| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16/fp16.h> |
| #include "bench/utils.h" |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| |
| void xnnpack_convert_f16_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::vector<float> output(batch_size); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_f16_f32( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create F16->F32 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_f16_f32( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup F16->F32 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run F16->F32 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete F16->F32 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| void xnnpack_convert_f32_f16(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<uint16_t> output(batch_size); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_f32_f16( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create F32->F16 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_f32_f16( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup F32->F16 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run F32->F16 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete F32->F16 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint16_t)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| void xnnpack_convert_f32_qs8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<int8_t> output(batch_size); |
| std::fill(output.begin(), output.end(), 0); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_f32_qs8( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 1.0f / 128.0f /* scale */, 1 /* zero point */, |
| std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max(), |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create F32->QS8 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_f32_qs8( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup F32->QS8 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run F32->QS8 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete F32->QS8 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| void xnnpack_convert_f32_qu8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<uint8_t> output(batch_size); |
| std::fill(output.begin(), output.end(), 0); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_f32_qu8( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 1.0f / 128.0f /* scale */, 127 /* zero point */, |
| std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max(), |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create F32->QU8 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_f32_qu8( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup F32->QU8 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run F32->QU8 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete F32->QU8 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| void xnnpack_convert_qs8_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| std::vector<int8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::vector<float> output(batch_size); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_qs8_f32( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 1.0f / 255.0f /* scale */, -128 /* zero point */, |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create QS8->F32 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_qs8_f32( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup QS8->F32 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run QS8->F32 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete QS8->F32 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| void xnnpack_convert_qu8_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
| std::ref(rng)); |
| |
| std::vector<uint8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::vector<float> output(batch_size); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t convert_op = nullptr; |
| status = xnn_create_convert_nc_qu8_f32( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 1.0f / 128.0f /* scale */, 128 /* zero point */, |
| 0 /* flags */, &convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to create QU8->F32 Convert operator"); |
| return; |
| } |
| |
| status = xnn_setup_convert_nc_qu8_f32( |
| convert_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup QU8->F32 Convert operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(convert_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run QU8->F32 Convert operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(convert_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete QU8->F32 Convert operator"); |
| return; |
| } |
| convert_op = nullptr; |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| void tflite_convert_f16_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
| |
| std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT16), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32) |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{0}}; |
| const std::array<int32_t, 1> op_outputs{{1}}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{0}}; |
| const std::array<int32_t, 1> graph_outputs{{1}}; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| uint16_t* input_data = reinterpret_cast<uint16_t*>(interpreter->tensor(0)->data.data); |
| std::generate(input_data, input_data + batch_size, std::ref(f16rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(uint16_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| void tflite_convert_f32_qs8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
| |
| std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 128.0f /* scale */}), |
| builder.CreateVector<int64_t>({1 /* zero point */}))) |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{0}}; |
| const std::array<int32_t, 1> op_outputs{{1}}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{0}}; |
| const std::array<int32_t, 1> graph_outputs{{1}}; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(int8_t)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| void tflite_convert_f32_qu8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_QUANTIZE); |
| |
| std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 128.0f /* scale */}), |
| builder.CreateVector<int64_t>({127 /* zero point */}))) |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{0}}; |
| const std::array<int32_t, 1> op_outputs{{1}}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{0}}; |
| const std::array<int32_t, 1> graph_outputs{{1}}; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Quantize model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(float) + sizeof(uint8_t)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| void tflite_convert_qs8_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
| |
| std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 255.0f /* scale */}), |
| builder.CreateVector<int64_t>({-128 /* zero point */}))), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32) |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{0}}; |
| const std::array<int32_t, 1> op_outputs{{1}}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{0}}; |
| const std::array<int32_t, 1> graph_outputs{{1}}; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<int8_t>(0), |
| interpreter->typed_tensor<int8_t>(0) + batch_size, |
| std::ref(i8rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(int8_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| void tflite_convert_qu8_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()), |
| std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_DEQUANTIZE); |
| |
| std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 128.0f /* scale */}), |
| builder.CreateVector<int64_t>({128 /* zero point */}))), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32) |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{0}}; |
| const std::array<int32_t, 1> op_outputs{{1}}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{0}}; |
| const std::array<int32_t, 1> graph_outputs{{1}}; |
| flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("Dequantize model"); |
| |
| flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| description, |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<uint8_t>(0), |
| interpreter->typed_tensor<uint8_t>(0) + batch_size, |
| std::ref(u8rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = batch_size * (sizeof(uint8_t) + sizeof(float)); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| BENCHMARK(xnnpack_convert_f16_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>) |
| ->UseRealTime(); |
| BENCHMARK(xnnpack_convert_f32_f16) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint16_t>) |
| ->UseRealTime(); |
| BENCHMARK(xnnpack_convert_f32_qs8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>) |
| ->UseRealTime(); |
| BENCHMARK(xnnpack_convert_f32_qu8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>) |
| ->UseRealTime(); |
| BENCHMARK(xnnpack_convert_qs8_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>) |
| ->UseRealTime(); |
| BENCHMARK(xnnpack_convert_qu8_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>) |
| ->UseRealTime(); |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK(tflite_convert_f16_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, float>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_convert_f32_qs8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, int8_t>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_convert_f32_qu8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, uint8_t>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_convert_qs8_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, float>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_convert_qu8_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, float>) |
| ->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |