| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <functional> |
| #include <limits> |
| #include <random> |
| #include <vector> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/utils.h" |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| #include "tensorflow/lite/interpreter.h" |
| #include "tensorflow/lite/kernels/register.h" |
| #include "tensorflow/lite/model.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| #include "tensorflow/lite/version.h" |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| static void xnnpack_sigmoid_f16(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
| auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); |
| |
| std::vector<uint16_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint16_t)); |
| std::vector<uint16_t> output(batch_size); |
| std::generate(input.begin(), input.end(), std::ref(f16rng)); |
| std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_f16( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_f16( |
| sigmoid_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint16_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_F16_OPERATORS |
| |
| static void xnnpack_sigmoid_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
| |
| std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float)); |
| std::vector<float> output(batch_size); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_f32( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_f32( |
| sigmoid_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| |
| #ifndef XNN_NO_QS8_OPERATORS |
| static void xnnpack_sigmoid_qs8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| std::vector<int8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(int8_t)); |
| std::vector<int8_t> output(batch_size); |
| std::generate(input.begin(), input.end(), std::ref(i8rng)); |
| std::fill(output.begin(), output.end(), INT8_C(0xA5)); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_qs8( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 1 /* input zero point */, 1.0f /* input scale */, |
| -128 /* output zero point */, 1.0f / 256.0f /* output scale */, |
| std::numeric_limits<int8_t>::min() /* output min */, std::numeric_limits<int8_t>::max() /* output max */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_qs8( |
| sigmoid_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(int8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QS8_OPERATORS |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| static void xnnpack_sigmoid_qu8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind( |
| std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
| |
| std::vector<uint8_t> input(batch_size + XNN_EXTRA_BYTES / sizeof(uint8_t)); |
| std::vector<uint8_t> output(batch_size); |
| std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| std::fill(output.begin(), output.end(), UINT8_C(0xA5)); |
| |
| xnn_status status = xnn_initialize(nullptr /* allocator */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to initialize XNNPACK"); |
| return; |
| } |
| |
| xnn_operator_t sigmoid_op = nullptr; |
| status = xnn_create_sigmoid_nc_qu8( |
| 1 /* channels */, 1 /* input stride */, 1 /* output stride */, |
| 128 /* input zero point */, 1.0f /* input scale */, |
| 0 /* output zero point */, 1.0f / 256.0f /* output scale */, |
| std::numeric_limits<uint8_t>::min() /* output min */, std::numeric_limits<uint8_t>::max() /* output max */, |
| 0 /* flags */, &sigmoid_op); |
| if (status != xnn_status_success || sigmoid_op == nullptr) { |
| state.SkipWithError("failed to create Sigmoid operator"); |
| return; |
| } |
| |
| status = xnn_setup_sigmoid_nc_qu8( |
| sigmoid_op, batch_size, |
| input.data(), output.data(), |
| nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to setup Sigmoid operator"); |
| return; |
| } |
| |
| for (auto _ : state) { |
| status = xnn_run_operator(sigmoid_op, nullptr /* thread pool */); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to run Sigmoid operator"); |
| return; |
| } |
| } |
| |
| status = xnn_delete_operator(sigmoid_op); |
| if (status != xnn_status_success) { |
| state.SkipWithError("failed to delete Sigmoid operator"); |
| return; |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| } |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| static void tflite_sigmoid_f32(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| const flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC); |
| |
| const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_FLOAT32), |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{ 0 }}; |
| const std::array<int32_t, 1> op_outputs{{ 1 }}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{ 0 }}; |
| const std::array<int32_t, 1> graph_outputs{{ 1 }}; |
| const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| builder.CreateString("Sigmoid model"), |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<float>(0), |
| interpreter->typed_tensor<float>(0) + batch_size, |
| std::ref(f32rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(float); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| static void tflite_sigmoid_qs8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto i8rng = std::bind( |
| std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), |
| std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| const flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC); |
| |
| const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f /* scale */}), |
| builder.CreateVector<int64_t>({1 /* zero point */}))), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_INT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 256.0f /* scale */}), |
| builder.CreateVector<int64_t>({-128 /* zero point */}))), |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{ 0 }}; |
| const std::array<int32_t, 1> op_outputs{{ 1 }}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{ 0 }}; |
| const std::array<int32_t, 1> graph_outputs{{ 1 }}; |
| const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| builder.CreateString("Sigmoid model"), |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<int8_t>(0), |
| interpreter->typed_tensor<int8_t>(0) + batch_size, |
| std::ref(i8rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(int8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| |
| static void tflite_sigmoid_qu8(benchmark::State& state) { |
| const size_t batch_size = state.range(0); |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto u8rng = std::bind( |
| std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), |
| std::ref(rng)); |
| |
| flatbuffers::FlatBufferBuilder builder; |
| const flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| CreateOperatorCode(builder, tflite::BuiltinOperator_LOGISTIC); |
| |
| const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{ |
| tflite::CreateBuffer(builder, builder.CreateVector({})), |
| }}; |
| |
| const std::array<int32_t, 1> shape{{ |
| static_cast<int32_t>(batch_size) |
| }}; |
| |
| const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{ |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f /* scale */}), |
| builder.CreateVector<int64_t>({128 /* zero point */}))), |
| tflite::CreateTensor(builder, |
| builder.CreateVector<int32_t>(shape.data(), shape.size()), |
| tflite::TensorType_UINT8, 0 /* buffer */, 0 /* name */, |
| tflite::CreateQuantizationParameters(builder, |
| 0 /*min*/, 0 /*max*/, |
| builder.CreateVector<float>({1.0f / 256.0f /* scale */}), |
| builder.CreateVector<int64_t>({0 /* zero point */}))), |
| }}; |
| |
| const std::array<int32_t, 1> op_inputs{{ 0 }}; |
| const std::array<int32_t, 1> op_outputs{{ 1 }}; |
| flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator( |
| builder, |
| 0 /* opcode_index */, |
| builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()), |
| builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())); |
| |
| const std::array<int32_t, 1> graph_inputs{{ 0 }}; |
| const std::array<int32_t, 1> graph_outputs{{ 1 }}; |
| const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph( |
| builder, |
| builder.CreateVector(tensors.data(), tensors.size()), |
| builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()), |
| builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()), |
| builder.CreateVector(&op, 1)); |
| |
| const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| TFLITE_SCHEMA_VERSION, |
| builder.CreateVector(&operator_code, 1), |
| builder.CreateVector(&subgraph, 1), |
| builder.CreateString("Sigmoid model"), |
| builder.CreateVector(buffers.data(), buffers.size())); |
| |
| builder.Finish(model_buffer); |
| |
| const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
| tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
| tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| std::unique_ptr<tflite::Interpreter> interpreter; |
| if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) { |
| state.SkipWithError("failed to create TFLite interpreter"); |
| return; |
| } |
| interpreter->SetNumThreads(1); |
| |
| if (interpreter->AllocateTensors() != kTfLiteOk) { |
| state.SkipWithError("failed to allocate tensors"); |
| return; |
| } |
| |
| std::generate( |
| interpreter->typed_tensor<uint8_t>(0), |
| interpreter->typed_tensor<uint8_t>(0) + batch_size, |
| std::ref(u8rng)); |
| |
| for (auto _ : state) { |
| if (interpreter->Invoke() != kTfLiteOk) { |
| state.SkipWithError("failed to invoke TFLite interpreter"); |
| return; |
| } |
| } |
| |
| const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| if (cpu_frequency != 0) { |
| state.counters["cpufreq"] = cpu_frequency; |
| } |
| |
| state.counters["elements"] = |
| benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate); |
| |
| const size_t bytes_per_iteration = 2 * batch_size * sizeof(uint8_t); |
| state.counters["bytes"] = |
| benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); |
| |
| interpreter.reset(); |
| } |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| BENCHMARK(xnnpack_sigmoid_f16) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint16_t, uint16_t>) |
| ->UseRealTime(); |
| #endif // XNN_NO_F16_OPERATORS |
| BENCHMARK(xnnpack_sigmoid_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>) |
| ->UseRealTime(); |
| #ifndef XNN_NO_QS8_OPERATORS |
| BENCHMARK(xnnpack_sigmoid_qs8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, int8_t>) |
| ->UseRealTime(); |
| #endif // XNN_NO_QS8_OPERATORS |
| #ifndef XNN_NO_QU8_OPERATORS |
| BENCHMARK(xnnpack_sigmoid_qu8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, uint8_t>) |
| ->UseRealTime(); |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifdef BENCHMARK_TENSORFLOW_LITE |
| BENCHMARK(tflite_sigmoid_f32) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_sigmoid_qs8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<int8_t, int8_t>) |
| ->UseRealTime(); |
| BENCHMARK(tflite_sigmoid_qu8) |
| ->Apply(benchmark::utils::UnaryElementwiseParameters<uint8_t, uint8_t>) |
| ->UseRealTime(); |
| #endif // BENCHMARK_TENSORFLOW_LITE |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |