| // Copyright 2022 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16/fp16.h> |
| #include "bench/utils.h" |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| #include <xnnpack/vunary.h> |
| |
| |
| static void f16_velu( |
| benchmark::State& state, |
| xnn_f16_velu_ukernel_function elu, |
| xnn_init_f16_elu_params_fn init_params, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t num_elements = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-9.0f, 9.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> x(num_elements); |
| std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> y(num_elements); |
| std::generate(x.begin(), x.end(), std::ref(f16rng)); |
| std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| union xnn_f16_elu_params params; |
| init_params(¶ms, |
| UINT16_C(0x3C00) /* prescale = 1.0h */, |
| UINT16_C(0x3C00) /* alpha = 1.0h */, |
| UINT16_C(0x3C00) /* beta = 1.0h */); |
| for (auto _ : state) { |
| elu(num_elements * sizeof(uint16_t), x.data(), y.data(), ¶ms); |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| const size_t elements_per_iteration = num_elements; |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * num_elements * sizeof(uint16_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| |
| #if XNN_ENABLE_ARM_FP16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
| BENCHMARK_CAPTURE(f16_velu, neonfp16arith_rr1_p3_x8, |
| xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x8, |
| xnn_init_f16_elu_neonfp16arith_rr1_p3_params, |
| benchmark::utils::CheckNEONFP16ARITH) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
| ->UseRealTime(); |
| BENCHMARK_CAPTURE(f16_velu, neonfp16arith_rr1_p3_x16, |
| xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x16, |
| xnn_init_f16_elu_neonfp16arith_rr1_p3_params, |
| benchmark::utils::CheckNEONFP16ARITH) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
| ->UseRealTime(); |
| #endif // XNN_ENABLE_ARM_FP16 && (XNN_ARCH_ARM || XNN_ARCH_ARM64) |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| BENCHMARK_CAPTURE(f16_velu, avx2_rr1_p3_x8, |
| xnn_f16_velu_ukernel__avx2_rr1_p3_x8, |
| xnn_init_f16_elu_avx2_rr1_p3_params, |
| benchmark::utils::CheckAVX2) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
| ->UseRealTime(); |
| BENCHMARK_CAPTURE(f16_velu, avx2_rr1_p3_x16, |
| xnn_f16_velu_ukernel__avx2_rr1_p3_x16, |
| xnn_init_f16_elu_avx2_rr1_p3_params, |
| benchmark::utils::CheckAVX2) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
| ->UseRealTime(); |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |