| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iomanip> |
| #include <ios> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/isa-checks.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| constexpr int kBlockSize = 1024; |
| |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, negative_zero) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, positive_zero) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, negative_saturation) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, positive_overflow) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, positive_nan) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_LUT64_P2, negative_nan) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(EXP__NEONFMA_RR2_P5, negative_zero) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__NEONFMA_RR2_P5, positive_zero) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__NEONFMA_RR2_P5, negative_saturation) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_P5, positive_overflow) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_P5, positive_nan) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__NEONFMA_RR2_P5, negative_nan) { |
| TEST_REQUIRES_ARM_NEON_FMA; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__neonfma_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT16_P3_PERM_SCALEF, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_LUT32_P2_PERM2_SCALEF, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_lut32_p2_perm2_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_P5, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, negative_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, positive_zero) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, negative_saturation) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, positive_overflow) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, positive_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX512F_RR2_P5_SCALEF, negative_nan) { |
| TEST_REQUIRES_X86_AVX512F; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx512f_rr2_p5_scalef(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, negative_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, positive_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, negative_saturation) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, positive_overflow) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, positive_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P3_PERM, negative_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, negative_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, positive_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, negative_saturation) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, positive_overflow) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, positive_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_LUT8_P4_PERM, negative_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX2_RR2_P5, negative_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_P5, positive_zero) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX2_RR2_P5, negative_saturation) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_P5, positive_overflow) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_P5, positive_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX2_RR2_P5, negative_nan) { |
| TEST_REQUIRES_X86_AVX2; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__AVX_RR2_P5, negative_zero) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX_RR2_P5, positive_zero) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__AVX_RR2_P5, negative_saturation) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX_RR2_P5, positive_overflow) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX_RR2_P5, positive_nan) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__AVX_RR2_P5, negative_nan) { |
| TEST_REQUIRES_X86_AVX; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__avx_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__SSE2_RR2_LUT64_P2, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__SSE2_RR2_LUT64_P2, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__SSE2_RR2_LUT64_P2, negative_saturation) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_LUT64_P2, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_LUT64_P2, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_LUT64_P2, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__sse2_rr2_lut64_p2(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| TEST(EXP__SSE2_RR2_P5, negative_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), -0.0f); |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__SSE2_RR2_P5, positive_zero) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| std::fill(inputs.begin(), inputs.end(), +0.0f); |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| const float reference_output = 1.0f; |
| ASSERT_EQ(reference_output, outputs[0]) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[0]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(reference_output) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[0]); |
| } |
| |
| TEST(EXP__SSE2_RR2_P5, negative_saturation) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0xC2CFF1B5); n <= UINT32_C(0xFF800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0xFF800000))); |
| } |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x00000000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_P5, positive_overflow) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x42B17218); n <= UINT32_C(0x7F800000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, UINT32_C(0x7F800000))); |
| } |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const uint32_t reference_output = UINT32_C(0x7F800000); |
| ASSERT_EQ(reference_output, float_as_uint32(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_P5, positive_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), n + i)); |
| } |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| |
| TEST(EXP__SSE2_RR2_P5, negative_nan) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize); |
| for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(UINT32_C(0x7FFFFFFF), UINT32_C(0x80000000) | (n + i))); |
| } |
| xnn_math_f32_exp__sse2_rr2_p5(kBlockSize * sizeof(float), inputs.data(), outputs.data()); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| ASSERT_TRUE(std::isnan(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(outputs[i]); |
| } |
| } |
| } |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |