| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <memory> |
| #include <numeric> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| #include <pthreadpool.h> |
| |
| #include <benchmark/benchmark.h> |
| #include <fp16/fp16.h> |
| |
| #include "bench/utils.h" |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| struct ComputeErrorContext { |
| const float* input; |
| const float* output_m; |
| const float* output_e; |
| float* error; |
| }; |
| |
| static void ComputeError( |
| struct ComputeErrorContext* context, |
| size_t start, |
| size_t range) |
| { |
| const float* input = context->input; |
| const float* output_m = context->output_m; |
| const float* output_e = context->output_e; |
| float* error = context->error; |
| const double inv_ulp = 0x1.0p+24; |
| for (size_t i = start; i < start + range; i++) { |
| const double output_ref = std::exp(double(input[i])); |
| int output_ref_e; |
| const double output_ref_m = std::frexp(output_ref, &output_ref_e); |
| const double ulp_error = std::abs(output_ref_m - std::ldexp(double(output_m[i]), int(output_e[i]) - output_ref_e)) * inv_ulp; |
| error[i] = float(ulp_error); |
| } |
| } |
| |
| static void ExtExpError(benchmark::State& state, |
| xnn_f32_ext_unary_math_function extexp, |
| benchmark::utils::IsaCheckFunction isa_check = nullptr) |
| { |
| if (!cpuinfo_initialize()) { |
| state.SkipWithError("failed cpuinfo init"); |
| return; |
| } |
| if (isa_check && !isa_check(state)) { |
| return; |
| } |
| |
| // The smallest x for which exp(x) (double-precision) is normal (-0x1.6232BCp9f). |
| const uint32_t min_input = 0xC431195E; |
| // The largest x for which exp(x) (double-precision) is finite (0x1.62E42Ep9). |
| const uint32_t max_input = 0x44317217; |
| // Number of elements in one block of inputs/outputs. |
| // Combining multiple elements in a block reduce function call overhead. |
| const size_t block_size = 16384; |
| // Number of elements in one parallelization tile. Worker threads process this many elements in each task. |
| const size_t tile_size = 64; |
| |
| uint32_t num_threads = cpuinfo_get_cores_count(); |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| // Use all cores except for the least performant cluster |
| if (cpuinfo_get_clusters_count() > 1) { |
| num_threads -= cpuinfo_get_cluster(cpuinfo_get_clusters_count() - 1)->core_count; |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| std::unique_ptr<pthreadpool, decltype(&pthreadpool_destroy)> threadpool( |
| pthreadpool_create(num_threads), pthreadpool_destroy); |
| |
| std::vector<float, AlignedAllocator<float, 64>> x(block_size); |
| std::vector<float, AlignedAllocator<float, 64>> m(block_size); |
| std::vector<float, AlignedAllocator<float, 64>> e(block_size); |
| std::vector<float> ulp_error(block_size); |
| float max_ulp_error = 0.0f; |
| |
| ComputeErrorContext context; |
| context.input = x.data(); |
| context.output_m = m.data(); |
| context.output_e = e.data(); |
| context.error = ulp_error.data(); |
| for (auto _ : state) { |
| for (uint32_t n = min_input; int32_t(n) < 0; n -= block_size) { |
| for (uint32_t i = 0; i < block_size; i++) { |
| x[i] = uint32_as_float(std::max<uint32_t>(n - i, 0x80000000)); |
| } |
| std::fill(m.begin(), m.end(), std::nanf("")); |
| std::fill(e.begin(), e.end(), std::nanf("")); |
| |
| extexp(block_size * sizeof(float), x.data(), m.data(), e.data()); |
| |
| pthreadpool_parallelize_1d_tile_1d( |
| threadpool.get(), |
| reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError), |
| static_cast<void*>(&context), |
| block_size, tile_size, 0 /* flags */); |
| |
| max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, |
| static_cast<const float& (*)(const float&, const float&)>(std::max<float>)); |
| } |
| for (uint32_t n = 0; n < max_input; n += block_size) { |
| for (uint32_t i = 0; i < block_size; i++) { |
| x[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| std::fill(m.begin(), m.end(), std::nanf("")); |
| std::fill(e.begin(), e.end(), std::nanf("")); |
| |
| extexp(block_size * sizeof(float), x.data(), m.data(), e.data()); |
| |
| pthreadpool_parallelize_1d_tile_1d( |
| threadpool.get(), |
| reinterpret_cast<pthreadpool_task_1d_tile_1d_t>(ComputeError), |
| static_cast<void*>(&context), |
| block_size, tile_size, 0 /* flags */); |
| |
| max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, |
| static_cast<const float& (*)(const float&, const float&)>(std::max<float>)); |
| } |
| } |
| |
| state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error); |
| } |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| BENCHMARK_CAPTURE(ExtExpError, avx512f_p5, |
| xnn_math_f32_extexp__avx512f_p5, |
| benchmark::utils::CheckAVX512F) |
| ->Unit(benchmark::kMillisecond) |
| ->Iterations(1); |
| |
| BENCHMARK_CAPTURE(ExtExpError, avx2_p5, |
| xnn_math_f32_extexp__avx2_p5, |
| benchmark::utils::CheckAVX2) |
| ->Unit(benchmark::kMillisecond) |
| ->Iterations(1); |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |