blob: ccef9d59dd1c96cf7dc01e8e7e874d9a39170423 [file] [log] [blame] [edit]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#include "bench/utils.h"
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/microfnptr.h>
#include <xnnpack/vunary.h>
static void f32_vrelu(
benchmark::State& state,
xnn_f32_vrelu_ukernel_function f32_vrelu,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (isa_check && !isa_check(state)) {
return;
}
const size_t num_elements = state.range(0);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
std::vector<float, AlignedAllocator<float, 64>> x(num_elements);
std::generate(x.begin(), x.end(), std::ref(f32rng));
std::vector<float, AlignedAllocator<float, 64>> y(num_elements);
std::generate(x.begin(), x.end(), std::ref(f32rng));
for (auto _ : state) {
f32_vrelu(num_elements * sizeof(float), x.data(), y.data(), NULL);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
const size_t elements_per_iteration = num_elements;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * num_elements * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
BENCHMARK_CAPTURE(f32_vrelu, sse_x4,
xnn_f32_vrelu_ukernel__sse_x4)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, sse_x8,
xnn_f32_vrelu_ukernel__sse_x8)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, avx_x8,
xnn_f32_vrelu_ukernel__avx_x8,
benchmark::utils::CheckAVX)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, avx_x16,
xnn_f32_vrelu_ukernel__avx_x16,
benchmark::utils::CheckAVX)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, avx512f_x16,
xnn_f32_vrelu_ukernel__avx512f_x16,
benchmark::utils::CheckAVX512F)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, avx512f_x32,
xnn_f32_vrelu_ukernel__avx512f_x32,
benchmark::utils::CheckAVX512F)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
BENCHMARK_CAPTURE(f32_vrelu, neon_x4,
xnn_f32_vrelu_ukernel__neon_x4,
benchmark::utils::CheckNEON)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, neon_x8,
xnn_f32_vrelu_ukernel__neon_x8,
benchmark::utils::CheckNEON)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_WASM || XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
BENCHMARK_CAPTURE(f32_vrelu, wasm_x1,
xnn_f32_vrelu_ukernel__wasm_x1)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm_x2,
xnn_f32_vrelu_ukernel__wasm_x2)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm_x4,
xnn_f32_vrelu_ukernel__wasm_x4)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm_x8,
xnn_f32_vrelu_ukernel__wasm_x8)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm32_shr_x1,
xnn_f32_vrelu_ukernel__wasm32_shr_x1)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm32_shr_x2,
xnn_f32_vrelu_ukernel__wasm32_shr_x2)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasm32_shr_x4,
xnn_f32_vrelu_ukernel__wasm32_shr_x4)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#endif // XNN_ARCH_WASM || XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
#if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
BENCHMARK_CAPTURE(f32_vrelu, wasmsimd_x4,
xnn_f32_vrelu_ukernel__wasmsimd_x4)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasmsimd_x8,
xnn_f32_vrelu_ukernel__wasmsimd_x8)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, wasmsimd_x16,
xnn_f32_vrelu_ukernel__wasmsimd_x16)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
BENCHMARK_CAPTURE(f32_vrelu, scalar_x1,
xnn_f32_vrelu_ukernel__scalar_x1)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, scalar_x2,
xnn_f32_vrelu_ukernel__scalar_x2)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, scalar_x4,
xnn_f32_vrelu_ukernel__scalar_x4)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
BENCHMARK_CAPTURE(f32_vrelu, scalar_x8,
xnn_f32_vrelu_ukernel__scalar_x8)
->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif