| // Copyright 2020 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <xnnpack.h> |
| |
| #include <array> |
| #include <algorithm> |
| #include <functional> |
| #include <iostream> |
| #include <limits> |
| #include <random> |
| |
| #include <xnnpack/cache.h> |
| |
| #include "models/models.h" |
| |
| namespace models { |
| |
| ExecutionPlan FP32SparseMobileNetV1(float sparsity, pthreadpool_t threadpool) { |
| alignas(16) static std::array<float, 150528> v0; |
| alignas(16) static std::array<float, 401408> v1; |
| alignas(16) static std::array<float, 401408> v2; |
| alignas(16) static std::array<float, 802816> v3; |
| alignas(16) static std::array<float, 200704> v4; |
| alignas(16) static std::array<float, 401408> v5; |
| alignas(16) static std::array<float, 401408> v6; |
| alignas(16) static std::array<float, 401408> v7; |
| alignas(16) static std::array<float, 100352> v8; |
| alignas(16) static std::array<float, 200704> v9; |
| alignas(16) static std::array<float, 200704> v10; |
| alignas(16) static std::array<float, 200704> v11; |
| alignas(16) static std::array<float, 50176> v12; |
| alignas(16) static std::array<float, 100352> v13; |
| alignas(16) static std::array<float, 100352> v14; |
| alignas(16) static std::array<float, 100352> v15; |
| alignas(16) static std::array<float, 100352> v16; |
| alignas(16) static std::array<float, 100352> v17; |
| alignas(16) static std::array<float, 100352> v18; |
| alignas(16) static std::array<float, 100352> v19; |
| alignas(16) static std::array<float, 100352> v20; |
| alignas(16) static std::array<float, 100352> v21; |
| alignas(16) static std::array<float, 100352> v22; |
| alignas(16) static std::array<float, 100352> v23; |
| alignas(16) static std::array<float, 25088> v24; |
| alignas(16) static std::array<float, 50176> v25; |
| alignas(16) static std::array<float, 50176> v26; |
| alignas(16) static std::array<float, 50176> v27; |
| alignas(16) static std::array<float, 1024> v28; |
| alignas(16) static std::array<float, 1001> v29; |
| alignas(16) static std::array<float, 864> w30; |
| alignas(16) static std::array<float, 32> w31; |
| alignas(16) static std::array<float, 288> w32; |
| alignas(16) static std::array<float, 32> w33; |
| alignas(16) static std::array<float, 2048> w34; |
| alignas(16) static std::array<float, 64> w35; |
| alignas(16) static std::array<float, 576> w36; |
| alignas(16) static std::array<float, 64> w37; |
| alignas(16) static std::array<float, 8192> w38; |
| alignas(16) static std::array<float, 128> w39; |
| alignas(16) static std::array<float, 1152> w40; |
| alignas(16) static std::array<float, 128> w41; |
| alignas(16) static std::array<float, 16384> w42; |
| alignas(16) static std::array<float, 128> w43; |
| alignas(16) static std::array<float, 1152> w44; |
| alignas(16) static std::array<float, 128> w45; |
| alignas(16) static std::array<float, 32768> w46; |
| alignas(16) static std::array<float, 256> w47; |
| alignas(16) static std::array<float, 2304> w48; |
| alignas(16) static std::array<float, 256> w49; |
| alignas(16) static std::array<float, 65536> w50; |
| alignas(16) static std::array<float, 256> w51; |
| alignas(16) static std::array<float, 2304> w52; |
| alignas(16) static std::array<float, 256> w53; |
| alignas(16) static std::array<float, 131072> w54; |
| alignas(16) static std::array<float, 512> w55; |
| alignas(16) static std::array<float, 4608> w56; |
| alignas(16) static std::array<float, 512> w57; |
| alignas(16) static std::array<float, 262144> w58; |
| alignas(16) static std::array<float, 512> w59; |
| alignas(16) static std::array<float, 4608> w60; |
| alignas(16) static std::array<float, 512> w61; |
| alignas(16) static std::array<float, 262144> w62; |
| alignas(16) static std::array<float, 512> w63; |
| alignas(16) static std::array<float, 4608> w64; |
| alignas(16) static std::array<float, 512> w65; |
| alignas(16) static std::array<float, 262144> w66; |
| alignas(16) static std::array<float, 512> w67; |
| alignas(16) static std::array<float, 4608> w68; |
| alignas(16) static std::array<float, 512> w69; |
| alignas(16) static std::array<float, 262144> w70; |
| alignas(16) static std::array<float, 512> w71; |
| alignas(16) static std::array<float, 4608> w72; |
| alignas(16) static std::array<float, 512> w73; |
| alignas(16) static std::array<float, 262144> w74; |
| alignas(16) static std::array<float, 512> w75; |
| alignas(16) static std::array<float, 4608> w76; |
| alignas(16) static std::array<float, 512> w77; |
| alignas(16) static std::array<float, 524288> w78; |
| alignas(16) static std::array<float, 1024> w79; |
| alignas(16) static std::array<float, 9216> w80; |
| alignas(16) static std::array<float, 1024> w81; |
| alignas(16) static std::array<float, 1048576> w82; |
| alignas(16) static std::array<float, 1024> w83; |
| alignas(16) static std::array<float, 1025024> w84; |
| alignas(16) static std::array<float, 1001> w85; |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng)); |
| std::generate(v0.begin(), v0.end(), std::ref(f32rng)); |
| std::generate(v1.begin(), v1.end(), std::ref(f32rng)); |
| std::generate(v2.begin(), v2.end(), std::ref(f32rng)); |
| std::generate(v3.begin(), v3.end(), std::ref(f32rng)); |
| std::generate(v4.begin(), v4.end(), std::ref(f32rng)); |
| std::generate(v5.begin(), v5.end(), std::ref(f32rng)); |
| std::generate(v6.begin(), v6.end(), std::ref(f32rng)); |
| std::generate(v7.begin(), v7.end(), std::ref(f32rng)); |
| std::generate(v8.begin(), v8.end(), std::ref(f32rng)); |
| std::generate(v9.begin(), v9.end(), std::ref(f32rng)); |
| std::generate(v10.begin(), v10.end(), std::ref(f32rng)); |
| std::generate(v11.begin(), v11.end(), std::ref(f32rng)); |
| std::generate(v12.begin(), v12.end(), std::ref(f32rng)); |
| std::generate(v13.begin(), v13.end(), std::ref(f32rng)); |
| std::generate(v14.begin(), v14.end(), std::ref(f32rng)); |
| std::generate(v15.begin(), v15.end(), std::ref(f32rng)); |
| std::generate(v16.begin(), v16.end(), std::ref(f32rng)); |
| std::generate(v17.begin(), v17.end(), std::ref(f32rng)); |
| std::generate(v18.begin(), v18.end(), std::ref(f32rng)); |
| std::generate(v19.begin(), v19.end(), std::ref(f32rng)); |
| std::generate(v20.begin(), v20.end(), std::ref(f32rng)); |
| std::generate(v21.begin(), v21.end(), std::ref(f32rng)); |
| std::generate(v22.begin(), v22.end(), std::ref(f32rng)); |
| std::generate(v23.begin(), v23.end(), std::ref(f32rng)); |
| std::generate(v24.begin(), v24.end(), std::ref(f32rng)); |
| std::generate(v25.begin(), v25.end(), std::ref(f32rng)); |
| std::generate(v26.begin(), v26.end(), std::ref(f32rng)); |
| std::generate(v27.begin(), v27.end(), std::ref(f32rng)); |
| std::generate(v28.begin(), v28.end(), std::ref(f32rng)); |
| std::generate(v29.begin(), v29.end(), std::ref(f32rng)); |
| std::generate(w30.begin(), w30.end(), std::ref(f32rng)); |
| std::generate(w31.begin(), w31.end(), std::ref(f32rng)); |
| std::generate(w32.begin(), w32.end(), std::ref(f32rng)); |
| std::generate(w33.begin(), w33.end(), std::ref(f32rng)); |
| std::fill(w34.begin(), w34.end(), 0.0f); |
| std::generate(w34.begin(), w34.end() - size_t(sparsity * w34.size()), std::ref(f32rng)); |
| std::shuffle(w34.begin(), w34.end(), rng); |
| std::generate(w35.begin(), w35.end(), std::ref(f32rng)); |
| std::generate(w36.begin(), w36.end(), std::ref(f32rng)); |
| std::generate(w37.begin(), w37.end(), std::ref(f32rng)); |
| std::fill(w38.begin(), w38.end(), 0.0f); |
| std::generate(w38.begin(), w38.end() - size_t(sparsity * w38.size()), std::ref(f32rng)); |
| std::shuffle(w38.begin(), w38.end(), rng); |
| std::generate(w39.begin(), w39.end(), std::ref(f32rng)); |
| std::generate(w40.begin(), w40.end(), std::ref(f32rng)); |
| std::generate(w41.begin(), w41.end(), std::ref(f32rng)); |
| std::fill(w42.begin(), w42.end(), 0.0f); |
| std::generate(w42.begin(), w42.end() - size_t(sparsity * w42.size()), std::ref(f32rng)); |
| std::shuffle(w42.begin(), w42.end(), rng); |
| std::generate(w43.begin(), w43.end(), std::ref(f32rng)); |
| std::generate(w44.begin(), w44.end(), std::ref(f32rng)); |
| std::generate(w45.begin(), w45.end(), std::ref(f32rng)); |
| std::fill(w46.begin(), w46.end(), 0.0f); |
| std::generate(w46.begin(), w46.end() - size_t(sparsity * w46.size()), std::ref(f32rng)); |
| std::shuffle(w46.begin(), w46.end(), rng); |
| std::generate(w47.begin(), w47.end(), std::ref(f32rng)); |
| std::generate(w48.begin(), w48.end(), std::ref(f32rng)); |
| std::generate(w49.begin(), w49.end(), std::ref(f32rng)); |
| std::fill(w50.begin(), w50.end(), 0.0f); |
| std::generate(w50.begin(), w50.end() - size_t(sparsity * w50.size()), std::ref(f32rng)); |
| std::shuffle(w50.begin(), w50.end(), rng); |
| std::generate(w51.begin(), w51.end(), std::ref(f32rng)); |
| std::generate(w52.begin(), w52.end(), std::ref(f32rng)); |
| std::generate(w53.begin(), w53.end(), std::ref(f32rng)); |
| std::fill(w54.begin(), w54.end(), 0.0f); |
| std::generate(w54.begin(), w54.end() - size_t(sparsity * w54.size()), std::ref(f32rng)); |
| std::shuffle(w54.begin(), w54.end(), rng); |
| std::generate(w55.begin(), w55.end(), std::ref(f32rng)); |
| std::generate(w56.begin(), w56.end(), std::ref(f32rng)); |
| std::generate(w57.begin(), w57.end(), std::ref(f32rng)); |
| std::fill(w58.begin(), w58.end(), 0.0f); |
| std::generate(w58.begin(), w58.end() - size_t(sparsity * w58.size()), std::ref(f32rng)); |
| std::shuffle(w58.begin(), w58.end(), rng); |
| std::generate(w59.begin(), w59.end(), std::ref(f32rng)); |
| std::generate(w60.begin(), w60.end(), std::ref(f32rng)); |
| std::generate(w61.begin(), w61.end(), std::ref(f32rng)); |
| std::fill(w62.begin(), w62.end(), 0.0f); |
| std::generate(w62.begin(), w62.end() - size_t(sparsity * w62.size()), std::ref(f32rng)); |
| std::shuffle(w62.begin(), w62.end(), rng); |
| std::generate(w63.begin(), w63.end(), std::ref(f32rng)); |
| std::generate(w64.begin(), w64.end(), std::ref(f32rng)); |
| std::generate(w65.begin(), w65.end(), std::ref(f32rng)); |
| std::fill(w66.begin(), w66.end(), 0.0f); |
| std::generate(w66.begin(), w66.end() - size_t(sparsity * w66.size()), std::ref(f32rng)); |
| std::shuffle(w66.begin(), w66.end(), rng); |
| std::generate(w67.begin(), w67.end(), std::ref(f32rng)); |
| std::generate(w68.begin(), w68.end(), std::ref(f32rng)); |
| std::generate(w69.begin(), w69.end(), std::ref(f32rng)); |
| std::fill(w70.begin(), w70.end(), 0.0f); |
| std::generate(w70.begin(), w70.end() - size_t(sparsity * w70.size()), std::ref(f32rng)); |
| std::shuffle(w70.begin(), w70.end(), rng); |
| std::generate(w71.begin(), w71.end(), std::ref(f32rng)); |
| std::generate(w72.begin(), w72.end(), std::ref(f32rng)); |
| std::generate(w73.begin(), w73.end(), std::ref(f32rng)); |
| std::fill(w74.begin(), w74.end(), 0.0f); |
| std::generate(w74.begin(), w74.end() - size_t(sparsity * w74.size()), std::ref(f32rng)); |
| std::shuffle(w74.begin(), w74.end(), rng); |
| std::generate(w75.begin(), w75.end(), std::ref(f32rng)); |
| std::generate(w76.begin(), w76.end(), std::ref(f32rng)); |
| std::generate(w77.begin(), w77.end(), std::ref(f32rng)); |
| std::fill(w78.begin(), w78.end(), 0.0f); |
| std::generate(w78.begin(), w78.end() - size_t(sparsity * w78.size()), std::ref(f32rng)); |
| std::shuffle(w78.begin(), w78.end(), rng); |
| std::generate(w79.begin(), w79.end(), std::ref(f32rng)); |
| std::generate(w80.begin(), w80.end(), std::ref(f32rng)); |
| std::generate(w81.begin(), w81.end(), std::ref(f32rng)); |
| std::fill(w82.begin(), w82.end(), 0.0f); |
| std::generate(w82.begin(), w82.end() - size_t(sparsity * w82.size()), std::ref(f32rng)); |
| std::shuffle(w82.begin(), w82.end(), rng); |
| std::generate(w83.begin(), w83.end(), std::ref(f32rng)); |
| std::generate(w84.begin(), w84.end(), std::ref(f32rng)); |
| std::generate(w85.begin(), w85.end(), std::ref(f32rng)); |
| |
| ExecutionPlan operators; |
| xnn_status status; |
| xnn_code_cache code_cache; |
| #if XNN_PLATFORM_JIT |
| xnn_init_code_cache(&code_cache); |
| #endif |
| xnn_caches caches = { 0 }; |
| caches.code_cache = &code_cache; |
| |
| xnn_operator_t op0 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 3 /* input channels per group */, |
| 32 /* output_channels_per_group */, |
| 3 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w30.data(), w31.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| XNN_FLAG_INPUT_NHWC /* flags */, |
| &caches, |
| &op0); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #0" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op0, xnn_delete_operator); |
| |
| xnn_operator_t op1 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 32 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 32 /* output pixel stride */, |
| w32.data(), w33.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op1); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #1" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op1, xnn_delete_operator); |
| |
| xnn_operator_t op2 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 32 /* input channels per group */, |
| 64 /* output_channels_per_group */, |
| 32 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w34.data(), w35.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op2); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #2" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op2, xnn_delete_operator); |
| |
| xnn_operator_t op3 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 64 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 64 /* output pixel stride */, |
| w36.data(), w37.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op3); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #3" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op3, xnn_delete_operator); |
| |
| xnn_operator_t op4 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 64 /* input channels per group */, |
| 128 /* output_channels_per_group */, |
| 64 /* input pixel stride */, |
| 128 /* output pixel stride */, |
| w38.data(), w39.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op4); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #4" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op4, xnn_delete_operator); |
| |
| xnn_operator_t op5 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 128 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 128 /* input pixel stride */, |
| 128 /* output pixel stride */, |
| w40.data(), w41.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op5); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #5" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op5, xnn_delete_operator); |
| |
| xnn_operator_t op6 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 128 /* input channels per group */, |
| 128 /* output_channels_per_group */, |
| 128 /* input pixel stride */, |
| 128 /* output pixel stride */, |
| w42.data(), w43.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op6); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #6" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op6, xnn_delete_operator); |
| |
| xnn_operator_t op7 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 128 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 128 /* input pixel stride */, |
| 128 /* output pixel stride */, |
| w44.data(), w45.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op7); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #7" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op7, xnn_delete_operator); |
| |
| xnn_operator_t op8 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 128 /* input channels per group */, |
| 256 /* output_channels_per_group */, |
| 128 /* input pixel stride */, |
| 256 /* output pixel stride */, |
| w46.data(), w47.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op8); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #8" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op8, xnn_delete_operator); |
| |
| xnn_operator_t op9 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 256 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 256 /* input pixel stride */, |
| 256 /* output pixel stride */, |
| w48.data(), w49.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op9); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #9" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op9, xnn_delete_operator); |
| |
| xnn_operator_t op10 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 256 /* input channels per group */, |
| 256 /* output_channels_per_group */, |
| 256 /* input pixel stride */, |
| 256 /* output pixel stride */, |
| w50.data(), w51.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op10); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #10" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op10, xnn_delete_operator); |
| |
| xnn_operator_t op11 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 256 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 256 /* input pixel stride */, |
| 256 /* output pixel stride */, |
| w52.data(), w53.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op11); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #11" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op11, xnn_delete_operator); |
| |
| xnn_operator_t op12 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 256 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 256 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w54.data(), w55.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op12); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #12" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op12, xnn_delete_operator); |
| |
| xnn_operator_t op13 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w56.data(), w57.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op13); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #13" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op13, xnn_delete_operator); |
| |
| xnn_operator_t op14 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w58.data(), w59.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op14); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #14" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op14, xnn_delete_operator); |
| |
| xnn_operator_t op15 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w60.data(), w61.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op15); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #15" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op15, xnn_delete_operator); |
| |
| xnn_operator_t op16 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w62.data(), w63.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op16); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #16" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op16, xnn_delete_operator); |
| |
| xnn_operator_t op17 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w64.data(), w65.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op17); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #17" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op17, xnn_delete_operator); |
| |
| xnn_operator_t op18 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w66.data(), w67.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op18); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #18" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op18, xnn_delete_operator); |
| |
| xnn_operator_t op19 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w68.data(), w69.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op19); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #19" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op19, xnn_delete_operator); |
| |
| xnn_operator_t op20 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w70.data(), w71.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op20); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #20" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op20, xnn_delete_operator); |
| |
| xnn_operator_t op21 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w72.data(), w73.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op21); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #21" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op21, xnn_delete_operator); |
| |
| xnn_operator_t op22 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 512 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w74.data(), w75.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op22); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #22" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op22, xnn_delete_operator); |
| |
| xnn_operator_t op23 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 2 /* subsampling height */, 2 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 512 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 512 /* output pixel stride */, |
| w76.data(), w77.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op23); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #23" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op23, xnn_delete_operator); |
| |
| xnn_operator_t op24 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 512 /* input channels per group */, |
| 1024 /* output_channels_per_group */, |
| 512 /* input pixel stride */, |
| 1024 /* output pixel stride */, |
| w78.data(), w79.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op24); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #24" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op24, xnn_delete_operator); |
| |
| xnn_operator_t op25 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 1 /* top padding */, 1 /* right padding */, |
| 1 /* bottom padding */, 1 /* left padding */, |
| 3 /* kernel height */, 3 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1024 /* groups */, |
| 1 /* input channels per group */, |
| 1 /* output_channels_per_group */, |
| 1024 /* input pixel stride */, |
| 1024 /* output pixel stride */, |
| w80.data(), w81.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op25); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #25" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op25, xnn_delete_operator); |
| |
| xnn_operator_t op26 = nullptr; |
| status = xnn_create_convolution2d_nchw_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 1024 /* input channels per group */, |
| 1024 /* output_channels_per_group */, |
| 1024 /* input pixel stride */, |
| 1024 /* output pixel stride */, |
| w82.data(), w83.data(), |
| 0.0f /* output min */, 6.0f /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op26); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #26" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op26, xnn_delete_operator); |
| |
| xnn_operator_t op27 = nullptr; |
| status = xnn_create_global_average_pooling_ncw_f32( |
| 1024 /* channels */, |
| -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(), |
| 0 /* flags */, |
| &op27); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #27" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op27, xnn_delete_operator); |
| |
| xnn_operator_t op28 = nullptr; |
| status = xnn_create_convolution2d_nhwc_f32( |
| 0 /* top padding */, 0 /* right padding */, |
| 0 /* bottom padding */, 0 /* left padding */, |
| 1 /* kernel height */, 1 /* kernel width */, |
| 1 /* subsampling height */, 1 /* subsampling width */, |
| 1 /* dilation_height */, 1 /* dilation_width */, |
| 1 /* groups */, |
| 1024 /* input channels per group */, |
| 1001 /* output_channels_per_group */, |
| 1024 /* input pixel stride */, |
| 1001 /* output pixel stride */, |
| w84.data(), w85.data(), |
| -std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */, |
| 0 /* flags */, |
| &caches, |
| &op28); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to create operation #28" << std::endl; |
| return ExecutionPlan(); |
| } |
| operators.emplace_back(op28, xnn_delete_operator); |
| |
| #if XNN_PLATFORM_JIT |
| xnn_finalize_code_memory(&code_cache.cache.code); |
| #endif |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op0, |
| 1 /* batch size */, 224 /* input height */, 224 /* input width */, |
| v0.data() /* input */, v1.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #0" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op1, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v1.data() /* input */, v2.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #1" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op2, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v2.data() /* input */, v3.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #2" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op3, |
| 1 /* batch size */, 112 /* input height */, 112 /* input width */, |
| v3.data() /* input */, v4.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #3" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op4, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v4.data() /* input */, v5.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #4" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op5, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v5.data() /* input */, v6.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #5" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op6, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v6.data() /* input */, v7.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #6" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op7, |
| 1 /* batch size */, 56 /* input height */, 56 /* input width */, |
| v7.data() /* input */, v8.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #7" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op8, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v8.data() /* input */, v9.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #8" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op9, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v9.data() /* input */, v10.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #9" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op10, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v10.data() /* input */, v11.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #10" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op11, |
| 1 /* batch size */, 28 /* input height */, 28 /* input width */, |
| v11.data() /* input */, v12.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #11" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op12, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v12.data() /* input */, v13.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #12" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op13, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v13.data() /* input */, v14.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #13" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op14, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v14.data() /* input */, v15.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #14" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op15, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v15.data() /* input */, v16.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #15" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op16, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v16.data() /* input */, v17.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #16" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op17, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v17.data() /* input */, v18.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #17" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op18, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v18.data() /* input */, v19.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #18" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op19, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v19.data() /* input */, v20.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #19" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op20, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v20.data() /* input */, v21.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #20" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op21, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v21.data() /* input */, v22.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #21" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op22, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v22.data() /* input */, v23.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #22" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op23, |
| 1 /* batch size */, 14 /* input height */, 14 /* input width */, |
| v23.data() /* input */, v24.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #23" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op24, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v24.data() /* input */, v25.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #24" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op25, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v25.data() /* input */, v26.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #25" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nchw_f32( |
| op26, |
| 1 /* batch size */, 7 /* input height */, 7 /* input width */, |
| v26.data() /* input */, v27.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #26" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_global_average_pooling_ncw_f32( |
| op27, |
| 1 /* batch size */, 49 /* width */, |
| v27.data() /* input */, v28.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #27" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| status = xnn_setup_convolution2d_nhwc_f32( |
| op28, |
| 1 /* batch size */, 1 /* input height */, 1 /* input width */, |
| v28.data() /* input */, v29.data() /* output */, |
| threadpool /* threadpool */); |
| if (status != xnn_status_success) { |
| std::cerr << "failed to setup operation #28" << std::endl; |
| return ExecutionPlan(); |
| } |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wpessimizing-move" |
| return operators; |
| #pragma clang diagnostic pop |
| } |
| |
| } // namespace models |