| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16/fp16.h> |
| #include "bench/gemm.h" |
| #include "bench/utils.h" |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/gemm.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| |
| |
| static void bf16_gemm(benchmark::State& state, |
| xnn_bf16_gemm_minmax_ukernel_function gemm, |
| size_t mr, size_t nr, size_t kr, size_t sr, |
| xnn_init_bf16_minmax_params_fn init_params, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t mc = state.range(0); |
| const size_t nc = state.range(1); |
| const size_t kc = state.range(2); |
| |
| const size_t nc_stride = benchmark::utils::RoundUp(nc, nr); |
| const size_t kc_stride = benchmark::utils::RoundUp(kc, kr * sr); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng)); |
| |
| std::vector<uint16_t> a(mc * kc + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::generate(a.begin(), a.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; }); |
| std::vector<uint16_t> k(nc * kc); |
| std::generate(k.begin(), k.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; }); |
| std::vector<uint16_t> b(nc); |
| std::generate(b.begin(), b.end(), [&] { return fp32_to_bits(f32rng(rng)) >> 16; }); |
| |
| const size_t w_elements = nc_stride * kc_stride + nc_stride; |
| const size_t c_elements = mc * nc; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(uint16_t) * (w_elements + c_elements)); |
| |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> w(w_elements * num_buffers); |
| std::fill(w.begin(), w.end(), 0); |
| xnn_pack_f16_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data(), 0, nullptr); |
| std::vector<uint16_t> c(c_elements * num_buffers); |
| std::fill(c.begin(), c.end(), UINT16_C(0x7FC0) /* NaN */); |
| |
| // Prepare minmax parameters. |
| xnn_bf16_minmax_params params; |
| init_params(¶ms, |
| UINT16_C(0xFF80) /* -inf */, UINT16_C(0x7F80) /* inf */); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| // Use circular buffers (exceeding cache size) and prefetch to control cache state: |
| // - A is always in L1 cache (if fits, otherwise L2, L3, etc) |
| // - W is not in cache (for any cache level) |
| // - C is not in cache (for any cache level) |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| for (uint32_t m = 0; m < mc; m += mr) { |
| const uint32_t mb = min(mc - m, mr); |
| for (uint32_t n = 0; n < nc; n += nr) { |
| const uint32_t nb = min(nc - n, nr); |
| gemm( |
| mb, nb, kc * sizeof(uint16_t), |
| a.data() + m * kc, kc * sizeof(uint16_t), |
| w.data() + (nc_stride * buffer_index + n) * (kc_stride + 1), |
| c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint16_t), nr * sizeof(uint16_t), |
| ¶ms); |
| } |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate); |
| } |
| |
| |
| #if XNN_ENABLE_ARM_BF16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
| static void bf16_gemm_1x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x8c2__neonbf16_bfdot_lane_ld128, 1, 8, 2, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_4x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x8c2__neonbf16_bfdot_lane_ld128, 4, 8, 2, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_5x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x8c2__neonbf16_bfdot_lane_ld128, 5, 8, 2, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_6x8c2__neonbf16_bfdot_lane_ld128(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_6x8c2__neonbf16_bfdot_lane_ld128, 6, 8, 2, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| |
| static void bf16_gemm_1x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonbf16_bfdot, 1, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_2x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonbf16_bfdot, 2, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_3x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonbf16_bfdot, 3, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_4x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonbf16_bfdot, 4, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_5x4c8__neonbf16_bfdot(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonbf16_bfdot, 5, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| |
| static void bf16_gemm_1x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonbf16_bfmlal, 1, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_2x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonbf16_bfmlal, 2, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_3x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonbf16_bfmlal, 3, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_4x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonbf16_bfmlal, 4, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| static void bf16_gemm_5x4c8__neonbf16_bfmlal(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonbf16_bfmlal, 5, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONBF16); |
| } |
| |
| BENCHMARK_GEMM(bf16_gemm_1x8c2__neonbf16_bfdot_lane_ld128) |
| BENCHMARK_GEMM(bf16_gemm_4x8c2__neonbf16_bfdot_lane_ld128) |
| BENCHMARK_GEMM(bf16_gemm_5x8c2__neonbf16_bfdot_lane_ld128) |
| BENCHMARK_GEMM(bf16_gemm_6x8c2__neonbf16_bfdot_lane_ld128) |
| |
| BENCHMARK_GEMM(bf16_gemm_1x4c8__neonbf16_bfdot) |
| BENCHMARK_GEMM(bf16_gemm_2x4c8__neonbf16_bfdot) |
| BENCHMARK_GEMM(bf16_gemm_3x4c8__neonbf16_bfdot) |
| BENCHMARK_GEMM(bf16_gemm_4x4c8__neonbf16_bfdot) |
| BENCHMARK_GEMM(bf16_gemm_5x4c8__neonbf16_bfdot) |
| |
| BENCHMARK_GEMM(bf16_gemm_1x4c8__neonbf16_bfmlal) |
| BENCHMARK_GEMM(bf16_gemm_2x4c8__neonbf16_bfmlal) |
| BENCHMARK_GEMM(bf16_gemm_3x4c8__neonbf16_bfmlal) |
| BENCHMARK_GEMM(bf16_gemm_4x4c8__neonbf16_bfmlal) |
| BENCHMARK_GEMM(bf16_gemm_5x4c8__neonbf16_bfmlal) |
| #endif // XNN_ENABLE_ARM_FP16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
| |
| #if XNN_ARCH_ARM64 |
| static void bf16_gemm_1x4c8__neonfma_zip(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonfma_zip, 1, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_2x4c8__neonfma_zip(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonfma_zip, 2, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_3x4c8__neonfma_zip(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonfma_zip, 3, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_4x4c8__neonfma_zip(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonfma_zip, 4, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_5x4c8__neonfma_zip(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonfma_zip, 5, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| |
| BENCHMARK_GEMM(bf16_gemm_1x4c8__neonfma_zip) |
| BENCHMARK_GEMM(bf16_gemm_2x4c8__neonfma_zip) |
| BENCHMARK_GEMM(bf16_gemm_3x4c8__neonfma_zip) |
| BENCHMARK_GEMM(bf16_gemm_4x4c8__neonfma_zip) |
| BENCHMARK_GEMM(bf16_gemm_5x4c8__neonfma_zip) |
| #endif // XNN_ARCH_ARM64 |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| static void bf16_gemm_1x4c8__neonfma_shland(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_1x4c8__neonfma_shland, 1, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_2x4c8__neonfma_shland(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_2x4c8__neonfma_shland, 2, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_3x4c8__neonfma_shland(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_3x4c8__neonfma_shland, 3, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_4x4c8__neonfma_shland(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_4x4c8__neonfma_shland, 4, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| static void bf16_gemm_5x4c8__neonfma_shland(benchmark::State& state, const char* net) { |
| bf16_gemm(state, xnn_bf16_gemm_minmax_ukernel_5x4c8__neonfma_shland, 5, 4, 8, 1, |
| xnn_init_bf16_minmax_scalar_params, benchmark::utils::CheckNEONFMA); |
| } |
| |
| BENCHMARK_GEMM(bf16_gemm_1x4c8__neonfma_shland) |
| BENCHMARK_GEMM(bf16_gemm_2x4c8__neonfma_shland) |
| BENCHMARK_GEMM(bf16_gemm_3x4c8__neonfma_shland) |
| BENCHMARK_GEMM(bf16_gemm_4x4c8__neonfma_shland) |
| BENCHMARK_GEMM(bf16_gemm_5x4c8__neonfma_shland) |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |