| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| #include "bench/utils.h" |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| static void xnnpack_average_pooling_qu8(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t pooling_size = state.range(3); |
| const size_t padding_size = state.range(4); |
| const size_t stride = state.range(5); |
| const size_t channels = state.range(6); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
| const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
| |
| std::vector<uint8_t> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::vector<uint8_t> output(batch_size * output_height * output_width * channels); |
| std::fill(output.begin(), output.end(), 0xA5); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t pooling_op = nullptr; |
| status = xnn_create_average_pooling2d_nhwc_qu8( |
| padding_size, padding_size, padding_size, padding_size, |
| pooling_size, pooling_size, |
| stride, stride, |
| channels, channels /* input pixel stride */, channels /* output pixel stride */, |
| 127 /* input zero point */, 0.75f /* input scale */, |
| 127 /* output zero point */, 1.25f /* output scale */, |
| 0, 255, |
| 0 /* flags */, &pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Average Pooling operator"); |
| return; |
| } |
| |
| status = xnn_setup_average_pooling2d_nhwc_qu8( |
| pooling_op, |
| batch_size, input_height, input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Average Pooling operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(pooling_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Average Pooling operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Average Pooling operator"); |
| return; |
| } |
| pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(uint8_t), |
| benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| static void xnnpack_average_pooling_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t pooling_size = state.range(3); |
| const size_t padding_size = state.range(4); |
| const size_t stride = state.range(5); |
| const size_t channels = state.range(6); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
| |
| const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
| const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
| |
| std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> output(batch_size * output_height * output_width * channels); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t pooling_op = nullptr; |
| status = xnn_create_average_pooling2d_nhwc_f32( |
| padding_size, padding_size, padding_size, padding_size, |
| pooling_size, pooling_size, |
| stride, stride, |
| channels, channels /* input pixel stride */, channels /* output pixel stride */, |
| -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
| 0 /* flags */, &pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create Average Pooling operator"); |
| return; |
| } |
| |
| status = xnn_setup_average_pooling2d_nhwc_f32( |
| pooling_op, |
| batch_size, input_height, input_width, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Average Pooling operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(pooling_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Average Pooling operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(pooling_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Average Pooling operator"); |
| return; |
| } |
| pooling_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| void tflite_average_pooling_f32(benchmark::State& state, const char* net) { |
| const size_t batch_size = state.range(0); |
| const size_t input_height = state.range(1); |
| const size_t input_width = state.range(2); |
| const size_t pooling_size = state.range(3); |
| const size_t padding_size = state.range(4); |
| const size_t stride = state.range(5); |
| const size_t channels = state.range(6); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
| |
| tflite::Padding padding = tflite::Padding_VALID; |
| if (2 * padding_size == (pooling_size - 1)) { |
| padding = tflite::Padding_SAME; |
| } else if (padding_size == 0) { |
| padding = tflite::Padding_VALID; |
| } else { |
| state.SkipWithError("unsupported padding"); |
| return; |
| } |
| |
| const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1; |
| const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1; |
| |
| std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> output(batch_size * output_height * output_width * channels); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_AVERAGE_POOL_2D); |
| |
| flatbuffers::Offset<tflite::Pool2DOptions> pool2d_options = CreatePool2DOptions( |
| builder, padding, |
| stride /* stride_w */, stride /* stride_h */, |
| pooling_size /* filter_width */, pooling_size /* filter_height */, |
| tflite::ActivationFunctionType_NONE); |
| |
| flatbuffers::Offset<tflite::Buffer> buffers[1] = { |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }; |
| |
| const int32_t input_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(input_height), |
| static_cast<int32_t>(input_width), |
| static_cast<int32_t>(channels) |
| }; |
| const int32_t output_shape[4] = { |
| static_cast<int32_t>(batch_size), |
| static_cast<int32_t>(output_height), |
| static_cast<int32_t>(output_width), |
| static_cast<int32_t>(channels) |
| }; |
| |
| flatbuffers::Offset<tflite::Tensor> tensors[2] = { |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(input_shape, 4), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(output_shape, 4), |
| tflite::TensorType_FLOAT32), |
| }; |
| |
| const int32_t op_inputs[1] = { 0 }; |
| const int32_t op_outputs[1] = { 1 }; |
| flatbuffers::Offset<tflite::Operator> op = CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs, 1), |
| builder.CreateVector<int32_t>(op_outputs, 1), |
| tflite::BuiltinOptions_Pool2DOptions, |
| pool2d_options.Union()); |
| |
| const int32_t graph_inputs[1] = { 0 }; |
| const int32_t graph_outputs[1] = { 1 }; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors, 2), |
| builder.CreateVector<int32_t>(graph_inputs, 1), |
| builder.CreateVector<int32_t>(graph_outputs, 1), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| builder.CreateString("AVERAGE_POOL_2D model"), |
| builder.CreateVector(buffers, 1)); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| if (interpreter == nullptr) { |
| state.SkipWithError("TFLite interpreter is null"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size * input_height * input_width * channels, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["bytes"] = benchmark::Counter( |
| uint64_t(state.iterations()) * |
| batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| // Final global average pooling in ImageNet classification models. |
| static void ImageNet(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 13, 13, 13, 0, 1, 1000}); |
| b->Args({1, 7, 7, 7, 0, 1, 1000}); |
| } |
| |
| // ShuffleNet v1 with 1 group. |
| static void ShuffleNetV1G1(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 56, 56, 3, 1, 2, 24}); |
| b->Args({1, 28, 28, 3, 1, 2, 144}); |
| b->Args({1, 14, 14, 3, 1, 2, 288}); |
| b->Args({1, 7, 7, 3, 1, 2, 576}); |
| } |
| |
| // ShuffleNet v1 with 2 groups. |
| static void ShuffleNetV1G2(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 56, 56, 3, 1, 2, 24}); |
| b->Args({1, 28, 28, 3, 1, 2, 200}); |
| b->Args({1, 14, 14, 3, 1, 2, 400}); |
| b->Args({1, 7, 7, 3, 1, 2, 800}); |
| } |
| |
| // ShuffleNet v1 with 3 groups. |
| static void ShuffleNetV1G3(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 56, 56, 3, 1, 2, 24}); |
| b->Args({1, 28, 28, 3, 1, 2, 240}); |
| b->Args({1, 14, 14, 3, 1, 2, 480}); |
| b->Args({1, 7, 7, 3, 1, 2, 960}); |
| } |
| |
| // ShuffleNet v1 with 4 groups. |
| static void ShuffleNetV1G4(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 56, 56, 3, 1, 2, 24}); |
| b->Args({1, 28, 28, 3, 1, 2, 272}); |
| b->Args({1, 14, 14, 3, 1, 2, 576}); |
| b->Args({1, 7, 7, 3, 1, 2, 1088}); |
| } |
| |
| // ShuffleNet v1 with 8 groups. |
| static void ShuffleNetV1G8(benchmark::internal::Benchmark* b) { |
| b->ArgNames({"N", "H", "W", "K", "P", "S", "C"}); |
| |
| /* N H W K P S C */ |
| b->Args({1, 56, 56, 3, 1, 2, 24}); |
| b->Args({1, 28, 28, 3, 1, 2, 384}); |
| b->Args({1, 14, 14, 3, 1, 2, 768}); |
| b->Args({1, 7, 7, 3, 1, 2, 1536}); |
| } |
| |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime(); |
| BENCHMARK_CAPTURE(xnnpack_average_pooling_qu8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime(); |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |