| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/conv.h" |
| #include "bench/utils.h" |
| |
| #include <xnnpack.h> |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/gemm.h> |
| #include <xnnpack/im2col.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/microfnptr.h> |
| #include <xnnpack/microparams-init.h> |
| #include <xnnpack/pack.h> |
| |
| |
| static void Im2ColGEMMBenchmark(benchmark::State& state, |
| xnn_f32_gemm_minmax_ukernel_function f32_gemm, |
| uint32_t mr, uint32_t nr, uint32_t kr, uint32_t sr, |
| xnn_init_f32_minmax_params_fn init_params, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| const size_t input_height = state.range(0); |
| const size_t input_width = state.range(1); |
| const size_t kernel_height = state.range(2); |
| const size_t kernel_width = state.range(3); |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t padding_height = state.range(4); |
| const size_t padding_width = state.range(5); |
| const size_t subsampling = state.range(6); |
| const size_t dilation = state.range(7); |
| const size_t group_input_channels = state.range(8); |
| const size_t group_output_channels = state.range(9); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t padding_left = padding_width / 2; |
| const size_t padding_top = padding_height / 2; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| const size_t output_size = output_height * output_width; |
| |
| const size_t nc_stride = benchmark::utils::RoundUp<size_t>(group_output_channels, nr); |
| const size_t kc_stride = benchmark::utils::RoundUp<size_t>(group_input_channels, kr); |
| |
| std::vector<float> a(input_height * input_width * group_input_channels + XNN_EXTRA_BYTES / sizeof(float)); |
| std::generate(a.begin(), a.end(), std::ref(f32rng)); |
| std::vector<float> k(group_output_channels * kernel_height * kernel_width * group_input_channels); |
| std::generate(k.begin(), k.end(), std::ref(f32rng)); |
| std::vector<float> b(group_output_channels); |
| std::generate(b.begin(), b.end(), std::ref(f32rng)); |
| |
| const size_t w_elements = (kernel_size * kc_stride + 1) * nc_stride; |
| const size_t c_elements = output_size * group_output_channels; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(float) * (w_elements + c_elements)); |
| |
| std::vector<float, AlignedAllocator<float, 64>> w(w_elements * num_buffers); |
| std::fill(w.begin(), w.end(), 0.0f); |
| xnn_pack_f32_gemm_goi_w(1 /* groups */, group_output_channels, group_input_channels * kernel_size, |
| nr, kr, sr, k.data(), b.data(), w.data(), 0, nullptr); |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(w.cbegin(), w.cbegin() + w_elements, w.begin() + n * w_elements); |
| } |
| |
| std::vector<float> im2col_buffer(output_size * group_input_channels * kernel_size * group_output_channels); |
| |
| std::vector<float> c(c_elements * num_buffers); |
| std::fill(c.begin(), c.end(), std::nanf("")); |
| |
| xnn_f32_minmax_params params; |
| init_params(¶ms, |
| -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity()); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| const float* inputData = a.data(); |
| if (kernel_size != 1 || subsampling != 1) { |
| xnn_im2col_conv2d( |
| output_height, output_width, |
| kernel_height, kernel_width, |
| subsampling, subsampling, |
| dilation, dilation, |
| input_width, padding_top, padding_left, |
| group_input_channels * sizeof(float) /* input channels */, |
| group_input_channels * sizeof(float) /* input stride */, |
| a.data(), im2col_buffer.data()); |
| inputData = im2col_buffer.data(); |
| } |
| |
| for (uint32_t m = 0; m < output_size; m += mr) { |
| const uint32_t mb = min(output_size - m, mr); |
| for (uint32_t n = 0; n < group_output_channels; n += nr) { |
| const uint32_t nb = min(group_output_channels - n, nr); |
| f32_gemm( |
| mb, nb, kernel_size * group_input_channels * sizeof(float), |
| inputData + m * kernel_size * group_input_channels, kernel_size * group_input_channels * sizeof(float), |
| w.data() + (buffer_index * nc_stride + n) * (kernel_size * kc_stride + 1), |
| c.data() + (buffer_index * output_size + m) * group_output_channels + n, group_output_channels * sizeof(float), nr * sizeof(float), |
| ¶ms); |
| } |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * |
| output_height * output_width * |
| group_input_channels * group_output_channels * |
| kernel_height * kernel_width, |
| benchmark::Counter::kIsRate); |
| } |
| |
| |
| #if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY |
| static void f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75(benchmark::State& state, const char* net) { |
| Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x8__aarch64_neonfma_prfm_cortex_a75, 4, 8, 1, 1, |
| xnn_init_f32_minmax_scalar_params); |
| } |
| |
| BENCHMARK_CONV(f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a75) |
| #endif // XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY |
| |
| |
| static void f32_gemm_2x4__scalar(benchmark::State& state, const char* net) { |
| Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_2x4__scalar, 2, 4, 1, 1, |
| xnn_init_f32_minmax_scalar_params); |
| } |
| |
| static void f32_gemm_4x4__scalar(benchmark::State& state, const char* net) { |
| Im2ColGEMMBenchmark(state, xnn_f32_gemm_minmax_ukernel_4x4__scalar, 4, 4, 1, 1, |
| xnn_init_f32_minmax_scalar_params); |
| } |
| |
| BENCHMARK_CONV(f32_gemm_2x4__scalar) |
| BENCHMARK_CONV(f32_gemm_4x4__scalar) |
| |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |