blob: 560fea89f369c55519c1301a2bf7201ec2a1c483 [file] [log] [blame] [edit]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iomanip>
#include <ios>
#include <vector>
#include <gtest/gtest.h>
#include <fp16.h>
#include <xnnpack/aligned-allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/isa-checks.h>
#include <xnnpack/math.h>
#include <xnnpack/math-stubs.h>
constexpr int kBlockSize = 1024;
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(CVT__NEON, positive_normal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEON, negative_normal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) zero_point);
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEON, positive_saturation) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::max();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEON, negative_saturation) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) zero_point);
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::min();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(CVT__NEONV8, positive_normal) {
TEST_REQUIRES_ARM_NEON_V8;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEONV8, negative_normal) {
TEST_REQUIRES_ARM_NEON_V8;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) zero_point);
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEONV8, positive_saturation) {
TEST_REQUIRES_ARM_NEON_V8;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::max();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__NEONV8, negative_saturation) {
TEST_REQUIRES_ARM_NEON_V8;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) zero_point);
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::min();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
TEST(CVT__WASMSIMD, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__WASMSIMD, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t max_input = float_as_uint32((float) zero_point);
for (uint32_t n = 0; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
long reference_output = std::lrintf(inputs[i]) + long(zero_point);
if (inputs[i] >= float(std::numeric_limits<long>::max())) {
reference_output = std::numeric_limits<uint8_t>::max();
} else if (inputs[i] <= float(std::numeric_limits<long>::min())) {
reference_output = std::numeric_limits<uint8_t>::min();
}
ASSERT_EQ(reference_output, long(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__WASMSIMD, positive_saturation) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point));
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::max();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
TEST(CVT__WASMSIMD, negative_saturation) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize);
for (int32_t zero_point = std::numeric_limits<uint8_t>::min();
zero_point <= std::numeric_limits<uint8_t>::max();
zero_point++)
{
const uint32_t min_input = float_as_uint32((float) zero_point);
const uint32_t max_input = UINT32_C(0x7F800000);
for (uint32_t n = min_input; n < max_input; n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input));
}
xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point));
for (uint32_t i = 0; i < kBlockSize; i++) {
const int32_t reference_output = std::numeric_limits<uint8_t>::min();
ASSERT_EQ(reference_output, uint32_t(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i])
<< ", reference = " << std::dec << reference_output
<< ", optimized = " << std::dec << uint32_t(outputs[i])
<< ", zero point = " << std::dec << zero_point;
}
}
}
}
#endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD