| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/requantization-stubs.h> |
| |
| |
| class Requantization : public benchmark::Fixture { |
| public: |
| inline Requantization() |
| { |
| cpuinfo_initialize(); |
| const size_t l1d_size = cpuinfo_get_l1d_cache(0)->size; |
| const size_t l1d_reserve = 1024; |
| n_ = (l1d_size - l1d_reserve) / (sizeof(int32_t) + sizeof(uint8_t)); |
| n_ = n_ / 16 * 16; |
| } |
| |
| virtual void SetUp(benchmark::State& state) override |
| { |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(), std::ref(rng)); |
| |
| input_.resize(n()); |
| std::generate(input_.begin(), input_.end(), std::ref(i32rng)); |
| output_.resize(n()); |
| std::fill(output_.begin(), output_.end(), 0xA5); |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| } |
| |
| virtual void TearDown(benchmark::State& state) override |
| { |
| state.SetItemsProcessed(uint64_t(state.iterations()) * n()); |
| state.SetBytesProcessed(uint64_t(state.iterations()) * n() * (sizeof(int32_t) + sizeof(uint8_t))); |
| input_.clear(); |
| output_.clear(); |
| } |
| |
| inline const int32_t* input() const |
| { |
| return input_.data(); |
| } |
| |
| inline uint8_t* output() |
| { |
| return output_.data(); |
| } |
| |
| inline size_t n() const |
| { |
| return n_; |
| } |
| |
| protected: |
| std::vector<int32_t, AlignedAllocator<int32_t, 64>> input_; |
| std::vector<uint8_t> output_; |
| size_t n_; |
| }; |
| |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| BENCHMARK_F(Requantization, fp32__neon)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_fp32__neon( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__neon)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__neon( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__neon)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__neon( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| BENCHMARK_F(Requantization, fp32__sse2)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_fp32__sse2( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__sse2)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__sse2( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__ssse3)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__ssse3( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__sse4)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__sse4( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__sse2)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__sse2( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__ssse3)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__ssse3( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__sse4)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__sse4( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD |
| BENCHMARK_F(Requantization, fp32__wasmsimd)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_fp32__wasmsimd( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__wasmsimd)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__wasmsimd( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| #endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD |
| |
| |
| BENCHMARK_F(Requantization, fp32__scalar_lrintf)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_fp32__scalar_lrintf( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, fp32__scalar_fmagic)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_fp32__scalar_fmagic( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, gemmlowp__scalar)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_gemmlowp__scalar( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__scalar_signed64)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__scalar_signed64( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__scalar_unsigned32)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__scalar_unsigned32( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| BENCHMARK_F(Requantization, rndna__scalar_unsigned64)(benchmark::State& state) { |
| for (auto _ : state) { |
| xnn_qu8_requantize_rndna__scalar_unsigned64( |
| n(), input(), 0x1.0p-12f /* scale */, 128 /* zero point */, 1 /* qmin */, 254 /* qmax */, output()); |
| } |
| } |
| |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |