| // Copyright 2021 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iomanip> |
| #include <ios> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <fp16.h> |
| |
| #include <xnnpack/aligned-allocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/isa-checks.h> |
| #include <xnnpack/math.h> |
| #include <xnnpack/math-stubs.h> |
| |
| |
| constexpr int kBlockSize = 1024; |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(CVT__NEON, positive_normal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_normal) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) zero_point); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, positive_saturation) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::max(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEON, negative_saturation) { |
| TEST_REQUIRES_ARM_NEON; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) zero_point); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neon(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::min(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| #if XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| TEST(CVT__NEONV8, positive_normal) { |
| TEST_REQUIRES_ARM_NEON_V8; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEONV8, negative_normal) { |
| TEST_REQUIRES_ARM_NEON_V8; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) zero_point); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEONV8, positive_saturation) { |
| TEST_REQUIRES_ARM_NEON_V8; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::max(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__NEONV8, negative_saturation) { |
| TEST_REQUIRES_ARM_NEON_V8; |
| |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) zero_point); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__neonv8(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::min(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 |
| |
| #if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD |
| TEST(CVT__WASMSIMD, positive_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_normal) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t max_input = float_as_uint32((float) zero_point); |
| for (uint32_t n = 0; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| long reference_output = std::lrintf(inputs[i]) + long(zero_point); |
| if (inputs[i] >= float(std::numeric_limits<long>::max())) { |
| reference_output = std::numeric_limits<uint8_t>::max(); |
| } else if (inputs[i] <= float(std::numeric_limits<long>::min())) { |
| reference_output = std::numeric_limits<uint8_t>::min(); |
| } |
| ASSERT_EQ(reference_output, long(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, positive_saturation) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) (std::numeric_limits<uint8_t>::max() - zero_point)); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::max(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| |
| TEST(CVT__WASMSIMD, negative_saturation) { |
| std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize); |
| std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> outputs(kBlockSize); |
| for (int32_t zero_point = std::numeric_limits<uint8_t>::min(); |
| zero_point <= std::numeric_limits<uint8_t>::max(); |
| zero_point++) |
| { |
| const uint32_t min_input = float_as_uint32((float) zero_point); |
| const uint32_t max_input = UINT32_C(0x7F800000); |
| for (uint32_t n = min_input; n < max_input; n += kBlockSize) { |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| inputs[i] = uint32_as_float(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, max_input)); |
| } |
| xnn_math_f32_qu8_cvt__wasmsimd(kBlockSize * sizeof(uint8_t), inputs.data(), outputs.data(), uint8_t(zero_point)); |
| for (uint32_t i = 0; i < kBlockSize; i++) { |
| const int32_t reference_output = std::numeric_limits<uint8_t>::min(); |
| ASSERT_EQ(reference_output, uint32_t(outputs[i])) |
| << "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << float_as_uint32(inputs[i]) |
| << ", reference = " << std::dec << reference_output |
| << ", optimized = " << std::dec << uint32_t(outputs[i]) |
| << ", zero point = " << std::dec << zero_point; |
| } |
| } |
| } |
| } |
| #endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD |