}, vnmask${ABC[0:4]}), vnmask${ABC[0:4]}); |
| const __m128i vabsacc${ABC[4:8]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[4:8]}, vnmask${ABC[4:8]}), vnmask${ABC[4:8]}); |
| |
| const __m128i vabsacc${ABC[1:4:2]} = _mm_srli_epi64(vabsacc${ABC[0:4]}, 32); |
| const __m128i vabsacc${ABC[5:8:2]} = _mm_srli_epi64(vabsacc${ABC[4:8]}, 32); |
| |
| const __m128i vabsprod${ABC[0:4:2]} = _mm_mul_epu32(vabsacc${ABC[0:4]}, vmultiplier); |
| const __m128i vabsprod${ABC[1:4:2]} = _mm_mul_epu32(vabsacc${ABC[1:4:2]}, vmultiplier); |
| const __m128i vabsprod${ABC[4:8:2]} = _mm_mul_epu32(vabsacc${ABC[4:8]}, vmultiplier); |
| const __m128i vabsprod${ABC[5:8:2]} = _mm_mul_epu32(vabsacc${ABC[5:8:2]}, vmultiplier); |
| |
| const __m128i vnmask${ABC[0:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i vnmask${ABC[1:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1)); |
| const __m128i vnmask${ABC[4:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(2, 2, 0, 0)); |
| const __m128i vnmask${ABC[5:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1)); |
| |
| const __m128i vprod${ABC[0:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[0:4:2]}, vnmask${ABC[0:4:2]}), vnmask${ABC[0:4:2]}); |
| const __m128i vprod${ABC[1:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[1:4:2]}, vnmask${ABC[1:4:2]}), vnmask${ABC[1:4:2]}); |
| const __m128i vprod${ABC[4:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[4:8:2]}, vnmask${ABC[4:8:2]}), vnmask${ABC[4:8:2]}); |
| const __m128i vprod${ABC[5:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[5:8:2]}, vnmask${ABC[5:8:2]}), vnmask${ABC[5:8:2]}); |
| |
| const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[0:4:2]}, vrounding), 31); |
| const __m128i vq31prod${ABC[1:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[1:4:2]}, vrounding), 31); |
| const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[4:8:2]}, vrounding), 31); |
| const __m128i vq31prod${ABC[5:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[5:8:2]}, vrounding), 31); |
| |
| const __m128i vq31prod${ABC[0:4:2]}${ABC[1:4:2]} = _mm_castps_si128(_mm_shuffle_ps( |
| _mm_castsi128_ps(vq31prod${ABC[0:4:2]}), _mm_castsi128_ps(vq31prod${ABC[1:4:2]}), _MM_SHUFFLE(2, 0, 2, 0))); |
| const __m128i vq31prod${ABC[4:8:2]}${ABC[5:8:2]} = _mm_castps_si128(_mm_shuffle_ps( |
| _mm_castsi128_ps(vq31prod${ABC[4:8:2]}), _mm_castsi128_ps(vq31prod${ABC[5:8:2]}), _MM_SHUFFLE(2, 0, 2, 0))); |
| |
| const __m128i vq31prod${ABC[0:4]} = _mm_shuffle_epi32(vq31prod${ABC[0:4:2]}${ABC[1:4:2]}, _MM_SHUFFLE(3, 1, 2, 0)); |
| const __m128i vq31prod${ABC[4:8]} = _mm_shuffle_epi32(vq31prod${ABC[4:8:2]}${ABC[5:8:2]}, _MM_SHUFFLE(3, 1, 2, 0)); |
| |
| const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); |
| const __m128i vrem${ABC[0:4]} = |
| _mm_add_epi32(_mm_and_si128(vq31prod${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[0:4]})); |
| const __m128i vrem${ABC[4:8]} = |
| _mm_add_epi32(_mm_and_si128(vq31prod${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[4:8]})); |
| |
| const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); |
| const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); |
| vacc${ABC[0:4]} = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold)); |
| vacc${ABC[4:8]} = |
| _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold)); |
| |
| const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); |
| __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); |
| |
| const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); |
| const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); |
| vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, voutput_min), voutput_max); |
| |
| __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); |
| |
| $if CHANNEL_TILE > 8: |
| if XNN_LIKELY(c >= 8) { |
| _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); |
| output += 8; |
| c -= 8; |
| } else { |
| if (c & 4) { |
| *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| $if SSE >= 4: |
| *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| output += 1; |
| } |
| c = 0; |
| } |
| $else: |
| if (c & 4) { |
| *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); |
| output += 4; |
| } |
| if (c & 2) { |
| *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); |
| output += 2; |
| } |
| if (c & 1) { |
| $if SSE >= 4: |
| *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); |
| $else: |
| *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); |
| output += 1; |
| } |
| }${" while (c != 0);" if CHANNEL_TILE > 8 else ""} |
| } |
| |
| output = (int8_t*) ((uintptr_t) output + output_increment); |
| } while (--output_width != 0); |
| } |